Entanglement Hamiltonians for non-critical quantum chains

Viktor Eisler*, Giuseppe Di Giulio, Erik Tonni, Ingo Peschel

*Korrespondierende/r Autor/in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikel

Abstract

We study the entanglement Hamiltonian for finite intervals in infinite quantum chains for two different free-particle systems: coupled harmonic oscillators and fermionic hopping models with dimerization. Working in the ground state, the entanglement Hamiltonian describes again free bosons or fermions and is obtained from the correlation functions via high-precision numerics for up to several hundred sites. Far away from criticality, the dominant on-site and nearest-neighbour terms have triangular profiles that can be understood from the analytical results for a half-infinite interval. Near criticality, the longer-range couplings, although small, lead to a more complex picture. A comparison between the exact spectra and entanglement entropies and those resulting from the dominant terms in the Hamiltonian is also reported.

Originalspracheenglisch
Aufsatznummer103102
Seitenumfang30
FachzeitschriftJournal of Statistical Mechanics: Theory and Experiment
Jahrgang2020
Ausgabenummer10
DOIs
PublikationsstatusVeröffentlicht - Okt 2020

ASJC Scopus subject areas

  • !!Statistical and Nonlinear Physics
  • !!Statistics and Probability
  • !!Statistics, Probability and Uncertainty

Dieses zitieren