Geometric subdivision and multiscale transforms

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in Buch/Bericht

Abstract

Any procedure applied to data, and any quantity derived from data, is required to respect the nature and symmetries of the data. This axiom applies to refinement procedures and multiresolution transforms as well as to more basic operations like averages. This chapter discusses different kinds of geometric structures like metric spaces, Riemannian manifolds, and groups, and in what way we can make elementary operations geometrically meaningful. A nice example of this is the Riemannian metric naturally associated with the space of positive definite matrices and the intrinsic operations on positive definite matrices derived from it. We discuss averages first and then proceed to refinement operations (subdivision) and multiscale transforms. In particular, we report on the current knowledge as regards convergence and smoothness.
Originalspracheenglisch
TitelHandbook of Variational Methods for Nonlinear Geometric Data
Redakteure/-innenPhilipp Grohs, Martin Holler, Andreas Weinmann
ErscheinungsortCham
Herausgeber (Verlag)Springer
Seiten121-152
ISBN (elektronisch)978-3-030-31351-7
ISBN (Print)978-3-030-31350-0
PublikationsstatusVeröffentlicht - 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „Geometric subdivision and multiscale transforms“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren