Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields

Sophie Frisch, Sarah Nakato, Roswitha Rissner

Publikation: Beitrag in einer FachzeitschriftArtikel

Abstract

Let $D$ be a Dedekind domain with infinitely many maximal ideals,
all of finite index, and $K$ its quotient field. Let
$\Int(D) = \{f\in K[x] \mid f(D) \subseteq D\}$ be the ring of
integer-valued polynomials on $D$.

Given any finite multiset $\{k_1, \ldots, k_n\}$ of integers greater
than $1$, we construct a polynomial in $\Int(D)$ which has exactly
$n$ essentially different factorizations into irreducibles in
$\Int(D)$, the lengths of these factorizations being $k_1$, \ldots,
$k_n$. We also show that there is no transfer homomorphism from the
multiplicative monoid of $\Int(D)$ to a block monoid.
Originalspracheenglisch
Seiten (von - bis)231-249
Seitenumfang13
FachzeitschriftJournal of algebra
Jahrgang528
DOIs
PublikationsstatusVeröffentlicht - Jun 2019

Fields of Expertise

  • Information, Communication & Computing

Fingerprint Untersuchen Sie die Forschungsthemen von „Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields“. Zusammen bilden sie einen einzigartigen Fingerprint.

  • Dieses zitieren