Metal-Organic Frameworks at the Biointerface: Synthetic Strategies and Applications

Christian Doonan, Raffaele Riccò, Kang Liang, Darren Bradshaw, Paolo Falcaro

Publikation: Beitrag in einer FachzeitschriftArtikelForschungBegutachtung

Abstract

Many living organisms are capable of producing inorganic materials of precisely controlled structure and morphology. This ubiquitous process is termed biomineralization and is observed in nature from the macroscale (e.g., formation of exoskeletons) down to the nanoscale (e.g., mineral storage and transportation in proteins). Extensive research efforts have pursued replicating this chemistry with the overarching aims of synthesizing new materials of unprecedented physical properties and understanding the complex mechanisms that occur at the biological-inorganic interface. Recently, we demonstrated that a class of porous materials termed metal-organic frameworks (MOFs) can spontaneously form on protein-based hydrogels via a process analogous to natural matrix-mediated biomineralization. Subsequently, this strategy was extended to functional biomacromolecules, including proteins and DNA, which have been shown to seed and accelerate crystallization of MOFs. Alternative strategies exploit co-precipitating agents such as polymers to induce MOF particle formation thus facilitating protein encapsulation within the porous crystals. In these examples the rigid molecular architecture of the MOF was found to form a protective coating around the biomacromolecule offering improved stability to external environments that would normally lead to its degradation. In this way, the MOF shell mimics the protective function of a biomineralized exoskeleton. Other methodologies have also been explored to encapsulate enzymes within MOF structures, including the fabrication of polycrystalline hollow MOF microcapsules that preserve the original enzyme functionality over several batch reaction cycles. The potential to design MOFs of varied pore size and chemical functionality has underpinned studies describing the postsynthesis infiltration of enzymes into MOF pore networks and bioconjugation strategies for the decoration of the MOF outer surface, respectively. These methods and configurations allow for customized biocomposites. MOF biocomposites have been extended from simple proteins to complex biological systems including viruses, living yeast cells, and bacteria. Indeed, a noteworthy result was that cells encapsulated within a crystalline MOF shell remain viable after exposure to a medium containing lytic enzymes. Furthermore, the cells can adsorb nutrients (glucose) through the MOF shell but cease reproducing until the MOF casing is removed, at which point normal cellular activity is fully restored. The field of MOF biocomposites is expansive and rapidly developing toward different applied research fields including protection and delivery of biopharmaceuticals, biosensing, biocatalysis, biobanking, and cell and virus manipulation. This Account describes the current progress of MOFs toward biotechnological applications highlighting the different strategies for the preparation of biocomposites, the developmental milestones, the challenges, and the potential impact of MOFs to the field.

Originalspracheenglisch
FachzeitschriftAccounts of Chemical Research
DOIs
PublikationsstatusVeröffentlicht - 10 Mai 2017

Fingerprint

Metals
Biomineralization
Enzymes
Proteins
Viruses
Biocatalysis
Hydrogels
Protective coatings
Biological systems
Crystallization
Encapsulation
Research
Infiltration
Yeast
Nutrients
Pore size
Capsules
Minerals
Seed
Porous materials

Schlagwörter

    Dies zitieren

    Metal-Organic Frameworks at the Biointerface : Synthetic Strategies and Applications. / Doonan, Christian; Riccò, Raffaele; Liang, Kang; Bradshaw, Darren; Falcaro, Paolo.

    in: Accounts of Chemical Research, 10.05.2017.

    Publikation: Beitrag in einer FachzeitschriftArtikelForschungBegutachtung

    @article{db16f7b740a64304a2c7ae215874c950,
    title = "Metal-Organic Frameworks at the Biointerface: Synthetic Strategies and Applications",
    abstract = "Many living organisms are capable of producing inorganic materials of precisely controlled structure and morphology. This ubiquitous process is termed biomineralization and is observed in nature from the macroscale (e.g., formation of exoskeletons) down to the nanoscale (e.g., mineral storage and transportation in proteins). Extensive research efforts have pursued replicating this chemistry with the overarching aims of synthesizing new materials of unprecedented physical properties and understanding the complex mechanisms that occur at the biological-inorganic interface. Recently, we demonstrated that a class of porous materials termed metal-organic frameworks (MOFs) can spontaneously form on protein-based hydrogels via a process analogous to natural matrix-mediated biomineralization. Subsequently, this strategy was extended to functional biomacromolecules, including proteins and DNA, which have been shown to seed and accelerate crystallization of MOFs. Alternative strategies exploit co-precipitating agents such as polymers to induce MOF particle formation thus facilitating protein encapsulation within the porous crystals. In these examples the rigid molecular architecture of the MOF was found to form a protective coating around the biomacromolecule offering improved stability to external environments that would normally lead to its degradation. In this way, the MOF shell mimics the protective function of a biomineralized exoskeleton. Other methodologies have also been explored to encapsulate enzymes within MOF structures, including the fabrication of polycrystalline hollow MOF microcapsules that preserve the original enzyme functionality over several batch reaction cycles. The potential to design MOFs of varied pore size and chemical functionality has underpinned studies describing the postsynthesis infiltration of enzymes into MOF pore networks and bioconjugation strategies for the decoration of the MOF outer surface, respectively. These methods and configurations allow for customized biocomposites. MOF biocomposites have been extended from simple proteins to complex biological systems including viruses, living yeast cells, and bacteria. Indeed, a noteworthy result was that cells encapsulated within a crystalline MOF shell remain viable after exposure to a medium containing lytic enzymes. Furthermore, the cells can adsorb nutrients (glucose) through the MOF shell but cease reproducing until the MOF casing is removed, at which point normal cellular activity is fully restored. The field of MOF biocomposites is expansive and rapidly developing toward different applied research fields including protection and delivery of biopharmaceuticals, biosensing, biocatalysis, biobanking, and cell and virus manipulation. This Account describes the current progress of MOFs toward biotechnological applications highlighting the different strategies for the preparation of biocomposites, the developmental milestones, the challenges, and the potential impact of MOFs to the field.",
    keywords = "Journal Article",
    author = "Christian Doonan and Raffaele Ricc{\`o} and Kang Liang and Darren Bradshaw and Paolo Falcaro",
    year = "2017",
    month = "5",
    day = "10",
    doi = "10.1021/acs.accounts.7b00090",
    language = "English",
    journal = "Accounts of Chemical Research",
    issn = "0001-4842",
    publisher = "American Chemical Society",

    }

    TY - JOUR

    T1 - Metal-Organic Frameworks at the Biointerface

    T2 - Synthetic Strategies and Applications

    AU - Doonan, Christian

    AU - Riccò, Raffaele

    AU - Liang, Kang

    AU - Bradshaw, Darren

    AU - Falcaro, Paolo

    PY - 2017/5/10

    Y1 - 2017/5/10

    N2 - Many living organisms are capable of producing inorganic materials of precisely controlled structure and morphology. This ubiquitous process is termed biomineralization and is observed in nature from the macroscale (e.g., formation of exoskeletons) down to the nanoscale (e.g., mineral storage and transportation in proteins). Extensive research efforts have pursued replicating this chemistry with the overarching aims of synthesizing new materials of unprecedented physical properties and understanding the complex mechanisms that occur at the biological-inorganic interface. Recently, we demonstrated that a class of porous materials termed metal-organic frameworks (MOFs) can spontaneously form on protein-based hydrogels via a process analogous to natural matrix-mediated biomineralization. Subsequently, this strategy was extended to functional biomacromolecules, including proteins and DNA, which have been shown to seed and accelerate crystallization of MOFs. Alternative strategies exploit co-precipitating agents such as polymers to induce MOF particle formation thus facilitating protein encapsulation within the porous crystals. In these examples the rigid molecular architecture of the MOF was found to form a protective coating around the biomacromolecule offering improved stability to external environments that would normally lead to its degradation. In this way, the MOF shell mimics the protective function of a biomineralized exoskeleton. Other methodologies have also been explored to encapsulate enzymes within MOF structures, including the fabrication of polycrystalline hollow MOF microcapsules that preserve the original enzyme functionality over several batch reaction cycles. The potential to design MOFs of varied pore size and chemical functionality has underpinned studies describing the postsynthesis infiltration of enzymes into MOF pore networks and bioconjugation strategies for the decoration of the MOF outer surface, respectively. These methods and configurations allow for customized biocomposites. MOF biocomposites have been extended from simple proteins to complex biological systems including viruses, living yeast cells, and bacteria. Indeed, a noteworthy result was that cells encapsulated within a crystalline MOF shell remain viable after exposure to a medium containing lytic enzymes. Furthermore, the cells can adsorb nutrients (glucose) through the MOF shell but cease reproducing until the MOF casing is removed, at which point normal cellular activity is fully restored. The field of MOF biocomposites is expansive and rapidly developing toward different applied research fields including protection and delivery of biopharmaceuticals, biosensing, biocatalysis, biobanking, and cell and virus manipulation. This Account describes the current progress of MOFs toward biotechnological applications highlighting the different strategies for the preparation of biocomposites, the developmental milestones, the challenges, and the potential impact of MOFs to the field.

    AB - Many living organisms are capable of producing inorganic materials of precisely controlled structure and morphology. This ubiquitous process is termed biomineralization and is observed in nature from the macroscale (e.g., formation of exoskeletons) down to the nanoscale (e.g., mineral storage and transportation in proteins). Extensive research efforts have pursued replicating this chemistry with the overarching aims of synthesizing new materials of unprecedented physical properties and understanding the complex mechanisms that occur at the biological-inorganic interface. Recently, we demonstrated that a class of porous materials termed metal-organic frameworks (MOFs) can spontaneously form on protein-based hydrogels via a process analogous to natural matrix-mediated biomineralization. Subsequently, this strategy was extended to functional biomacromolecules, including proteins and DNA, which have been shown to seed and accelerate crystallization of MOFs. Alternative strategies exploit co-precipitating agents such as polymers to induce MOF particle formation thus facilitating protein encapsulation within the porous crystals. In these examples the rigid molecular architecture of the MOF was found to form a protective coating around the biomacromolecule offering improved stability to external environments that would normally lead to its degradation. In this way, the MOF shell mimics the protective function of a biomineralized exoskeleton. Other methodologies have also been explored to encapsulate enzymes within MOF structures, including the fabrication of polycrystalline hollow MOF microcapsules that preserve the original enzyme functionality over several batch reaction cycles. The potential to design MOFs of varied pore size and chemical functionality has underpinned studies describing the postsynthesis infiltration of enzymes into MOF pore networks and bioconjugation strategies for the decoration of the MOF outer surface, respectively. These methods and configurations allow for customized biocomposites. MOF biocomposites have been extended from simple proteins to complex biological systems including viruses, living yeast cells, and bacteria. Indeed, a noteworthy result was that cells encapsulated within a crystalline MOF shell remain viable after exposure to a medium containing lytic enzymes. Furthermore, the cells can adsorb nutrients (glucose) through the MOF shell but cease reproducing until the MOF casing is removed, at which point normal cellular activity is fully restored. The field of MOF biocomposites is expansive and rapidly developing toward different applied research fields including protection and delivery of biopharmaceuticals, biosensing, biocatalysis, biobanking, and cell and virus manipulation. This Account describes the current progress of MOFs toward biotechnological applications highlighting the different strategies for the preparation of biocomposites, the developmental milestones, the challenges, and the potential impact of MOFs to the field.

    KW - Journal Article

    U2 - 10.1021/acs.accounts.7b00090

    DO - 10.1021/acs.accounts.7b00090

    M3 - Article

    JO - Accounts of Chemical Research

    JF - Accounts of Chemical Research

    SN - 0001-4842

    ER -