Holes in 2-convex point sets

Oswin Aichholzer, Martin Balko, Thomas Hackl, Alexander Pilz, Pedro Ramos, Pavel Valtr, Birgit Vogtenhuber*

*Korrespondierende/r Autor/in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikel

Abstract

Let S be a set of n points in the plane in general position (no three points from S are collinear). For a positive integer k, a k-hole in S is a convex polygon with k vertices from S and no points of S in its interior. For a positive integer l, a simple polygon P is l-convex if no straight line intersects the interior of P in more than l connected components. A point set S is l-convex if there exists an l-convex polygonization of S. Considering a typical Erdős–Szekeres-type problem, we show that every 2-convex point set of size n contains an Ω(log⁡n)-hole. In comparison, it is well known that there exist arbitrarily large point sets in general position with no 7-hole. Further, we show that our bound is tight by constructing 2-convex point sets in which every hole has size O(log⁡n).

Originalspracheenglisch
Seiten (von - bis)38-49
Seitenumfang12
FachzeitschriftComputational Geometry
Jahrgang74
DOIs
PublikationsstatusVeröffentlicht - 1 Okt 2018

ASJC Scopus subject areas

  • !!Computer Science Applications
  • !!Geometry and Topology
  • !!Control and Optimization
  • !!Computational Theory and Mathematics
  • !!Computational Mathematics

Fingerprint

Untersuchen Sie die Forschungsthemen von „Holes in 2-convex point sets“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren