A Finite Time Convergent Least-Squares Modification of the Dynamic Regressor Extension and Mixing Algorithm

Publikation: Beitrag in einer FachzeitschriftKonferenzartikel

Abstract

The recently proposed Dynamic Regressor Extension and Mixing (DREM) algorithm can be used to estimate the parameters of structured uncertainties contained in the mathematical model of a plant. In order to provide an adaptation that is less sensitive to the unavoidable mismatch between a plant and its model a least-squares based modification of the DREM estimator is proposed in this paper. The modified estimator yields significantly better estimation results as illustrated by the conducted real-world experiment and its parameter estimates also converge within finite time.
Originalspracheenglisch
Seiten (von - bis)5105-5110
FachzeitschriftIFAC-PapersOnLine
Jahrgang53
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 2020
Veranstaltung21st IFAC World Congress - Virtuell, Deutschland
Dauer: 12 Jul 202017 Jul 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Finite Time Convergent Least-Squares Modification of the Dynamic Regressor Extension and Mixing Algorithm“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren