A Cantor-Bernstein-type theorem for spanning trees in infinite graphs

Joshua Erde, Max Pitz, Attila Joó, J Pascal Gollin, Paul Knappe

Publikation: Beitrag in einer FachzeitschriftArtikel

Abstract

We show that if a graph admits a packing and a covering both consisting of λ many spanning trees, where λ is some infinite cardinal, then the graph also admits a decomposition into λ many spanning trees. For finite λ the analogous question remains open, however, a slightly weaker statement is proved.

Originalspracheenglisch
Seiten (von - bis)16-22
Seitenumfang7
FachzeitschriftJournal of Combinatorial Theory / B
Jahrgang149
DOIs
PublikationsstatusVeröffentlicht - 2021

ASJC Scopus subject areas

  • !!Theoretical Computer Science
  • !!Discrete Mathematics and Combinatorics
  • !!Computational Theory and Mathematics

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Cantor-Bernstein-type theorem for spanning trees in infinite graphs“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren