Vertebral body segmentation with GrowCut: Initial experience, workflow and practical application

Jan Egger, Christopher Nimsky, Xiaojun Chen

Research output: Contribution to journalArticle

Abstract

Objectives: Spinal diseases are very common; for example, the risk of osteoporotic fracture is 40% for White women and 13% for White men in the United States during their lifetime. Hence, the total number of surgical spinal treatments is on the rise with the aging population, and accurate diagnosis is of great importance to avoid complications and a reappearance of the symptoms. Imaging and analysis of a vertebral column is an exhausting task that can lead to wrong interpretations. The overall goal of this contribution is to study a cellular automata-based approach for the segmentation of vertebral bodies between the compacta and surrounding structures yielding to time savings and reducing interpretation errors.

Methods: To obtain the ground truth, T2-weighted magnetic resonance imaging acquisitions of the spine were segmented in a slice-by-slice procedure by several neurosurgeons. Subsequently, the same vertebral bodies have been segmented by a physician using the cellular automata approach GrowCut.

Results: Manual and GrowCut segmentations have been evaluated against each other via the Dice Score and the Hausdorff distance resulting in 82.99% ± 5.03% and 18.91 ± 7.2 voxel, respectively. Moreover, the times have been determined during the slice-by-slice and the GrowCut course of actions, indicating a significantly reduced segmentation time (5.77 ± 0.73 min) of the algorithmic approach.

Conclusion: In this contribution, we used the GrowCut segmentation algorithm publicly available in three-dimensional Slicer for three-dimensional segmentation of vertebral bodies. To the best of our knowledge, this is the first time that the GrowCut method has been studied for the usage of vertebral body segmentation. In brief, we found that the GrowCut segmentation times were consistently less than the manual segmentation times. Hence, GrowCut provides an alternative to a manual slice-by-slice segmentation process.

LanguageEnglish
Pages2050312117740984
JournalSAGE open medicine
Volume5
DOIs
StatusPublished - 2017

Fingerprint

Workflow
Spine
Spinal Diseases
Osteoporotic Fractures
Magnetic Resonance Imaging
Physicians
Population

Keywords

  • Journal Article

Cite this

Vertebral body segmentation with GrowCut : Initial experience, workflow and practical application. / Egger, Jan; Nimsky, Christopher; Chen, Xiaojun.

In: SAGE open medicine, Vol. 5, 2017, p. 2050312117740984.

Research output: Contribution to journalArticle

Egger, Jan ; Nimsky, Christopher ; Chen, Xiaojun. / Vertebral body segmentation with GrowCut : Initial experience, workflow and practical application. In: SAGE open medicine. 2017 ; Vol. 5. pp. 2050312117740984
@article{735064c1fb64498dbc43029dc1f033e9,
title = "Vertebral body segmentation with GrowCut: Initial experience, workflow and practical application",
abstract = "Objectives: Spinal diseases are very common; for example, the risk of osteoporotic fracture is 40{\%} for White women and 13{\%} for White men in the United States during their lifetime. Hence, the total number of surgical spinal treatments is on the rise with the aging population, and accurate diagnosis is of great importance to avoid complications and a reappearance of the symptoms. Imaging and analysis of a vertebral column is an exhausting task that can lead to wrong interpretations. The overall goal of this contribution is to study a cellular automata-based approach for the segmentation of vertebral bodies between the compacta and surrounding structures yielding to time savings and reducing interpretation errors.Methods: To obtain the ground truth, T2-weighted magnetic resonance imaging acquisitions of the spine were segmented in a slice-by-slice procedure by several neurosurgeons. Subsequently, the same vertebral bodies have been segmented by a physician using the cellular automata approach GrowCut.Results: Manual and GrowCut segmentations have been evaluated against each other via the Dice Score and the Hausdorff distance resulting in 82.99{\%} ± 5.03{\%} and 18.91 ± 7.2 voxel, respectively. Moreover, the times have been determined during the slice-by-slice and the GrowCut course of actions, indicating a significantly reduced segmentation time (5.77 ± 0.73 min) of the algorithmic approach.Conclusion: In this contribution, we used the GrowCut segmentation algorithm publicly available in three-dimensional Slicer for three-dimensional segmentation of vertebral bodies. To the best of our knowledge, this is the first time that the GrowCut method has been studied for the usage of vertebral body segmentation. In brief, we found that the GrowCut segmentation times were consistently less than the manual segmentation times. Hence, GrowCut provides an alternative to a manual slice-by-slice segmentation process.",
keywords = "Journal Article",
author = "Jan Egger and Christopher Nimsky and Xiaojun Chen",
year = "2017",
doi = "10.1177/2050312117740984",
language = "English",
volume = "5",
pages = "2050312117740984",
journal = "SAGE open medicine",
issn = "2050-3121",
publisher = "SAGE Publications Inc.",

}

TY - JOUR

T1 - Vertebral body segmentation with GrowCut

T2 - SAGE open medicine

AU - Egger,Jan

AU - Nimsky,Christopher

AU - Chen,Xiaojun

PY - 2017

Y1 - 2017

N2 - Objectives: Spinal diseases are very common; for example, the risk of osteoporotic fracture is 40% for White women and 13% for White men in the United States during their lifetime. Hence, the total number of surgical spinal treatments is on the rise with the aging population, and accurate diagnosis is of great importance to avoid complications and a reappearance of the symptoms. Imaging and analysis of a vertebral column is an exhausting task that can lead to wrong interpretations. The overall goal of this contribution is to study a cellular automata-based approach for the segmentation of vertebral bodies between the compacta and surrounding structures yielding to time savings and reducing interpretation errors.Methods: To obtain the ground truth, T2-weighted magnetic resonance imaging acquisitions of the spine were segmented in a slice-by-slice procedure by several neurosurgeons. Subsequently, the same vertebral bodies have been segmented by a physician using the cellular automata approach GrowCut.Results: Manual and GrowCut segmentations have been evaluated against each other via the Dice Score and the Hausdorff distance resulting in 82.99% ± 5.03% and 18.91 ± 7.2 voxel, respectively. Moreover, the times have been determined during the slice-by-slice and the GrowCut course of actions, indicating a significantly reduced segmentation time (5.77 ± 0.73 min) of the algorithmic approach.Conclusion: In this contribution, we used the GrowCut segmentation algorithm publicly available in three-dimensional Slicer for three-dimensional segmentation of vertebral bodies. To the best of our knowledge, this is the first time that the GrowCut method has been studied for the usage of vertebral body segmentation. In brief, we found that the GrowCut segmentation times were consistently less than the manual segmentation times. Hence, GrowCut provides an alternative to a manual slice-by-slice segmentation process.

AB - Objectives: Spinal diseases are very common; for example, the risk of osteoporotic fracture is 40% for White women and 13% for White men in the United States during their lifetime. Hence, the total number of surgical spinal treatments is on the rise with the aging population, and accurate diagnosis is of great importance to avoid complications and a reappearance of the symptoms. Imaging and analysis of a vertebral column is an exhausting task that can lead to wrong interpretations. The overall goal of this contribution is to study a cellular automata-based approach for the segmentation of vertebral bodies between the compacta and surrounding structures yielding to time savings and reducing interpretation errors.Methods: To obtain the ground truth, T2-weighted magnetic resonance imaging acquisitions of the spine were segmented in a slice-by-slice procedure by several neurosurgeons. Subsequently, the same vertebral bodies have been segmented by a physician using the cellular automata approach GrowCut.Results: Manual and GrowCut segmentations have been evaluated against each other via the Dice Score and the Hausdorff distance resulting in 82.99% ± 5.03% and 18.91 ± 7.2 voxel, respectively. Moreover, the times have been determined during the slice-by-slice and the GrowCut course of actions, indicating a significantly reduced segmentation time (5.77 ± 0.73 min) of the algorithmic approach.Conclusion: In this contribution, we used the GrowCut segmentation algorithm publicly available in three-dimensional Slicer for three-dimensional segmentation of vertebral bodies. To the best of our knowledge, this is the first time that the GrowCut method has been studied for the usage of vertebral body segmentation. In brief, we found that the GrowCut segmentation times were consistently less than the manual segmentation times. Hence, GrowCut provides an alternative to a manual slice-by-slice segmentation process.

KW - Journal Article

U2 - 10.1177/2050312117740984

DO - 10.1177/2050312117740984

M3 - Article

VL - 5

SP - 2050312117740984

JO - SAGE open medicine

JF - SAGE open medicine

SN - 2050-3121

ER -