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ABSTRACT
The development of powerful 3D scanning hardware and recon-
struction algorithms has strongly promoted the generation of 3D
surface reconstructions in different domains. An area of special
interest for such 3D reconstructions is the cultural heritage do-
main, where surface reconstructions are generated to digitally pre-
serve historical artifacts. While reconstruction quality nowadays
is sufficient in many cases, the robust analysis (e.g. segmentation,
matching, and classification) of reconstructed 3D data is still an
open topic. In this paper, we target the automatic segmentation of
high-resolution 3D surface reconstructions of petroglyphs. To foster
research in this field, we introduce a fully annotated, large-scale 3D
surface dataset including high-resolution meshes, depth maps and
point clouds as a novel benchmark dataset, which we make publicly
available. Additionally, we provide baseline results for a random
forest as well as a convolutional neural network based approach.
Results show the complementary strengths and weaknesses of both
approaches and point out that the provided dataset represents an
open challenge for future research.

CCS CONCEPTS
• Computing methodologies → Image segmentation; • Ap-
plied computing→ Archaeology;
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1 INTRODUCTION
Today, powerful techniques for the reconstruction of 3D surfaces
exist, such as laser scanning, structure from motion and structured
light scanning [29]. The result is an increased availability of surface
reconstructions with high resolutions at sub-millimeter scale. At
these high resolutions it is possible to capture the geometric fine
structure (i.e. the topography [2]) of a surface. The surface topog-
raphy determines the tactile appearance of a surface and is thus
characteristic for different materials and differently rough surfaces.
The automatic segmentation and classification of surfaces accord-
ing to their topography is an essential pre-requisite for reliable
large scale analyses, however, it is still an open problem.

A crucial requirement for the development of automatic surface
segmentation algorithms are publicly available datasets with precise
manual annotations (ground truth).

A large number of datasets has been published for 2D and 3D
texture analysis andmaterial classification [6, 8, 23]. Usually, no geo-
metric information is provided with these datasets i.e., the datasets
contain only images of the surfaces (potentially with different light-
ing directions). Automatic segmentation methods, however, are sup-
posed to benefit strongly from full 3D geometric information com-
pared to only 2D (RGB) texture. Other datasets, employed for seman-
tic segmentation, indeed provide 3D information [1, 7, 12, 22, 27, 28]
but at a completely different spatial scale. These datasets are usually
captured using off-the-shelf depth cameras (e.g. Microsoft Kinect)
and have primarily been developed for scene understanding and
object recognition. Thus, they show entire objects and scenes and
provide resolutions at centimeter level. These datasets address a
different task and are too coarse to capture the characteristics of
different types of surfaces and materials.

In this paper, we present a dataset of high-resolution 3D surface
reconstructions which contains full geometry information as well
as color information and thus resembles both the tactile and visual
appearance of the surfaces at a micro scale. The surfaces stem
from the archaeological domain and represent natural rock surfaces
into which petroglyphs (i.e. symbols, figures and abstractions of
objects) have been pecked, scratched or carved in ancient times.
The engraved motifs represent areas with different roughness and
tactile structure and exhibit complex and heterogeneous shapes.
Hundreds or in most cases even thousands of years of weathering
and erosion rendered many petroglyphs indistinguishable from the
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natural rock surface with the naked eye or by using 2D imagery.
These properties make the scanned surfaces a challenging testbed
for the evaluation of automatic 2D and 3D surface segmentation
algorithms.

This paper builds upon a series of incremental previous works
on 3D surface segmentation and classification [30–32] and intends
to consolidate and extend the achieved results. Our contribution
beyond previous research are as follows:
• We present a novel benchmark dataset for surface segmenta-
tion of high-resolution 3D surfaces to the public that enables
objective comparison between novel surface segmentation
techniques.
• We provide precise ground truth annotations generated by
experts from archeology for the evaluation of surface seg-
mentation algorithms together with a reproducible evalua-
tion protocol.
• We provide baselines for our existing approach [30, 31] and
a novel CNN-based approach to enable instant performance
comparisons.
• We comprehensively evaluate the generalization ability of
the proposed approaches and the benefit of using full 3D
information for segmentation compared to pure 2D texture
segmentation.

2 DATASET
In a large effort, we scanned petroglyphs on several different rocks
at sub-millimeter accuracy. From the 3D scans we created meshes
and point clouds and additionally orthophotos and corresponding
depth maps to enable the application of 3D and 2D segmentation
approaches on the data. Note that, since there are usually no self-
occlusions in pecked rock surfaces, the 3D information is almost
fully preserved in the depth maps (except for rasterization artifacts).
For all depth maps and orthophotos we provide pixel-wise ground
truth labels (overall about 232 million labeled pixels) and the pa-
rameters for the mapping from 3D space to 2D (and vice versa). The
entire dataset is publicly available1.

2.1 Dataset Acquisition
The surface data has been acquired at the UNESCO World heritage
site in Valcamonica, Italy, which provides one of the largest col-
lections of rock art in the world2. The data has been scanned by
experts from ArcTron 3D3 using two different scanning techniques:
(i) structured light scanning (SLS) with the Polymetric PTM1280
scanner in combination with the associated software QTSculptor
and (ii) structure from motion (SfM). For SfM, photos were ac-
quired with a high-quality Nikkor 60mm macro lense mounted
on a Nikon D800. For bundle adjustment the SfM engine of the
software package Aspect3D4 was used and SURE5 was employed
for the densification of the point clouds. The point clouds have been
denoised by removing outliers which stand out significantly from

1http://lrs.icg.tugraz.at/research/petroglyphsegmentation/
2http://whc.unesco.org/en/list/94, last visited February 2017
3http://www.arctron.de
4http://aspect.arctron.de, last visited February 2017
5http://www.ifp.uni-stuttgart.de/publications/software/sure/index.en.html, last visited
February 2017

the surface [25] and smoothed by a moving least squares filter6. The
resulting point clouds have a sampling distance of at least 0.1mm
and provide RGB color information for each 3D vertex. The vertex
coordinates are in metric units relative to a base station. We provide
the point clouds in XYZRGB format. Additionally, the point clouds
were meshed by Poisson triangulation. Meshes were textured with
the captured vertex colors and are provided in WRL format.

We generated orthophotos and depth maps of all surface recon-
structions. For the rasterization of the projected images we used
a resolution of 300dpi (i.e., 0.08mm pixel side length). The ortho
projections were derived from the meshed 3D data since this en-
ables a dense projection without holes. The depth maps are stored
as 32-bit TIFF files.

For each surface a pixel-accurate ground truth has been gen-
erated by archaeologists who labeled all pecked regions on the
surface. Since the surfaces contain no self-occlusions the annota-
tors worked directly on the 2D orthophotos and depth maps. The
annotators spent several hours on each surface depending on the
size and complexity of the depicted engraving, e.g. anthropomorph,
inscription, symbol, etc. Anthropogenically altered, i.e. pecked, ar-
eas were annotated with white color, whereas the natural rock
surface remained black and regions outside the scan were colored
red. The provided geometric mapping information between the
3D point cloud and the ortho projections allows to easily map the
ground truth to the point cloud and the mesh for processing in the
3D space.

2.2 Dataset Overview
The final dataset contains 26 high-resolution surface reconstruc-
tions of natural rock surfaces with a large number of petroglyphs.
Tab. 1 provides some basic measures for each reconstruction, such
as number of points, covered area, percentage of pecked surface
area etc. The petroglyphs have been captured at various locations
at three different sites in the valley: “Foppe di Nadro" (IDs 1-3),
“Naquane" (IDs 4-10), and “Seradina" (IDs 11-26). The point clouds
of all surfaces together sum up to overall 115 million points. They
cover in total an area of around 1.6m2. After projection to orthopho-
tos and depth images this area corresponds to around 232 million
pixels. Note that there are more pixels than 3D points due to the
interpolation that takes place during projection of the mesh.

The scans show isolated figures as well as scenes with multiple
interacting petroglyphs (e.g. hunting scenes). The pecked regions
in all reconstructions are disconnected and in average consist of
about 40 segments. The pecked regions make up around 19% of the
entire scanned area.

An example surface of the dataset is shown in Fig. 1. We depict
the orthophoto, the corresponding depth map and the ground truth
labels. Note that the peckings are sometimes virtually unrecogniz-
able from the orthophoto and can hardly be discovered without
taking the ground truth labels into account. Further note the strong
variation in depth ranges which stems from the shape and curvature
of the rock surfaces themselves.

6Both filters are implemented in the Point Cloud Library (PCL) http://pointclouds.org,
last visited February 2017
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Figure 1: Example orthophoto (left), corresponding depth map (center), and ground truth labels (right). For visualization of
the depth, we normalized and clipped the distance ranges per scan and show the resulting values in false color. Best viewed in
color on screen with zoom

3 EXPERIMENTS
In this section we present baseline experiments for our dataset.
We have published some complementary results on the dataset
previously [30] where we focused on interactive segmentation and
different types of hand-crafted surface features. In contrast to our

previous work, in this paper we focus on fully automatic segmen-
tation and learned features. Aside from providing an evaluation
protocol and baselines of state-of-the-art approaches we investigate
the following questions related to our dataset in detail: (i) What is
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Table 1: Overview of basicmeasures of the digitized surfaces:
the covered area (in pixels at 300dpi and in cm2), the number
of 3D points in the point cloud, the percentage of pecked re-
gions, the number of disconnected pecked regions, the range
of depth values

ID Covered Area Num. Percentage Num. Depth Range
in px in cm2 3D Pts. Pecked Seg. in mm

1 5 143 296 368.69 3 264 005 14.61 48 2.89
2 15 638 394 1121.03 10 280 976 10.56 21 4.83
3 8 846 214 634.14 5 503 742 47.63 18 9.11

4 15 507 622 1 111.66 3 782 381 14.96 17 62.52
5 16 994 561 1 218.25 2 658 330 17.27 44 70.60
6 13 102 254 939.23 1 260 401 12.67 13 49.32
7 12 035 386 862.75 810 312 34.02 26 15.17
8 12 834 446 920.03 8 677 163 26.17 45 6.74
9 12 835 586 920.11 8 386 259 32.83 29 3.82
10 5 901 454 423.04 2 096 476 21.59 9 5.41

11 5 632 144 403.74 3 541 799 9.26 23 10.23
12 7 103 936 509.24 4 432 013 5.09 6 10.22
13 6 155 628 441.26 3 810 000 8.26 63 19.85
14 5 855 280 419.73 4 417 779 6.47 17 10.50
15 4 855 764 348.08 2 981 570 4.44 24 9.39
16 4 029 231 288.83 2 523 543 6.58 29 4.27
17 4 838 487 346.84 3 022 433 3.15 27 21.75
18 6 396 152 458.50 4 007 232 19.41 25 9.45
19 7 141 253 511.92 4 472 845 18.20 32 17.32
20 6 864 476 492.08 4 238 990 12.02 15 21.39
21 3 909 579 280.26 2 255 030 20.40 61 5.32
22 4 073 804 292.03 2 395 125 16.34 65 3.99
23 3 612 131 258.93 2 113 670 24.23 54 5.33
24 19 104 798 1 369.52 10 685 564 26.61 152 27.35
25 14 920 005 1 069.53 8 188 025 15.55 63 17.49
26 8 921 684 639.55 5 515 973 15.59 99 16.62

Overall 232 253 565 16 648.97 115 321 636 18.68 1025 [2.89, 70.60]

the benefit of using 3D depth information compared to pure tex-
ture information (RGB) for surface segmentation of petroglyphs?
(ii) Can our learned models generalize from rock surfaces of one
location to surfaces of another location (generalization ability)?

3.1 Evaluation Protocol
To enable reproducible and comparable experiments, we propose
the following two evaluation protocols on the dataset:

4-fold Cross-Validaion: To obtain results for the whole dataset,
we perform a k-fold cross-validation, with the number of folds
being k = 4. We randomly assigned the surface reconstructions to
the folds. The assignment of surfaces to folds is provided with the
dataset.

Cross-Site Generalization: Here we separate the dataset into two
sets according to the geographical locations the scans were captured
at. We employ one of the two sets as training set and the other one
as test set, and vice-versa. In this way, we obtain insights about the
generalization ability of a given approach across data from different
capture locations.

The latter protocol is especially interesting since, on the one
hand, the rock surfaces vary between sites, and on the other hand,
the petroglyphs at different sites exhibit different shapes and peck
styles, e.g., due to different tools that were used for their creation.
We separate the dataset into one set containing the scans from
Seradina and the other one containing the scans from Foppe di Nadro
and Naquane. Foppe di Nadro and Naquane were joined because
these sites are situated next to each other and the corresponding
petroglyphs are rather similar. For evaluation we use one of the

two sets as training set and the other one as test set, and vice-versa.
This results in the following three experiments:
• Training on data from Foppe di Nadro and Naquane; testing
on Seradina.
• Training on data from Seradina; testing on Foppe di Nadro.
• Training on data from Seradina; testing on Naquane.

In this way each surface reconstruction is exactly once in the test
set.

Metrics. For quantitative evaluations on our dataset we propose
a number of metrics commonly used for semantic segmentation
to enable reproducible experiments7. In our case the segmentation
task is a pixelwise binary problem and, hence, the evaluation is
based on the predicted segmentation mask and the ground truth
mask. Based on these masks we compute the Jaccard index [11],
also often termed region based intersection over union (IU ), for
which we compute the average over classes (mIU ) as in [10, 14, 20,
33], the pixel accuracy (PA) [14, 26], the dice similarity coefficient
(DSC) [31], the hit rate (HR) [14, 31] and the false acceptance rate
(FAR) [31].

3.2 Methods
To provide a baseline we evaluate the performance of prominent
state-of-the-art approaches for semantic segmentation on our dataset.
First, we perform experiments with a segmentation method based
on Random Forests (RF). Second, we apply Convolutional Neural
Networks (CNNs) [16, 18], which currently show best performance
on standard semantic segmentation benchmarks [5, 10, 19, 20, 33]
and compare them with the RF-based approach. We have shown
previously that surface segmentation with 3D descriptors computed
directly from the 3D point clouds is computationally demanding
and with current state-of-the-art methods not performing well, see
[32] for respective results for a subset of our dataset. Hence, we
employ the depth maps and orthophotos generated from the point
clouds as input to segmentation.

For Random Forests (RFs) we employed an approach, which was
also used as a baseline in many other RF-based works on semantic
segmentation [4, 15, 17]. That is, we trained a classification forest
[3] to compute a pixelwise labeling of the scans. The Random Forest
is trained on patches representing the spatial neighborhood of the
corresponding pixel. To this end, we downscaled the scans by a
factor of five and extracted patches of size 17 × 17 corresponding
to a side length of 6.8 mm. We randomly sampled 8000 patches –
balanced over the classes – from each training image. As features
we used the color or depth values directly. For all experiments we
trained 10 trees, for which we stopped training when a maximum
depth of 18 was reached or less than a minimum number of 5
samples arrived in a node.

In the CNN-based approach we employ fully convolutional neu-
ral networks as proposed in [20], since this work has been very
influential for several following CNN-based methods for semantic
segmentation [5, 19, 33]. To perform petroglyph segmentation on
our dataset we finetune a model, which was pre-trained for seman-
tic segmentation on the PASCAL-Context dataset [21]. To create
training data for finetuning we again downscaled the depth maps

7We provide the evaluation source code with the dataset
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Table 2: Quantitative results for different setups, comparing
the capabilities of color (2D) and depth (3D) information. 3D
segmentation strongly outperforms color-based 2D segmen-
tation

Representation HR FAR DSC mIU PA

Color 0.493 0.675 0.392 0.465 0.715
Depth 0.779 0.553 0.568 0.569 0.779

Depth – Cross-Sites 0.777 0.574 0.550 0.551 0.763

by a factor of 5 and randomly sampled 224×224 pixel crops. To gen-
erate enough training data for finetuning the CNN and additionally
increase the variation in the training set, we augment it with ran-
domly rotated versions of the depth maps (r ∈ {0, 45, 90, . . . , 315}
degrees) prior to sampling patches. Similarly, we flip the depth-maps
with a probability of 0.5. Note, that rotating the images randomly
is reasonable since the petroglyphs have no unique orientation on
the rock surfaces. Using the described augmentation strategy we
sampled about 5000 crops, while ensuring that each crop contains
pixel labels from both classes. We finetuned for a maximum of 30
epochs. For finetuning we employ Caffe [13] and set the learning
rate to 5 × 10−9. Due to GPU memory limitations (3GB) we were
only able to use a batch size of one (i.e. one depth map at a time).
We, thus, follow [26] and use a high momentum of 0.98, which ap-
proximates a higher batch size and might also yield better accuracy
due to the more frequent weight updates [26].

3.3 2D vs. 3D Segmentation
In a first experiment we investigate the importance of 3D informa-
tion provided by our dataset compared to pure color-based surface
segmentation. Therefore, we train a Random Forest (RF) only with
color information from the orthophotos and compare the results
to a RF trained on only depth information. For this experiment we
follow the 4-fold cross-validation protocol specified in Sec. 3.1. The
results in Tab. 2 (rows 1 and 2) clearly show the necessity for 3D
information to obtain good results. This is further underlined in
Fig. 2, where the results are compared for each individual scan. We
observe that depth information improves results nearly for each
scan by a large margin. This can be explained by the fact that en-
graved surface regions often resemble the visual appearance of the
surrounding rock surface due to influences from weathering.

Note that we also experimented with combining color and depth
information, as well as with different features like image gradients,
LBP features [24], and Haralick features [9] to abstract the pure
color and depth information. However, these had little to no impact
on the final segmentation performance and, hence, the results are
omitted for brevity.

3.4 Baseline Results
In this section we present the results of the baseline methods for
the two proposed evaluation protocols.

3.4.1 Cross-Site Generalization. The results for Random Forests
for the proposed cross-site evaluation protocol (see Sec. 3.1) are
listed in Tab. 3. Here, we provide the detailed results for each of the
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Figure 2: Dice Similarity Coefficient (DSC) per scan

Table 3: Results for cross-validation over different sites.
Quantitative results obtained for scans from Seradina when
an RF classifier is trained on scans of only Foppe di Nadro
(Foppe di N.) and Naquane, as well as results for scans from
Foppe di Nadro and Naquane when the classifier is trained
only on scans of Seradina

Training Set: Foppe di N. + Naquane Seradina Seradina

Test Set: Seradina Foppe di N. Naquane

HR 0.843 0.706 0.744
FAR 0.544 0.274 0.644
DSC 0.592 0.716 0.482
mIU 0.612 0.704 0.446
PA 0.827 0.875 0.645

three splits. Overall results averaged over all three experiments are
shown in Tab. 2 (last row) for comparison with the experiments in
Sec. 3.3. Interestingly, the overall results are in the same range as
the results of the 4-fold cross-validation with randomly selected
folds. This suggests that – using 3D information – an automatic
method is able to generalize from one site of the valley to another.

3.4.2 4-fold Cross-Validation. To provide a more comprehen-
sive baseline for the performance of state-of-the-art methods we
compare the results obtained with Random Forests (RFs) and Con-
volutional Neural Networks (CNNs) both evaluated on depth infor-
mation. For the CNN, which was pre-trained on color images (see
Section 3.2) we simply fill all three input channels with the same
depth channel to obtain a compatible input format. Additionally,
we subtract the local average depth value from each pixel in the
depth map to normalize the input data, which was necessary to
stay compatible to the CNN pre-trained on RGB data. This nor-
malization can be efficiently performed in a pre-processing step by
subtracting a smoothed version of the depth map (Gaussian filter
with σ = 12.5mm) from the depth map. This operation results in a
local constrast equalization across the depth map [32] that better
enhances the fine geometric details of the surface texture.

Quantitative results for the whole dataset are shown in Tab. 4.
The quantitative results in terms of mIU for each surface are visu-
alized in Fig. 4. In Fig. 3 we show some qualitative results for each
method. From the results we observe that the Random Forest (RF)
yields more cluttered results, whereas the CNN yields more consis-
tent but coarser segmentations. The RF correctly detects small and
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(a) RGB (b) Depth map (c) Ground truth (d) RF result (e) CNN result

(f) RGB (g) Depth map (h) Ground truth (i) RF result (j) CNN result

Figure 3: Input images (orthophotos and depth maps), ground truth labelings and results for the CNN and the RF baselines.
Best viewed on screen with zoom
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Figure 4: Mean intersection over union (mIU ) per scan

thin pecked regions, which the CNN misses, whereas the CNN usu-
ally captures the overall shape of the petroglyphs more accurately
but misses details. Note that for none of the results we applied Con-
ditional or Markov Random Fields (MRFs, CRFs) or similar models,
since we want to enable easier comparisons to our baselines. We
assume that the reasons for the differences of RF and CNN are (i)
that the RF makes independent pixel-wise decisions whereas the
CNN implicitly considers the spatial context through its learned
feature hierarchy and (ii) that the receptive field of the RF is smaller
than the receptive field of the CNN. This is because the CNN is able
to exploit additional spatial information through its hierarchy of
filters while the RF was unable to effectively exploit larger receptive
fields in our experiments.

The complementary abilities of RF and CNN are further reflected
in the quantitative results in Tab. 4. The more consistent and coarser
segmentations of the CNN yield a better overall segmentation result
which is reflected by the higher DSC, mIU, and PA values. For the
foreground class in particular the HR of RF outperforms that of
CNN which means that a higher percentage of foreground pixels
is labeled correctly. The reason for this is that CNN often misses
larger portions of the pecked regions.

Table 4: 4-fold cross-validation results for Random Forests
(RFs) and Convolutional Neural Networks (CNNs)

Method HR FAR DSC mIU PA

RF 0.779 0.553 0.568 0.569 0.779
CNN 0.693 0.357 0.667 0.676 0.871

4 CONCLUSIONS
In this paper, we introduced a novel dataset for 3D surface seg-
mentation. The dataset contains reconstructions of natural rock
surfaces with complex-shaped engravings (petroglyphs). The main
motivation for contributing the dataset to the community is to fos-
ter, in general, research on the automated semantic segmentation
of 3D surfaces and, in particular, the segmentation of petroglyphs
as a contribution to the conservation of our cultural heritage. We
complement the dataset with accurate expert-annotated ground-
truth, an evaluation protocol and provide baseline results for two
state-of-the-art segmentation methods.

Our experiments show that (i) depth information – as provided
by our dataset – is imperative for the generalization ability of seg-
mentation methods and pure 2D segmentation is insufficient for
this dataset; (ii) in most cases, the use of CNN classification out-
performs RFs in terms of quantitative measures and, qualitatively,
the CNN yields rougher but more consistent segmentations than
RFs. The obtained results (baseline DSC of 0.667) show that the
dataset is far from being solved and thus represents a challenge for
3D surface segmentation in future.
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