Utilizing Human Memory Processes to Model Genre Preferences for Personalized Music Recommendations

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem Konferenzband

Abstract

In this paper, we introduce a psychology-inspired approach to model and predict the music genre preferences of different groups of users by utilizing human memory processes. These processes describe how humans access information units in their memory by considering the factors of (i) past usage frequency, (ii) past usage recency, and (iii) the current context. Using a publicly available dataset of more than a billion music listening records shared on the music streaming platform Last.fm, we find that our approach provides significantly better prediction accuracy results than various baseline algorithms for all evaluated user groups, i.e., (i) low-mainstream music listeners, (ii) medium-mainstream music listeners, and (iii) high-mainstream music listeners. Furthermore, our approach is based on a simple psychological model, which contributes to the transparency and explainability of the calculated predictions.
Originalspracheenglisch
TitelProceedings of the 25th International Conference on Intelligent User Interfaces
ErscheinungsortNew York, NY
Herausgeber (Verlag)Association of Computing Machinery
PublikationsstatusAngenommen/In Druck - 24 Mär 2020
Veranstaltung4th Workshop on Transparency and Explainability in Adaptive Systems through User Modeling Grounded in Psychological Theory - Virtuell, Italien
Dauer: 17 Mär 202017 Mär 2020

Konferenz

Konferenz4th Workshop on Transparency and Explainability in Adaptive Systems through User Modeling Grounded in Psychological Theory
KurztitelHUMANIZE 2020
LandItalien
OrtVirtuell
Zeitraum17/03/2017/03/20

Fingerprint Untersuchen Sie die Forschungsthemen von „Utilizing Human Memory Processes to Model Genre Preferences for Personalized Music Recommendations“. Zusammen bilden sie einen einzigartigen Fingerprint.

  • Dieses zitieren

    Kowald, D., Lex, E., & Schedl, M. (Angenommen/Im Druck). Utilizing Human Memory Processes to Model Genre Preferences for Personalized Music Recommendations. in Proceedings of the 25th International Conference on Intelligent User Interfaces New York, NY: Association of Computing Machinery.