Ends of Schreier graphs and cut-points of limit spaces of self-similar groups

Ievgen Bondarenko*, Daniele D'Angeli, Tatiana Nagnibeda

*Korrespondierende/r Autor/in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Every self-similar group acts on the space X-omega of infinite words over some alphabet X. We study the Schreier graphs Gamma(w) for w is an element of X-omega of the action of self-similar groups generated by bounded automata on the space X-omega. Using sofic subshifts we determine the number of ends for every Schreier graph. w. Almost all Schreier graphs Gamma(w) with respect to the uniform measure on X-omega have one or two ends, and we characterize bounded automata whose Schreier graphs have two ends almost surely. The connection with (local) cut-points of limit spaces of self-similar groups is established.
Originalspracheenglisch
Aufsatznummer4
Seiten (von - bis)369-424
FachzeitschriftJournal of Fractal Geometry
Jahrgang4
Ausgabenummer4
DOIs
PublikationsstatusVeröffentlicht - 2017

Fingerprint

Untersuchen Sie die Forschungsthemen von „Ends of Schreier graphs and cut-points of limit spaces of self-similar groups“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren