A localized mixed-hybrid method for imposing interfacial constraints in the extended finite element method (XFEM)

A. Zilian*, T. P. Fries

*Corresponding author for this work

Research output: Contribution to journalArticle

Abstract

The paper proposes an approach for the imposition of constraints along moving or fixed immersed interfaces in the context of the extended finite element method. An enriched approximation space enables consistent representation of strong and weak discontinuities in the solution fields along arbitrarily-shaped material interfaces using an unfitted background mesh. The use of Lagrange multipliers or penalty methods is circumvented by a localized mixed hybrid formulation of the model equations. In a defined region in the vicinity of the interface, the original problem is re-stated in its auxiliary formulation. The availability of the auxiliary variable enables the consideration of a variety of interface constraints in the weak form. The contribution discusses the weak imposition of Dirichlet- and Neumann-type interface conditions as well as continuity requirements not fulfilled a priori by the enriched approximation. The properties of the proposed approach applied to two-dimensional linear scalar- and vector-valued elliptic problems are investigated by studying the convergence behavior.

Original languageEnglish
Pages (from-to)733-752
Number of pages20
JournalInternational Journal for Numerical Methods in Engineering
Volume79
Issue number6
DOIs
Publication statusPublished - 6 Aug 2009

Keywords

  • Embedded interfaces
  • Extended finite elements
  • Interfacial constraints
  • Mixed method

ASJC Scopus subject areas

  • Engineering(all)
  • Applied Mathematics
  • Numerical Analysis

Fingerprint Dive into the research topics of 'A localized mixed-hybrid method for imposing interfacial constraints in the extended finite element method (XFEM)'. Together they form a unique fingerprint.

  • Cite this