Asynchronous detection of error-related potentials using a generic classifier

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem Konferenzband

Abstract

Error-related potentials (ErrPs) can be usedto improve BCIs’ performance but its use is often with-held by long calibration periods. We recorded EEG dataof 15 participants while controlling a robotic arm towardsa target. In 30 % of the trials, the protocol prompted anerror during the trial in order to trigger ErrPs in the partic-ipants. For each participant, we trained an ErrP classifierusing the data of the remaining 14 participants. Each ofthese classifiers was tested asynchronously on the data ofthe selected participant. The threshold that maximizedthe product of the average true positive rate (TPR) andthe average true negative rate (TNR) wasτ=0.7. For thisthreshold, the average TPR was 53.6 % and the averageTNR was 82.0 %. These results hint at the feasibility oftransferring ErrPs between participants as a reliable strat-egy to reduce or even remove the calibration period whentraining ErrP classifiers to be used in an asynchronous manner
Originalspracheenglisch
TitelProceedings of the 8th Graz Brain Computer Interface Conference 2019
UntertitelBridging Science and Application
Redakteure/-innenGernot R. Müller-Putz, Jonas C. Ditz, Selina Wriessnegger
ErscheinungsortGraz
Herausgeber (Verlag)Verlag der Technischen Universität Graz
Seiten54-58
Seitenumfang5
ISBN (elektronisch)978-3-85125-682-6
DOIs
PublikationsstatusVeröffentlicht - 2019
Veranstaltung8th Graz Brain-Computer Interface Conference 2019: Bridging Science and Application - Petersgasse 16, Graz, Österreich
Dauer: 16 Sep 201920 Sep 2019
Konferenznummer: 8
https://www.tugraz.at/institutes/ine/graz-bci-conferences/8th-graz-bci-conference-2019/

Konferenz

Konferenz8th Graz Brain-Computer Interface Conference 2019
KurztitelGBCIC 2019
LandÖsterreich
OrtGraz
Zeitraum16/09/1920/09/19
Internetadresse

Fingerprint Untersuchen Sie die Forschungsthemen von „Asynchronous detection of error-related potentials using a generic classifier“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren