Persistent and Reversible Solid Iodine Electrodeposition in Nanoporous Carbons

Christian Prehal, Harald Matthias Fitzek, Gerald Kothleitner, Volker Presser, Bernhard Gollas, Stefan Freunberger, Qamar Abbas*

*Korrespondierende/r Autor/in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikel

Abstract

Aqueous iodine based electrochemical energy storage is considered a potential candidate to improve sustainability and electrochemical performance of current battery and supercapacitor technology. It harnesses the redox activity of iodide, iodine and polyiodide species in the confined geometry of nanoporous carbon electrodes. However, current descriptions of the electrochemical reaction mechanism to interconvert these species are elusive. Here we show that in nanoporous carbons electrochemical oxidation of iodide forms persistent solid iodine deposits. Confinement slows down dissolution into triiodide and pentaiodide, responsible for otherwise significant self-discharge via shuttling. The main tools for these insights are in situ Raman spectroscopy and in situ small and wide angle X-ray scattering (in situ SAXS/WAXS). In-situ Raman spectroscopy confirms the formation of triiodide and pentaiodide during iodide oxidation. Besides polyiodides, remarkable amounts of solid iodine are deposited in the carbon nanopores, as detected by in situ SAXS/WAXS. Combined with stochastic modelling, in situ SAXS allows quantifying the solid iodine volume fraction and visualizing the iodine structure on 3D lattice models at the sub-nanometer scale. Based on the derived mechanism we demonstrate strategies for improved iodine pore filling capacity and prevention of self-discharge, applicable to hybrid supercapacitors and batteries.
Originalspracheenglisch
Seitenumfang11
FachzeitschriftChemRxiv, the Preprint Server for Chemistry
DOIs
PublikationsstatusVeröffentlicht - 23 Apr 2020

Fields of Expertise

  • Advanced Materials Science

Fingerprint Untersuchen Sie die Forschungsthemen von „Persistent and Reversible Solid Iodine Electrodeposition in Nanoporous Carbons“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren