Synthesizing human-like sketches from natural images using a conditional convolutional decoder

Moritz Daniel Kampelmühler*, Axel Pinz

*Korrespondierende/r Autor/in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem Konferenzband

Abstract

Humans are able to precisely communicate diverse concepts by employing sketches, a highly reduced and abstract shape based representation of visual content. We propose, for the first time, a fully convolutional end-to-end architecture that is able to synthesize human-like sketches of objects in natural images with potentially cluttered background. To enable an architecture to learn this highly abstract mapping, we employ the following key components: (1) a fully convolutional encoder-decoder structure, (2) a perceptual similarity loss function operating in an abstract feature space and (3) conditioning of the decoder on the label of the object that shall be sketched. Given the combination of these architectural concepts, we can train our structure in an end-to-end supervised fashion on a collection of sketch-image pairs. The generated sketches of our architecture can be classified with 85.6% Top-5 accuracy and we verify their visual quality via a user study. We find that deep features as a perceptual similarity metric enable image translation with large domain gaps and our findings further show that convolutional neural networks trained on image classification tasks implicitly learn to encode shape information.
Originalspracheenglisch
TitelProceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020
Seiten3192-3200
Seitenumfang9
ISBN (elektronisch)9781728165530
DOIs
PublikationsstatusVeröffentlicht - Mär 2020
Veranstaltung2020 IEEE/CVF Winter Conference on Applications of Computer Vision: WACV 2020 - Snowmass Village, USA / Vereinigte Staaten
Dauer: 1 Mär 20205 Mär 2020

Publikationsreihe

NameProceedings - 2020 IEEE Winter Conference on Applications of Computer Vision, WACV 2020

Konferenz

Konferenz2020 IEEE/CVF Winter Conference on Applications of Computer Vision
KurztitelWACV 2020
LandUSA / Vereinigte Staaten
OrtSnowmass Village
Zeitraum1/03/205/03/20

ASJC Scopus subject areas

  • !!Computer Vision and Pattern Recognition
  • !!Computer Science Applications

Fingerprint Untersuchen Sie die Forschungsthemen von „Synthesizing human-like sketches from natural images using a conditional convolutional decoder“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren