TY - JOUR
T1 - In Situ Tracking of Partial Sodium Desolvation of Materials with Capacitive, Pseudocapacitive, and Battery-like Charge/Discharge Behavior in Aqueous Electrolytes
AU - Srimuk, Pattarachai
AU - Lee, Juhan
AU - Budak, Öznil
AU - Choi, Jaehoon
AU - Chen, Ming
AU - Feng, Guang
AU - Prehal, Christian
AU - Presser, Volker
PY - 2018/10/16
Y1 - 2018/10/16
N2 - Aqueous electrolytes can be used for electrical double-layer capacitors, pseudocapacitors, and intercalation-type batteries. These technologies may employ different electrode materials, most importantly high-surface-area nanoporous carbon, two-dimensional materials, and metal oxides. All of these materials also find more and more applications in electrochemical desalination devices. During the electrochemical operation of such electrode materials, charge storage and ion immobilization are accomplished by non-Faradaic ion electrosorption, Faradaic ion intercalation at specific crystallographic sites, or ion insertion between layers of two-dimensional materials. These processes may or may not be associated with a (partial) loss of the aqueous solvation shell around the ions. Our work showcases the electrochemical quartz crystal microbalance as an excellent tool for quantifying the change in effective solvation. We chose sodium as an important cation for energy storage materials (sodium-based aqueous electrolytes) and electrochemical desalination (saline media). Our data show that a major amount of water uptake occurs during ion electrosorption in nanoporous carbon, while battery-like ion insertion between layers of titanium disulfide is associated with an 80% loss of the initially present solvation molecules. Sodiation of MXene is accomplished by a loss of 90% of the number of solvent molecules, but nanoconfined water in-between the MXene layers may compensate for this large degree of desolvation. In the case of sodium manganese oxide, we were able to demonstrate the full loss of the solvation shell.
AB - Aqueous electrolytes can be used for electrical double-layer capacitors, pseudocapacitors, and intercalation-type batteries. These technologies may employ different electrode materials, most importantly high-surface-area nanoporous carbon, two-dimensional materials, and metal oxides. All of these materials also find more and more applications in electrochemical desalination devices. During the electrochemical operation of such electrode materials, charge storage and ion immobilization are accomplished by non-Faradaic ion electrosorption, Faradaic ion intercalation at specific crystallographic sites, or ion insertion between layers of two-dimensional materials. These processes may or may not be associated with a (partial) loss of the aqueous solvation shell around the ions. Our work showcases the electrochemical quartz crystal microbalance as an excellent tool for quantifying the change in effective solvation. We chose sodium as an important cation for energy storage materials (sodium-based aqueous electrolytes) and electrochemical desalination (saline media). Our data show that a major amount of water uptake occurs during ion electrosorption in nanoporous carbon, while battery-like ion insertion between layers of titanium disulfide is associated with an 80% loss of the initially present solvation molecules. Sodiation of MXene is accomplished by a loss of 90% of the number of solvent molecules, but nanoconfined water in-between the MXene layers may compensate for this large degree of desolvation. In the case of sodium manganese oxide, we were able to demonstrate the full loss of the solvation shell.
U2 - 10.1021/acs.langmuir.8b02485
DO - 10.1021/acs.langmuir.8b02485
M3 - Article
VL - 34
SP - 13132
EP - 13143
JO - Langmuir
JF - Langmuir
SN - 0743-7463
IS - 44
ER -