A boundary element method for homogenization of periodic structures

Dalibor Lukáš*, Günther Of, Jan Zapletal, Jiří Bouchala

*Korrespondierende/r Autor/in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikel

Abstract

Homogenized coefficients of periodic structures are calculated via an auxiliary partial differential equation in the periodic cell. Typically, a volume finite element discretization is employed for the numerical solution. In this paper, we reformulate the problem as a boundary integral equation using Steklov–Poincaré operators. The resulting boundary element method only discretizes the boundary of the periodic cell and the interface between the materials within the cell. We prove that the homogenized coefficients converge super‐linearly with the mesh size, and we support the theory with examples in two and three dimensions.
Originalspracheenglisch
Seiten (von - bis)1035-1052
Seitenumfang18
FachzeitschriftMathematical methods in the applied sciences
Jahrgang43
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - 8 Feb 2020

ASJC Scopus subject areas

  • !!Computational Mathematics
  • !!Engineering(all)
  • !!Mathematics(all)

Fields of Expertise

  • Information, Communication & Computing

Treatment code (Nähere Zuordnung)

  • Basic - Fundamental (Grundlagenforschung)

Fingerprint Untersuchen Sie die Forschungsthemen von „A boundary element method for homogenization of periodic structures“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren