Tracking Long-Term Drift in Wireless Sensor Networks Using Long-Term Memory and Data Fusion

Theresa Loss, Oliver Gerler, Alexander Bergmann

    Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

    Abstract

    Wireless sensor networks are used to guarantee optimal and safe operation of difficult-To-reach industrial and civil structures. Due to their exposed mounting location, the sensors experience severe environmental influences. This leads to erosion and ageing of components which result in drifting standard values. Therefore, online tracking of standard values is paramount to guarantee optimal performance. An algorithm has been developed by fusing measurement data across several sensors during their steady-state. The system is able to track drifting standard values by using long-Term memory. Simulations show that the algorithm successfully differentiates between measured data and drift of standard values. Simulations have been verified by applying the algorithm to real-world data of several months. Results show that the algorithm is able to track the drift of standard values, thereby maintaining full sensitivity.

    Originalspracheenglisch
    Titel2018 International Conference on Diagnostics in Electrical Engineering, Diagnostika 2018
    Herausgeber (Verlag)Institute of Electrical and Electronics Engineers
    ISBN (elektronisch)9781538644232
    DOIs
    PublikationsstatusVeröffentlicht - 6 Nov 2018
    Veranstaltung13th International Conference on Diagnostics in Electrical Engineering, Diagnostika 2018 - Pilsen, Tschechische Republik
    Dauer: 4 Sep 20187 Sep 2018

    Konferenz

    Konferenz13th International Conference on Diagnostics in Electrical Engineering, Diagnostika 2018
    Land/GebietTschechische Republik
    OrtPilsen
    Zeitraum4/09/187/09/18

    ASJC Scopus subject areas

    • Elektrotechnik und Elektronik
    • Sicherheit, Risiko, Zuverlässigkeit und Qualität

    Fingerprint

    Untersuchen Sie die Forschungsthemen von „Tracking Long-Term Drift in Wireless Sensor Networks Using Long-Term Memory and Data Fusion“. Zusammen bilden sie einen einzigartigen Fingerprint.

    Dieses zitieren