Neighborhood troubles: On the value of user pre-filtering to speed up and enhance recommendations

Publikation: Beitrag in einer FachzeitschriftKonferenzartikel

Abstract

In this paper, we present work-in-progress on applying user pre-filtering to speed up and enhance recommendations based on Collaborative Filtering. We propose to pre-filter users in order to extract a smaller set of candidate neighbors, who exhibit a high number of overlapping entities and to compute the final user similarities based on this set. To realize this, we exploit features of the high-performance search engine Apache Solr and integrate them into a scalable recommender system. We have evaluated our approach on a dataset gathered from Foursquare and our evaluation results suggest that our proposed user pre-filtering step can help to achieve both a better runtime performance as well as an increase in overall recommendation accuracy.

Originalspracheenglisch
Aufsatznummer9
Seitenumfang5
FachzeitschriftCEUR Workshop Proceedings
Jahrgang2482
PublikationsstatusVeröffentlicht - 1 Jan 2019
Veranstaltung2018 Conference on Information and Knowledge Management Workshops - Torino, Italien
Dauer: 22 Okt 201822 Okt 2018

ASJC Scopus subject areas

  • !!Computer Science(all)

Fingerprint Untersuchen Sie die Forschungsthemen von „Neighborhood troubles: On the value of user pre-filtering to speed up and enhance recommendations“. Zusammen bilden sie einen einzigartigen Fingerprint.

  • Dieses zitieren