ALCN: Adaptive Local Contrast Normalization for Robust Object Detection and 3D Pose Estimation

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem Konferenzband

Abstract

To be robust to illumination changes when detecting objects in images, the current
trend is to train a Deep Network with training images captured under many different
lighting conditions. Unfortunately, creating such a training set is very cumbersome, or
sometimes even impossible, for some applications such as 3D pose estimation of specific
objects, which is the application we focus on in this paper. We therefore propose a
novel illumination normalization method that lets us learn to detect objects and estimate
their 3D pose under challenging illumination conditions from very few training samples.
Our key insight is that normalization parameters should adapt to the input image. In
particular, we realized this via a Convolutional Neural Network trained to predict the
parameters of a generalization of the Difference-of-Gaussians method. We show that our
method significantly outperforms standard normalization methods and demonstrate it on
two challenging 3D detection and pose estimation problems.
Originalspracheenglisch
TitelBritish Machine Vision Conference
PublikationsstatusVeröffentlicht - 2017
Veranstaltung2017 British Machine Vision Conference: BMVC 2017 - London, Großbritannien / Vereinigtes Königreich
Dauer: 4 Sep 20177 Apr 2018

Konferenz

Konferenz2017 British Machine Vision Conference
KurztitelBMVC 2017
LandGroßbritannien / Vereinigtes Königreich
OrtLondon
Zeitraum4/09/177/04/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „ALCN: Adaptive Local Contrast Normalization for Robust Object Detection and 3D Pose Estimation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren