Toward “homolactic” fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background

Vera Novy, Bernd Brunner, Gerdt Müller, Bernd Nidetzky

Research output: Contribution to journalArticleResearchpeer-review

Abstract

l-Lactic acid is an important platform chemical and its production from the lignocellulosic sugars glucose and xylose is, therefore, of high interest. Tolerance to low pH and a generally high robustness make Saccharomyces cerevisiae a promising host for l-lactic acid fermentation but strain development for effective utilization of both sugars is an unsolved problem. The herein used S. cerevisiae strain IBB10B05 incorporates a NADH-dependent pathway for oxidoreductive xylose assimilation within CEN.PK113-7D background and was additionally evolved for accelerated xylose-to-ethanol fermentation. Selecting the Plasmodium falciparum l-lactate dehydrogenase (pfLDH) for its high kinetic efficiency, strain IBB14LA1 was derived from IBB10B05 by placing the pfldh gene at the pdc1 locus under control of the pdc1 promotor. Strain IBB14LA1_5 additionally had the pdc5 gene disrupted. With both strains, continued l-lactic acid formation from glucose or xylose, each at 50 g/L, necessitated stabilization of pH. Using calcium carbonate (11 g/L), anaerobic shaken bottle fermentations at pH ≥ 5 resulted in l-lactic acid yields (YLA) of 0.67 g/g glucose and 0.80 g/g xylose for strain IBB14LA1_5. Only little xylitol was formed (≤0.08 g/g) and no ethanol. In pH stabilized aerobic conversions of glucose, strain IBB14LA1_5 further showed excellent l-lactic acid productivities (1.8 g/L/h) without losses in YLA (0.69 g/g glucose). In strain IBB14LA1, the YLA was lower (≤0.18 g/g glucose; ≤0.27 g/g xylose) due to ethanol as well as xylitol formation. Therefore, this study shows that a S. cerevisiae strain originally optimized for xylose-to-ethanol fermentation was useful to implement l-lactic acid production from glucose and xylose; and with the metabolic engineering strategy applied, advance toward homolactic fermentation of both sugars was made. Biotechnol. Bioeng. 2017;114: 163–171.

Original languageEnglish
Pages (from-to)163-171
Number of pages9
JournalBiotechnology and Bioengineering
Volume114
Issue number1
DOIs
Publication statusPublished - 1 Jan 2017

Fingerprint

Xylose
L-Lactate Dehydrogenase
Yeast
Fermentation
Glucose
Saccharomyces cerevisiae
Lactic Acid
Lactic acid
Ethanol
Xylitol
Sugars
Metabolic Engineering
Internal-External Control
Calcium Carbonate
Plasmodium falciparum
Genes
NAD
Metabolic engineering
xylose-glucose
Oxidoreductases

Keywords

  • anaerobic
  • homolactic
  • lactate dehydrogenase
  • lactic acid
  • Saccharomyces cerevisiae
  • xylose fermentation

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Applied Microbiology and Biotechnology

Cite this

Toward “homolactic” fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background. / Novy, Vera; Brunner, Bernd; Müller, Gerdt; Nidetzky, Bernd.

In: Biotechnology and Bioengineering, Vol. 114, No. 1, 01.01.2017, p. 163-171.

Research output: Contribution to journalArticleResearchpeer-review

@article{dad876fd6b4a45fe958381b2d810f1f0,
title = "Toward “homolactic” fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background",
abstract = "l-Lactic acid is an important platform chemical and its production from the lignocellulosic sugars glucose and xylose is, therefore, of high interest. Tolerance to low pH and a generally high robustness make Saccharomyces cerevisiae a promising host for l-lactic acid fermentation but strain development for effective utilization of both sugars is an unsolved problem. The herein used S. cerevisiae strain IBB10B05 incorporates a NADH-dependent pathway for oxidoreductive xylose assimilation within CEN.PK113-7D background and was additionally evolved for accelerated xylose-to-ethanol fermentation. Selecting the Plasmodium falciparum l-lactate dehydrogenase (pfLDH) for its high kinetic efficiency, strain IBB14LA1 was derived from IBB10B05 by placing the pfldh gene at the pdc1 locus under control of the pdc1 promotor. Strain IBB14LA1_5 additionally had the pdc5 gene disrupted. With both strains, continued l-lactic acid formation from glucose or xylose, each at 50 g/L, necessitated stabilization of pH. Using calcium carbonate (11 g/L), anaerobic shaken bottle fermentations at pH ≥ 5 resulted in l-lactic acid yields (YLA) of 0.67 g/g glucose and 0.80 g/g xylose for strain IBB14LA1_5. Only little xylitol was formed (≤0.08 g/g) and no ethanol. In pH stabilized aerobic conversions of glucose, strain IBB14LA1_5 further showed excellent l-lactic acid productivities (1.8 g/L/h) without losses in YLA (0.69 g/g glucose). In strain IBB14LA1, the YLA was lower (≤0.18 g/g glucose; ≤0.27 g/g xylose) due to ethanol as well as xylitol formation. Therefore, this study shows that a S. cerevisiae strain originally optimized for xylose-to-ethanol fermentation was useful to implement l-lactic acid production from glucose and xylose; and with the metabolic engineering strategy applied, advance toward homolactic fermentation of both sugars was made. Biotechnol. Bioeng. 2017;114: 163–171.",
keywords = "anaerobic, homolactic, lactate dehydrogenase, lactic acid, Saccharomyces cerevisiae, xylose fermentation",
author = "Vera Novy and Bernd Brunner and Gerdt M{\"u}ller and Bernd Nidetzky",
year = "2017",
month = "1",
day = "1",
doi = "10.1002/bit.26048",
language = "English",
volume = "114",
pages = "163--171",
journal = "Biotechnology and Bioengineering",
issn = "0006-3592",
publisher = "Wiley-VCH",
number = "1",

}

TY - JOUR

T1 - Toward “homolactic” fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background

AU - Novy, Vera

AU - Brunner, Bernd

AU - Müller, Gerdt

AU - Nidetzky, Bernd

PY - 2017/1/1

Y1 - 2017/1/1

N2 - l-Lactic acid is an important platform chemical and its production from the lignocellulosic sugars glucose and xylose is, therefore, of high interest. Tolerance to low pH and a generally high robustness make Saccharomyces cerevisiae a promising host for l-lactic acid fermentation but strain development for effective utilization of both sugars is an unsolved problem. The herein used S. cerevisiae strain IBB10B05 incorporates a NADH-dependent pathway for oxidoreductive xylose assimilation within CEN.PK113-7D background and was additionally evolved for accelerated xylose-to-ethanol fermentation. Selecting the Plasmodium falciparum l-lactate dehydrogenase (pfLDH) for its high kinetic efficiency, strain IBB14LA1 was derived from IBB10B05 by placing the pfldh gene at the pdc1 locus under control of the pdc1 promotor. Strain IBB14LA1_5 additionally had the pdc5 gene disrupted. With both strains, continued l-lactic acid formation from glucose or xylose, each at 50 g/L, necessitated stabilization of pH. Using calcium carbonate (11 g/L), anaerobic shaken bottle fermentations at pH ≥ 5 resulted in l-lactic acid yields (YLA) of 0.67 g/g glucose and 0.80 g/g xylose for strain IBB14LA1_5. Only little xylitol was formed (≤0.08 g/g) and no ethanol. In pH stabilized aerobic conversions of glucose, strain IBB14LA1_5 further showed excellent l-lactic acid productivities (1.8 g/L/h) without losses in YLA (0.69 g/g glucose). In strain IBB14LA1, the YLA was lower (≤0.18 g/g glucose; ≤0.27 g/g xylose) due to ethanol as well as xylitol formation. Therefore, this study shows that a S. cerevisiae strain originally optimized for xylose-to-ethanol fermentation was useful to implement l-lactic acid production from glucose and xylose; and with the metabolic engineering strategy applied, advance toward homolactic fermentation of both sugars was made. Biotechnol. Bioeng. 2017;114: 163–171.

AB - l-Lactic acid is an important platform chemical and its production from the lignocellulosic sugars glucose and xylose is, therefore, of high interest. Tolerance to low pH and a generally high robustness make Saccharomyces cerevisiae a promising host for l-lactic acid fermentation but strain development for effective utilization of both sugars is an unsolved problem. The herein used S. cerevisiae strain IBB10B05 incorporates a NADH-dependent pathway for oxidoreductive xylose assimilation within CEN.PK113-7D background and was additionally evolved for accelerated xylose-to-ethanol fermentation. Selecting the Plasmodium falciparum l-lactate dehydrogenase (pfLDH) for its high kinetic efficiency, strain IBB14LA1 was derived from IBB10B05 by placing the pfldh gene at the pdc1 locus under control of the pdc1 promotor. Strain IBB14LA1_5 additionally had the pdc5 gene disrupted. With both strains, continued l-lactic acid formation from glucose or xylose, each at 50 g/L, necessitated stabilization of pH. Using calcium carbonate (11 g/L), anaerobic shaken bottle fermentations at pH ≥ 5 resulted in l-lactic acid yields (YLA) of 0.67 g/g glucose and 0.80 g/g xylose for strain IBB14LA1_5. Only little xylitol was formed (≤0.08 g/g) and no ethanol. In pH stabilized aerobic conversions of glucose, strain IBB14LA1_5 further showed excellent l-lactic acid productivities (1.8 g/L/h) without losses in YLA (0.69 g/g glucose). In strain IBB14LA1, the YLA was lower (≤0.18 g/g glucose; ≤0.27 g/g xylose) due to ethanol as well as xylitol formation. Therefore, this study shows that a S. cerevisiae strain originally optimized for xylose-to-ethanol fermentation was useful to implement l-lactic acid production from glucose and xylose; and with the metabolic engineering strategy applied, advance toward homolactic fermentation of both sugars was made. Biotechnol. Bioeng. 2017;114: 163–171.

KW - anaerobic

KW - homolactic

KW - lactate dehydrogenase

KW - lactic acid

KW - Saccharomyces cerevisiae

KW - xylose fermentation

UR - http://www.scopus.com/inward/record.url?scp=84994441016&partnerID=8YFLogxK

U2 - 10.1002/bit.26048

DO - 10.1002/bit.26048

M3 - Article

VL - 114

SP - 163

EP - 171

JO - Biotechnology and Bioengineering

JF - Biotechnology and Bioengineering

SN - 0006-3592

IS - 1

ER -