Direct comparison of supervised and semi-supervised retraining approaches for co-adaptive BCIs: A.S. and J.B. equally contributed to this study and share first authorship.

Andreas Schwarz, Julia Brandstetter, Joana Pereira, Gernot Müller-Putz

Research output: Contribution to journalArticle

Abstract

For Brain-Computer interfaces (BCIs), system calibration is a lengthy but necessary process for successful operation. Co-adaptive BCIs aim to shorten training and imply positive motivation to users by presenting feedback already at early stages: After just 5 min of gathering calibration data, the systems are able to provide feedback and engage users in a mutual learning process. In this work, we investigate whether the retraining stage of co-adaptive BCIs can be adapted to a semi-supervised concept, where only a small amount of labeled data is available and all additional data needs to be labeled by the BCI itself. The aim of the current work was to evaluate whether a semi-supervised co-adaptive BCI could successfully compete with a supervised co-adaptive BCI model. In a supporting two-class (190 trials per condition) BCI study based on motor imagery tasks, we evaluated both approaches in two separate groups of 10 participants online, while we simulated the other approach in each group offline. Our results indicate that despite the lack of true labeled data, the semi-supervised driven BCI did not perform significantly worse (p > 0.05) than the supervised counterpart. We believe that these findings contribute to developing BCIs for long-term use, where continuous adaptation becomes imperative for maintaining meaningful BCI performance.
Original languageEnglish
Pages (from-to)1-11
Number of pages11
JournalMedical & biological engineering & computing
DOIs
Publication statusE-pub ahead of print - 14 Sep 2019

Keywords

  • Brain–computer interface (BCI)
  • Motor imagery
  • Co-adaptive BCI
  • Semi-supervised learning
  • Supervised learning

Fields of Expertise

  • Human- & Biotechnology
  • Information, Communication & Computing

Fingerprint Dive into the research topics of 'Direct comparison of supervised and semi-supervised retraining approaches for co-adaptive BCIs: A.S. and J.B. equally contributed to this study and share first authorship.'. Together they form a unique fingerprint.

Cite this