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Abstract 
The Wave Based Technique (WBT) is a novel prediction technique for steady-state acoustic analysis, 
which is based on the indirect Trefftz approach. Recently, a methodology has been developed, which 
allows to consider a 3-dimensional fluid domain with prescribed normal velocity and prescribed normal 
impedance boundary conditions. For this methodology, it is necessary that the acoustic problem domain is 
convex.  
To extend the application field of the WBT methodology a new prescribed velocity boundary condition is 
introduced in order to consider the structural local distribution of vibration velocities at the boundaries. 
The velocity distributions can be derived from either measurement data or from results of structural FEM 
analyses. By using this new boundary condition the excitation of the fluid due to structural vibrations can 
be considered. For validation purposes, a car-like cavity (Sound Brick) was designed. Results of FEM 
calculations and measurements were compared to those of the WBT. 
 

1 Introduction 
 
A modern vehicle development process requires efficient and precise prediction techniques for the vehicle 
interior noise. Disadvantages and restrictions still exist for well introduced methods. On the one hand, the 
Finite Element Method (FEM) is a standard for vibro-acoustic simulations in the lower frequency range. 
But there are limitations in effort and precision at higher frequencies. Especially for passenger car cavities, 
the computation effort can be unacceptable above 300 Hz, due to the need of mesh refinement. 
On the other hand, Statistical Energy Analysis (SEA) has been applied with success for car interior noise 
prediction at higher frequencies. Here, the limits exist due to reduced quality of the results at lower 
frequencies (below about 400 – 600 Hz) and due to reduced modal density of structures and acoustic 
domains. Furthermore, SEA has the general disadvantage, that no phase information is available, which 
usually is still important in the frequency range described.  
 
In order to predict noise in structural and acoustic domains in a wider frequency range, the Wave Based 
prediction Technique (WBT) has been developed as an alternative to other methods [1]. The advantage of 
WBT is seen in covering the whole frequency range of automotive noise simulation applications in one 
and to close the above described prediction gap between FEM and SEA. Based on the theory and first 
principle applications [4], an efficient implementation has been developed for multi-domain 3D acoustic 
problems [2], [6] and simulation results have been validated with measurements under echoic conditions 
and considering absorbing materials positioned in a test cavity [5].  
 
For practical applications, local velocity distributions as generated by vibrating boundaries of a cavity 
have to be considered. Consequently, this paper describes, how such prescribed boundary conditions can 
be handled for a local velocity field generated by FEM or measurement. Furthermore, verification 
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examples of simulation results are shown for a specifically developed test set-up and the efficiency of the 
WBT compared to FEM is discussed for test application including absorption effects. 
 

2 Basic concepts of the Wave Based Technique 
 
The WBT is a deterministic method and is based on the indirect Trefftz approach [3], in that the dynamic 
field variables in the problem domain are expressed in terms of wave functions, which are solutions the 
governing dynamic equations. These field variables of the wave function expansions satisfy the governing 
dynamic equations exactly. Only the boundary conditions are not a priori satisfied. By enforcing the 
solution expansions to satisfy the boundary conditions in an integral sense, a linear wave model is 
obtained. The contribution factors of the wave functions to the solutions form the degrees of freedom 
(DOF) of a wave model.  
As shown in [1] the convexity of the problem domains is a sufficient condition for the proposed solution 
expansion to converge towards to the exact solution. For non-convex problem domains, domain 
decomposition into convex sub-domains is required. For more details about the theoretical background of 
the WBT concept and multi-domain acoustic problems, the reader is referred to [4], [5]. 
 

2.1 Problem definition 
 

The 3D acoustic problem, as shown in Figure 1, is considered. Expect for the floor surface ZΩ , at which a 
normal impedance boundary condition is applied and for the front surface 1vΩ , at which a normal velocity 
boundary condition is applied and excites the cavity, all the boundary surfaces 0vΩ  of the acoustic cavity 

 are assumed to be perfectly rigid. Inside the cavity a fluid is 

characterized by a speed of sound ( ), an ambient density ( ) and an 
ambient temperature ( ). 
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where nZ represents the prescribed normal impedance, nv  the prescribed normal velocity, 1j = −  the 
unit imaginary number and  the derivative in the outward normal direction. / n∂ ∂



 

Figure 1: 3D acoustic problem 

 

2.2 Domain decomposition 
 
The considered 3D acoustic problem as shown in Figure 1 is non-convex. Therefore the problem domain 

 must be decomposed into at least two convex sub-domains [1], [5]. Figure 2 show three convex sub-
domains , 
V
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Figure 2: domain decomposition of a 3D non-convex acoustic problem 
into for instance three convex sub-domains 

To couple the three sub-domains at the interfaces 1 2α αΩ = Ω  and 2 3β βΩ = Ω , pressure and normal 
velocity continuity conditions are enforced and the subindex  denotes the boundary surfaces ,i j
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An alternative way to impose interface continuity is given in [4]. 
 



2.3 Pressure response approximation 
 
The WBT is based on an indirect Trefftz approach and utilizes approximation solutions, which satisfy the 
governing differential equation exactly. In its application to the considered 3D acoustic problem, the 
pressure in cavity  is approximated as an expansion , which is an expansion of  wave 

functions , the pressure in cavity  is approximated as an expansion , which is an 

expansion of  wave functions  and the pressure in cavity  is approximated as an expansion 
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Since the only requirement for the selection of the wave numbers ,  and  is that 
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2.4 Wave model 
 
As mentioned before, the pressure approximations (7) satisfy a priori the governing Helmholtz equation 
(1). Only the boundary conditions (2), (3) and (4) and the interface continuity conditions (5) and (6) are 
violated. A square wave model is obtained by enforcing the pressure approximations to satisfy both the 
boundary conditions and the interface continuity conditions in a weighted residual or in a least-squares 



integral sense. As shown in [7] the weighted residual formulation is more efficient and will therefore used 
in this and the following sections. The square wave model is given by 
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with vectors ,  and  containing the unknown DOF’s, i.e. the wave contribution factors, with sub-
matrices , , C , ,  and  and vector 
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For the detailed description of the sub-matrices, the reader is referred to [5], [6]. 
The resulting system matrix in (10) is frequency dependent and almost fully populated with complex 
coefficients, but has a much smaller size as compared to corresponding FE models. 
 

3 Basic concepts to consider vibration velocities 
 
To extend the application field of the WBT methodology a new prescribed velocity boundary condition is 
introduced in order to consider the local distribution of vibration velocities (e.g. structural vibrations) at 
plane quadrilateral boundary surfaces. The velocity distributions can be derived from either measurement 
data (Laser Scanning Vibrometer) or from results of structural FEM analysis. By using this new boundary 
condition the excitation of the fluid due to local vibrations can be considered without loosing the 
advantages of computational efficiency of WBT but without taking into account the influence of the fluid 
to the local vibrations. 
 

3.1 Problem definition 
 

Consider a velocity distribution ( , )ωv x  on a sub-domain vΩ  of the boundary of V , which is given at 

measurement points or simulation nodes , 1,...,i n=ix . To incorporate this velocity boundary condition 

into the WBT-formulation of the problem, integrals of the form 
i

jdψ
Ω

Ω∫ nv  have to be numerically 

evaluated. This is realized with the Gaussian method, i.e. quadratures of the form  are  
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calculated for each circular frequency ω . Thus, for the numerical integration the velocity has to be known 
at the Gauss points , 1...,j m=jy . To keep the quadrature efficient, it is preferable to distribute the Gauss 

points evenly at the unit square, which is obtained from the transformation of the surface . Hence the 
gauss points on  itself are determined by the transformation of 

iΩ

iΩ iΩ  onto the unit square. For that reason 
the Guass points can not be identified with the data points , 1,...,i n=ix . Furthermore the amount of 
necessary Gauss points is related to ω  and usually does not coincide with the number of data points. 
Therefore an algorithm that interpolates the velocity data given on a measurement or simulation mesh to 
all Gauss points , 1...,j m=jy  is suggested. 

 



3.2 Methodology 
 

To realize the identification of the data at the given points  with the Gauss points ix jy  a method coming 
from the FEM was chosen. The set of data points is firstly defined with a mesh consisting of quadrilateral 
elements. For each Gauss point the closest element is identified. The data at the corners of the element is 
interpolated on the Gauss point. The elements of the data mesh are treated as finite elements for the 
identification of the closest element to a given Gauss point and for the interpolation of the velocity data. 
The shape functions ( ,

jk jN )ξ ψ  of the elements are used for the data interpolation  
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The order of the interpolation accuracy ˆ−j jv v  is given by the order of the finite elements. The local 
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The Gauss point is contained inside an element only if 1, 1
jjξ ψ< < . In that situation the correct 

element is found for jy . The method also applies to Gauss points outside the data mesh. In that case the 

identification is given by the element with the shortest distance { }max ,i ii
ξ ψ  to a given point jy . 

The identification is not necessarily definite for the elements. A Gauss point lying on an edge between two 
elements ca be assigned to both elements. The realized algorithm terminates the identification process for 

jy  as soon as a matching element is found. 

A for example quadrilateral linear Lagrange element is considered [8]. This element is given by the shape 
functions 

 ( ) ( )(1, 1 1
4k oN )oξ ψ ξ= + +ψ . (15) 

with ( ) ( ) ( ) ( ) ( ){ }, , , 1, 1 , 1,1 , 1, 1 , 1,1o k o o k kξ ξ ξ ψ ψ ψ ξ ψ= ⋅ = ⋅ ∈ − − − − . The co-ordinates of jy  in the 
local FE-co-ordinate system are given by 

 (
4

1
,k j j

k
N )ξ ψ

=

= ∑j i,ky x . (16) 

with the element nodes { }, 1,...,4k ∈i,kx . This gives a semilinear equation system 
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The equation system has to be solved to obtain ,
jjξ ψ . In the more general case where the data mesh does 

not coincide with the surface , an optimization problem of the following form has to be solved: vΩ
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4 Validation example 
 

4.1 Problem description and measurement setup 
 
The test setup (Sound Brick) was especially developed for validation purpose. In geometry, it resembles a 
simplified car cavity with engine bay. The walls are made out of concrete with a special surface treatment 
to ensure acoustically rigid boundary conditions. At the front side, a 2mm steel plate is fixed on the Sound 
Brick over an additional frame and is excited with a shaker (Figure 3). On the complete floor, a fire 
resistant foam (Melamin 50mm) is applied as damping material.  

 

Figure 3: Sound Brick with damping material on the floor, 2mm steel plate and frame to fix the 
plate on the front side (left figure). Shaker to excite the steel plate (right figure). 

The measurement setup, to measure the pressure frequency response function at the position MIC 1 
(0.51/0.425/0.5m) due to the shaker excitation at the position (4.02/0.20/0.35m) is shown in Figure 4.  

 

Figure 4: Sound Brick measurement setup to measure the pressure frequency response function 
(FRF) at position MIC 1 due to the shaker excitation on the 2mm steel plate. 

In Figure 5, the measurement setup for measuring normal velocity frequency response functions on the 
2mm steel plate due to the shaker excitation with the Laser Scanning Vibrometer, is shown. In order to 
loose no measurement points on the plate during the Laser Scanning, the shaker is positioned inside the 
Sound Brick. The back panel of the Sound Brick is opened, since the effect of the fluid to the structural 
behavior can be neglected. 



 

Figure 5: Sound Brick measurement setup to measure the normal velocity frequency response 
functions (FRF’s) at 231 positions on the 2mm steel plate with the Laser Scanning Vibrometer. 

With the Laser Scanning Vibrometer, Polytec PSV 200 (Figure 6), a constant Laser-point-mesh of 
21x11=231 points have been measured. Notice the Figure 6 shows only a default video picture of a Laser-
point-mesh. 

 

Figure 6: Laser Scanning Vibrometer, Polytec PSV 200 (left figure) and a default video-picture of 
the scanned points on the steel plate (right figure). 

The damping material (Illbruck plano – Melamin 50mm) is used as a normal impedance which is 
determined in an impedance measurement tube. After smoothing and interpolating this complex data (see 
Figure 7) it is ready to be used in the numerical model. 
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Figure 7: Smoothed and interpolated measurement data of the damping material (Melamin 50mm – 
left figure) and the corresponding absorption coefficient (right figure). 



 

4.2 Comparing measurements and simulation results 
 
The results of the measurements described in section 4.1 were compared to simulated ones. As an 
example, results of response point MIC 1 (position 0.51/0.425/0.5m) and the excitation point on the plate 
(4.02/0.20/0.35m) are shown. The simulations were carried out by vibro-acoustic FEM on one hand and 
by WBT including the new local boundary condition for normal velocity, on the other. Three different 
comparisons of measured and calculated results were performed as follows.  
 
4.2.1 Measurements (MM) – Finite Elements Method (FEM) 
 

The Finite Element Model consists of a fluid mesh ( max 10l cm= ) and a structural mesh ( max 1l cm≈ ) 
with 270 (ident) coupling points and a unit force ( 1F N= ) excitation normal to the plate. The damping 
material is applied as a complex normal impedance surface on the floor. 

Nr. Structural 
Eigenvalues 

Nr. Structural 
Eigenvalues

Nr. Fluid 
Eigenvalues 

1 18.8 Hz 8 62.0 Hz 1 44.5 Hz 
2 23.6 Hz 9 73.5 Hz 2 83.5 Hz 
3 32.3 Hz 10 80.9 Hz 3 101.4 Hz 
4 44.8 Hz 11 88.6 Hz 4  
5 49.5 Hz 12 95.6 Hz 5  
6 54.1 Hz 13 100.0 Hz   
7 61.0 Hz     

Table 1: Predicted FEM structural and fluid eigenvalues up to about 100 Hz. 

Comparing predicted and measured pressure frequency response functions (FRF), Figure 8, the correlation 
was found rather poor. A possible effect of the number of nodes for coupling the fluid and the structural 
meshes was found of minor effect. A good correlation of the fluid and structural natural frequencies can be 
observed, too (see Table 1 and peaks in measured results of Figure 8). However, comparing structural 
vibration from tests and FEM calculations, it could be seen, that the boundary condition of the structural 
model, assumed as totally fixed at the edges, is not adequate. As a costly identification of boundary 
conditions for the FEM model is of less priority, the investigations were continued by comparing FEM 
and WBT simulation results on one hand and those of test and WBT on the other. 

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500
10-3

10-2

10-1

100

101

102

 Measurement MIC 1
 FEM MIC 1

p 
/ F

 [ 
Pa

 / 
N

 ]

frequency [Hz]

 

Figure 8: Comparison of the amplitudes of pressure FRF [Pa/F] of the measurements (black curve) 
and the FEM prediction (red curve) in response point MIC 1. 



 
4.2.2 Wave Based Technique (WBT(FEM)) – Finite Elements Method (FEM) 
 
Using velocity contributions on the plate calculated with the FEM as a boundary condition for the WBT 
(see section 3.2), the pressure frequency response functions correlate quite well with standard FEM 
prediction (as described in 4.2.1), Figure 9. Herein, 16577 single velocity results were taken into account 
to perform the new boundary condition for locally distributed normal velocities with the WBT. 
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Figure 9: Comparison of the amplitudes of pressure FRF [Pa/F] of the FEM prediction (red curve) 
and the WBT(FEM) prediction (blue curve) in response point MIC 1. 

 
4.2.3 Measurements (MM) – Wave Based Technique (WBT(MM)) 
 
The WBT prediction in this section was performed with normal velocities measured at 231 points on the 
plate with the Laser (see Figure 6), according to the method described in section 3.2. Figure 10 shows 
comparison of results from measurement and WBT prediction for the response point MIC 1. 
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Figure 10: Comparison of the amplitudes of pressure FRF [Pa/F] of the measurements (black curve) 
and the WBT(MM) prediction (blue curve) in response point MIC 1. 



The resonance frequencies in Figure 10 are predicted accurately over the whole frequency range. The 
amplitudes up to 50 Hz are underestimated, which might be caused by the low power of the small shaker 
used for the test. In the frequency range between 50 and 500 Hz, the WBT prediction fits quiet well to the 
measurement results. 
The WBT simulations were carried out on a PC-Windwos platform, using a Fortran90 implementation 
developed by ACC. The FEM simulations are performed on the same platform with MSC Nastran 2004. 
Table 2 summarizes the computational resources, the model sizes and CPU times of the applied models. 
Note that, due to the applied implementation, all WBT simulations are performed with a constant number 
of wave functions over the frequency range and sub-domains. This number is determined by the highest 
frequency of interest and by the biggest sub-domain. As a consequence, the WBT predictions at lower 
frequencies could be accelerated, since, in this frequency region less wave functions are required to have 
accurate predictions. This is one of the subjects to further research. 
 

Intel Pentium IV 
1Gbyte RAM 
3 GHz CPU 

FEM (10cm) 
MSC Nastran 

SOL 111 

FEM (5cm) 
MSC Nastran 

SOL 111 
WBT(FEM) WBT(MM) 

Fluid 12095 nodes 90054 nodes 450 WF 450 WF 
Structure 16577 nodes 16577 nodes 16577 points 231 points 

Total DOF’s 94980 172939 450 450 
CPU time [min] 66 253 36 34 

Table 2: model diagnostics 

 

5 Conclusions 
 
This paper discusses the application of the Wave Based Technique for the analysis of a multi-domain 3D 
acoustic cavity considering forced excitation at boundaries and effects of absorption materials. The new 
boundary condition for local velocity contributions allows a simulation of vibro-acoustic problems with 
the WBT-Fluid implementation. The velocity distributions can be derived from either measurement data 
or from results of structural FEM analyses.  
The comparison of the results from WBT predictions, FEM predictions and measurements confirm the 
quality of the WBT in a real test application considering effects of absorbing material. Furthermore, the 
high computational efficiency of the WBT compared to FEM could be proven, which allows it to produce 
more accurate prediction results in the mid-frequency range at reasonable computational cost. 
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