Automatic Muck Pile Characterization from UAV Images

Fabian Schenk, Alexander Tscharf, Gerhard Mayer, Friedrich Fraundorfer

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem Konferenzband

Abstract

In open pit mining it is essential for processing and production scheduling to receive fast and accurate information about the fragmentation of a muck pile after a blast. In this work, we propose a novel machine-learning method that characterizes the muck pile directly from UAV images. In contrast to state-of-the-art approaches, that require heavy user interaction, expert knowledge and careful threshold settings, our method works fully automatically. We compute segmentation masks, bounding boxes and confidence values for each individual fragment in the muck pile on multiple scales to generate a globally consistent segmentation. Additionally, we recorded lab and real-world images to generate our own dataset for training the network. Our method shows very promising quantitative and qualitative results in all our experiments. Further, the results clearly indicate that our method generalizes to previously unseen data.
Originalspracheenglisch
TitelISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Seiten163-170
Seitenumfang8
BandIV-2/W5
DOIs
PublikationsstatusVeröffentlicht - 2019
VeranstaltungISPRS Geospatial Week: Unmanned Aerial Vehicles in Geomatics (UAVg) 2019 - University of Twente, Enschede, Niederlande
Dauer: 10 Jun 201914 Jun 2019
http://www.uav-g.com/

Konferenz

KonferenzISPRS Geospatial Week
LandNiederlande
OrtEnschede
Zeitraum10/06/1914/06/19
Internetadresse

Fingerprint Untersuchen Sie die Forschungsthemen von „Automatic Muck Pile Characterization from UAV Images“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren