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COMPONENT BEHAVIOUR AND EXCESS OF RANDOM BIPARTITE GRAPHS NEAR THE CRITICAL POINT†

TUAN ANH DO‡, JOSHUA ERDE‡, AND MIHYUN KANG‡

ABSTRACT. The binomial random bipartite graph G(n,n, p) is the random graph formed by taking two partition

classes of size n and including each edge between them independently with probability p. It is known that this

model exhibits a similar phase transition as that of the binomial random graph G(n, p) as p passes the critical point

of 1
n . We study the component structure of this model near to the critical point. We show that, as with G(n, p), for an

appropriate range of p there is a unique ‘giant’ component and we determine asymptotically its order and excess.

We also give more precise results for the distribution of the number of components of a fixed order in this range of

p. These results rely on new bounds for the number of bipartite graphs with a fixed number of vertices and edges,

which we also derive.

1. INTRODUCTION

1.1. Background and motivation. It was shown by Erdős and Rényi [10] that a ‘phase transition’ occurs in the

uniform random graph model G(n,m) when m is around n
2 . Standard arguments on the asymptotic equivalence

of the two models imply that a similar phenomenon occurs in the binomial random graph model G(n, p) when

p is around 1
n . More precisely, when p = 1−ǫ

n for a fixed ǫ > 0, with high probability1 (whp for short) every

component of G(n, p) has order at most O(log n); when p = 1
n whp the order of the largest component is Θ

(

n
2
3

)

;

and when p = 1+ǫ
n

whp G(n, p) contains a unique ‘giant component’ L1

(

G(n, p)
)

of order Ω(n).

Whilst it may seem at first that the component behaviour of the model G(n, p) exhibits quite a sharp ‘jump’

at this point, subsequent investigations, notably by Bollobás [4] and Łuczak [17], showed that in fact, if one

chooses the correct parameterisation for p , this change can be seen to happen quite smoothly. In particular,

Łuczak’s work implies the following result in the weakly supercritical regime. Throughout the paper let Li (G)

denote the i th largest component of a graph G for i ∈N. We use the standard Landau notation for asymptotic

orders.

Theorem 1.1 ([17]). Let ǫ= ǫ(n)> 0 be such that ǫ3n →∞ and ǫ= o(1), and let p = 1+ǫ
n . Then whp

∣

∣L1

(

G(n, p)
)∣

∣= (1+o(1))2ǫn and
∣

∣L2

(

G(n, p)
)∣

∣≤ n
2
3 .

Furthermore, Łuczak’s work allowed him to give a precise estimate for the excess of L1

(

G(n, p)
)

(the excess of a

graph is the difference between the number of edges and vertices). The excess is in some way a broad measure

of the complexity of the giant component, determining its density, which has important consequences, for

example in terms of the length of the longest cycle in (see for example [16]), or the genus of the giant component

(see for example [9]).

Theorem 1.2 ([17]). Let ǫ= ǫ(n)> 0 be such that ǫ3n →∞ and ǫ= o(1), and let p = 1+ǫ
n

. Then whp

excess
(

L1

(

G(n, p)
))

= (1+o(1))
2

3
ǫ3n.

Łuczak also gave a finer picture of the distribution of the components in G(n, p) in the weakly subcritical and

weakly supercritical regimes.

Theorem 1.3 ([17]). Let ǫ = ǫ(n) be such that |ǫ|3n → ∞ and ǫ = o(1), let p = 1+ǫ
n , let δ = ǫ− log(1+ ǫ), and let

α=α(n) > 0 be an arbitrary function. Then the following hold in G(n, p)
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and Applications (Eurocomb 21).
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1With probability tending to one as n →∞.
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(i) With probability 1−e−Ω(α) there are no tree components of order larger than

1

δ

(

log
(

|ǫ|3n
)

−
5

2
log log

(

|ǫ|3n
)

+α

)

.

(ii) With probability 1−e−Ω(α) there are no unicyclic components of order larger than α
δ

.

(iii) If ǫ< 0, then whp there are no complex components.

(iv) If ǫ> 0, then with probability 1−O
(

(

ǫ3n
)−1

)

there are no complex components of order smaller than n
2
3 .

In this paper we investigate similar questions about the component structure of a different random graph

model, the binomial random bipartite graph G(n,n, p), near to its critical point. The binomial random bipar-

tite graph G(n1,n2, p) is the random graph given by taking two partition classes N1 and N2 of sizes n1 and n2

respectively and including each edge between N1 and N2 independently and with probability p . For simplicity,

we restrict our attention to the case where n1 =n2. It is possible that similar techniques will work as long as the

ratio n1

n2
=Θ(1) is a fixed constant.

As in the case of G(n, p), it is known, see for example [14], that when p = 1−ǫ
n for a fixed ǫ > 0, whp every

component of G(n,n, p) has order at most O(log n), and when p = 1+ǫ
n

, whp G(n,n, p) contains a unique ‘giant

component’ L1

(

G(n,n, p)
)

of order Ω(n). Hence, a phase transition occurs at p = 1
n , as in G(n, p).

There has been some interest in this model recently: Johannson [14] determinined the critical point as de-

scribed above in the general G(n1,n2, p) model, Mohar and Ying [13] determined the genus of G(n1,n2, p) in the

dense regime, and Do, Erde and Kang [8] determined the genus of G(n1,n2, p) in the sparse regime.

This model can also be considered as a special case of the inhomogeneous random graphs studied by Bol-

lobás, Janson and Riordan[6], who studied the phase transition in this much broader model. Whilst their results

do not apply in the weakly supercritical regime, this regime was studied for a particular model of inhomogenous

random graphs, which again generalises the bipartite binomial random graph, namely the multi-type binomial

random graph, by Kang, Koch and Pachón[15]. In particular, it follows from their work that in the weakly super-

critical regime there is a unique giant component, and they determine asymptotically its order.

Theorem 1.4 ([15]). Let ǫ= ǫ(n)> 0 be such that ǫ3n →∞ and ǫ= o(1), let p = 1+ǫ
n , and let Li = Li

(

G(n,n, p)
)

for

i = 1,2. Then whp

|L1 ∩N1| = (1+o(1))2ǫn and |L1 ∩N2| = (1+o(1))2ǫn.

Furthermore, whp |L2| = o(ǫn).

In this paper we extend and strengthen the work in [14, 15] on the component structure of G(n,n, p) in the

weakly supercritical regime.

1.2. Main results. In this paper we prove the following analogues of Theorems 1.1–1.3 in the binomial random

bipartite graph model.

Our first main result determines the existence and asymptotic order of the ‘giant’ component in G(n,n, p)

near the critical point.

Theorem 1.5. Let ǫ = ǫ(n) > 0 be such that ǫ4n →∞ and ǫ = o(1), let p = 1+ǫ
n

, and let Li = Li

(

G(n,n, p)
)

for i =
1,2. Let ǫ′ be defined as the unique positive solution to (1−ǫ′)eǫ′ = (1+ǫ)e−ǫ, then with probability 1−O

(

(

ǫ4n
)− 1

6

)

we have
∣

∣

∣

∣

L1 −
2(ǫ+ǫ′)

1+ǫ
n

∣

∣

∣

∣

<
1

50
n

2
3 and |L2| ≤ n

2
3 .

Furthermore, with probability 1−O
(

(

ǫ4n
)− 1

6

)

we have that

|L1 ∩N1| = (1±2
p
ǫ)|L1 ∩N2|.

Note that ǫ′ = ǫ+ 2
3ǫ

2+O(ǫ3). Hence, Theorem 1.5 gives a more precise bound on the order of L1 than Theorem

1.4, as well as determining more precisely the distribution of the vertices of L1 between the partition classes, and

giving a better bound on the order of the second largest component. Moreover, we determine asymptotically

the excess of L1.
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Theorem 1.6. Let ǫ= ǫ(n)> 0 be such that ǫ4n →∞ and ǫ= o(1), and let p = 1+ǫ
n

. Then whp

excess
(

L1

(

G(n,n, p)
))

= (1+o(1))
4

3
ǫ3n.

In addition, we can give a much more precise picture of the component structure of G(n,n, p) near to the

critical point in both the weakly subcritical and weakly supercritical regime. In what follows, let us write

δ= ǫ− log(1+ǫ). (1)

Firstly, for the tree components, we show that whp there are no tree components of order significantly larger

than 1
δ

(

log
(

|ǫ|3n
)

− 5
2 log log

(

|ǫ|3n
))

. Moreover, we show that the number of tree components of order around

this tends to a Poisson distribution.

Theorem 1.7. Let ǫ= ǫ(n) be such that |ǫ|3n →∞ and ǫ= o(1), and let p = 1+ǫ
n .

(i) Given r1,r2 ∈R
+ with r1 < r2 let Yr1 ,r2

denote the number of tree components in G(n,n, p) of orders between

1

δ

(

log
(

|ǫ|3n
)

−
5

2
log log

(

|ǫ|3n
)

+ r1

)

and
1

δ

(

log
(

|ǫ|3n
)

−
5

2
log log

(

|ǫ|3n
)

+ r2

)

,

where δ is as in (1) and let λ=λ(r1,r2) := 1p
π

(e−r1 −e−r2 ) . Then Yr1 ,r2
converges in distribution to Po(λ).

(ii) With probability 1−e−Ω(α), G(n,n, p) contains no tree components of order larger than

1

δ

(

log
(

|ǫ|3n
)

−
5

2
loglog

(

|ǫ|3n
)

+α

)

for any function α=α(n)> 0.

Secondly, for the unicyclic components, we show that whp there are no unicyclic components of order sig-

nificantly larger than 1
δ

, and moreover, that the number of unicyclic components of order around this again

tends to a Poisson distribution.

Theorem 1.8. Let ǫ= ǫ(n) be such that |ǫ|3n →∞ and ǫ= o(1), and let p = 1+ǫ
n .

(i) Given u1,u2 ∈ R
+ with u1 < u2 let Zu1,u2

denote the number of unicyclic components in G(n,n, p) of orders

between
u1

δ
and

u2

δ
,

where δ is as in (1) and let ν=ν(u1,u2) := 1
2

∫u2

u1

exp(−t )
t d t . Then Zu1,u2

converges in distribution to Po(ν).

(ii) With probability 1−e−Ω(α), G(n,n, p) contains no unicyclic components of order larger than α
δ for any func-

tion α=α(n)> 1.

Finally, we show that there are whp no complex components of order great than n
2
3 , and in fact no complex

components at all in the weakly subcritical regime.

Theorem 1.9. Let ǫ= ǫ(n) be such that |ǫ|3n →∞ and ǫ= o(1), and let p = 1+ǫ
n .

(i) If ǫ< 0 then with probability 1−O
(

(

|ǫ|3n
)−1

)

, G(n,n, p) contains no complex components.

(ii) If in addition ǫ4n → 0, then with probability 1−O
(

(

ǫ4n
)−1

)

, G(n,n, p) contains no complex components of

order smaller than n
2
3 .

Note that, in comparison to Theorems 1.1–1.3 and Theorem 1.4, some of our results require a stronger as-

sumption that ǫ4n →∞. This deficiency, in terms of the size of the critical window, seems to be an artefact of

the proofs, and we expect the correct size of the critical window to be as in G(n, p).

More precisely, our results rely on enumerative estimates for the number of bipartite graphs with a fixed

number of vertices and edges. For certain ranges of these parameters we are only able to give a weak bound

on the number of such graphs, however there is a natural conjecture to make, motivated by the corresponding

bounds in the non-bipartite case, contingent on which our proofs would work under the weaker assumption

that ǫ3n →∞. We will discuss this issue in more detail in Section 6.
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1.3. Key proof ideas. As opposed to previous results concerning the phase transition in the binomial random

bipartite graph, such as [14], [15] and [6], which analyse this model by comparison to branching processes,

our approach is at heart based on enumerative methods, following the methods of Bollobás [4] and Łuczak

[17]. That is, we first derive estimates for the number of bipartite graphs with a fixed number of vertices and

edges, and use these to bound the expectation, and higher order moments, of the number of components of

various types in G(n,n, p). This will allow us to describe the distribution of the small components in G(n,n, p),

in particular Theorems 1.7–1.9 will follow from such considerations. Furthermore, we can also bound quite

precisely the number of vertices contained in large components in G(n,n, p), those of order at least n
2
3 . It can

then be shown using a standard sprinkling argument that whp there is a unique large component L1 containing

all these vertices. Given the order of L1, we can again use these enumerative estimates to give a weak bound on

its excess, which we can then bootstrap to an asymptotically tight bound via a multi-round exposure argument.

This turns out to be quite a delicate argument, and in particular we make use of a correlation inequality of

Harris. The main difficulties here, as opposed to the case of G(n, p), come from the fact that the components

of a fixed order can be split in various different ways across the partition classes, making the combinatorial

expressions for the expected number of such components much harder to estimate or evaluate.

In order to derive these estimates for the number of bipartite graphs with a fixed number of vertices and

edges we will use some standard enumerative tools such as Prüfer codes, as well as a probabilistic argument

based on a result of Łuczak [18]. We will find that it is much easier to count the bipartite graphs whose partition

classes have relatively equal sizes, which we call balanced, and in this case we obtain effective bounds. Since

these enumerative results translate directly into bounds on the moments of the number of components with

a fixed number of vertices and edges in G(n,n, p), we will often have to split such calculations into two parts

depending on whether these components are balanced or not. In the latter case it is then necessary to obtain

tighter probabilistic bounds to account for the weaker enumerative bounds.

The benefit in working directly with these enumerative results is in the increased accuracy, allowing for much

finer control over the structure of G(n,n, p) in the weakly supercritical regime. For this reason, these estimates

may be useful in order to apply similar methods to study the structure of G(n,n, p) in this regime in more detail.

For example, in the case of G(n, p) Łuczak [16] used similar ideas to describe the distribution of cycles in this

regime, and more recently, using some of these ideas, Dowden, Kang and Krivelevich [9] were able to determine

asymptotically the genus of G(n, p) in this regime. It is possible that similar ideas could be applied to G(n,n, p),

for example to study the distribution of cycles, or the length of the longest cycle, or the genus in this model.

1.4. Overview of the paper. The rest of the article is organised as follows. In Section 2, we collect some pre-

liminary results which are used later in the paper. In Section 3 we derive bounds for the expected number of

components of G(n,n, p) with a fixed order and excess, which form the foundation of many of the calculations

in this paper. These bounds depend on good estimates for the number of bipartite graphs with a fixed number

of vertices and edges, whose proofs we give in Section 5. In Section 4.1, we use these estimates to study the

distribution of components in G(n,n, p) and prove Theorems 1.7–1.9. Then, in Section 4.2, using the previous

results, we investigate the size of the largest components and prove Theorem 1.5. Using this, we then deter-

mine the excess of the giant component and prove Theorem 1.6 in Section 4.3. Finally, in Section 6, we discuss

possible extensions of our results, formulate a conjecture, and give some open problems.

2. PRELIMINARIES

Unless stated otherwise, all the asymptotics in this paper are taken as n →∞. In particular, we write f (n) ≈
g (n) if f = (1+o(1))g , f (n) . g (n) if f ≤ (1+o(1))g , and f (n) & g (n) if f ≥ (1+o(1))g . Furthermore, we write

that f (n) ≫ g (n) if f (n) ≥C g (n) for an implicit large constant C . We write N for the set of positive integers, so

that in particular 0 6∈N.

We will often need the following elementary estimates on the size of the falling factorial, which hold for any

i ,n ∈N with i ≤ n

(n)i :=
i−1
∏

j=0

(n − j ) =ni exp

(

−
i 2

2n
−

i 3

6n2
+O

(

i 4

n3

))

, (2)

4



and also

(n)i ≤ ni exp

(

−
i 2

2n
−

i 3

6n2

)

≤ni exp

(

−
i 2

2n

)

. (3)

The following result of Spencer [20] is a useful tool for relating integrals and sums.

Lemma 2.1 ([20, Theorem 4.3]). Let a < b be integers, let f (x) be an integrable function in [a − 1,b + 1], and

let S :=
∑b

i=a
f (i ) and I :=

∫b
a f (x)d x. Let M be such that | f (x)| ≤ M for all x ∈ [a − 1,b + 1] and suppose that

[a −1,b +1] can be broken into at most r intervals such that f (x) is monotone on each. Then

|S − I | ≤ 6r M .

Often, when calculating certain expected values, we will need an asymptotic expression for sums of the fol-

lowing form, whose proof we relegate to Appendix A.

Lemma 2.2. Let m ≥ 0 and c > 0 be constants and let L = L(n) and k = k(n) be such that L +1 ≤ k ≤ n, L =ω(1)

and k = o(n). Then

S :=
L
∑

d=−L

1

(k2 −d 2)m

(

k −d

k +d

)cd

exp

(

−
d 2

2n

)

≈
√

π

2c
k

1
2
−2m .

We will use the following Chernoff type bounds on the tail probabilities of the binomial distribution, see e.g.

[2, Appendix A].

Lemma 2.3. Let n ∈N, let p ∈ [0,1], and let X ∼ Bin(n, p). Then for every positive a with a ≤ np

2 ,

P
(∣

∣X −np
∣

∣> a
)

< 2exp

(

−
a2

4np

)

.

We will also need to use the following correlation inequality, which follows from an inequality of Harris [11],

which is itself a special case of the FKG-inequality, see for example [2, Section, 6].

Lemma 2.4. If A is an increasing event and B is a decreasing event of bipartite graphs, then in G(n,n, p)

P(A|B ) ≤P(A).

Finally, we will also need the following lemma, which gives a useful criterion for when a sequence of random

variables converges in distribution to a Poisson distribution.

Lemma 2.5 ( [12]). If X1, X2, · · · are random variables with finite moments such that E ((Xn)k ) →λk as n →∞ for

every positive integer k, where (Xn)k is the kth factorial moment of Xn and λ≥ 0 is a constant, then Xn converges

in distribution to Po(λ).

3. COMPONENT STRUCTURE OF G(n,n, p)

One of the main ways in which we derive information about the distribution of the components in G(n,n, p)

is by calculating various moments of the number of components with particular properties, and in particular

the expected value.

Given i , j ∈N and ℓ ∈Z, let X (i , j ,ℓ) denote the number of components in G(n,n, p) with i vertices in N1, j

vertices in N2, and i + j +ℓ edges. Letting i + j = k , we have

E
(

X (i , j ,ℓ)
)

=
(

n

i

)(

n

j

)

C (i , j ,ℓ)pk+ℓ(1−p)kn−i j−k−ℓ, (4)

where C (i , j ,ℓ) is the number of bipartite graphs with i vertices in one partition class, j in the second, and

i + j +ℓ many edges. Hence, in order to understand the quantities E
(

X (i , j ,ℓ)
)

, it is important to know how the

quantities C (i , j ,ℓ) behave.

In this section we state some bounds for C (i , j ,ℓ), which we will prove later in Section 5, and derive some

consequences of these bounds, using (4), for the expected number of tree, unicyclic and complex components,

where a tree component has excess ℓ = −1, a unicyclic component has excess ℓ = 0 (and hence contains a

unique cycle), and a complex component has excess ℓ≥ 1.
5



The following estimates are useful to this end. Using the fact that 1+x = ex+O(x2) for any x = o(1), we see that

for any i + j = k and ǫ= o(1),

(

1−
1+ǫ

n

)kn−2i j

= exp

(

−(1+ǫ)k +
(1+ǫ)2i j

n
+O

(

i j

n2

)

+O

(

k

n

))

. (5)

Similarly, for any k = o(n), i + j = k , and ǫ= o(1)

(

1−
1+ǫ

n

)kn−i j+O(k)

= exp

(

−(1+ǫ)k +
(1+ǫ)i j

n
+O

(

i j

n2

))

. (6)

Throughout this section, unless stated otherwise, we let ǫ= ǫ(n) be such that |ǫ|3n →∞ and ǫ= o(1), and let

p = 1+ǫ
n . We will also refer to δ as defined in (1), i.e.

δ= ǫ− log(1+ǫ) ≈
ǫ2

2
.

3.1. Tree components. Let us write Ĉ (i ,ℓ) for the number of (not-necessarily bipartite) graphs with i vertices

and i+ℓ many edges. It is a classic result of Cayley that the number of trees on i vertices, in other words Ĉ (i ,−1),

is i i−2. The following result of Scoins [19] gives an analogue for bipartite trees.

Theorem 3.1 ([19]). For any i , j ∈N we have C (i , j ,−1) = i j−1 j i−1.

As a consequence, we can derive an asymptotic formula for the expected number of tree components in

G(n,n, p).

Theorem 3.2. For any i = i (n), j = j (n)∈N satisfying k = i + j = o(n), we have

E
(

X (i , j ,−1)
)

≈
n

2π(i j )
3
2

e−δk

(

i

j

) j−i

exp

(

−
(i − j )2

2n
−

i 3 + j 3

6n2
+
ǫi j

n
+O

(

i j

n2

)

+O

(

i 4 + j 4

n3

))

. (7)

Proof. By Theorem 3.1 and (4), together with Stirling’s formula, we have

E
(

X (i , j ,−1)
)

=
(

n

i

)(

n

j

)

C (i , j ,−1)pk−1(1−p)kn−i j−k+1

=
(n)i

i !

(n) j

j !
i j−1 j i−1pk−1(1−p)kn−i j−k+1 (8)

≈
ek

2π(i j )
3
2

(

i

j

) j−i (n)i (n) j

nk−1
(1+ǫ)k

(

1−
1+ǫ

n

)kn−i j−k+1

. (9)

Hence, by (9), (2) and (6), we obtain

E
(

X (i , j ,−1)
)

≈
n

2π(i j )
3
2

e−δk

(

i

j

) j−i

exp

(

−
(i − j )2

2n
−

i 3 + j 3

6n2
+
ǫi j

n
+O

(

i j

n2

)

+O

(

i 4 + j 4

n3

))

.

�

3.2. Unicyclic components. We will derive in Section 5 the following expression for the number of unicyclic

bipartite graphs.

Theorem 3.3. For any i , j ∈N we have

C (i , j ,0)=
1

2

(

1

i
+

1

j

)

i j j i
min{i , j }

∑

r=2

(i )r ( j )r

i r j r
,

and so in particular, for any i = i (n), j = j (n)∈N satisfying i , j →∞ and 1
2 ≤ i

j ≤ 2 we have

C (i , j ,0)≈
√

π

8

√

i + j i j− 1
2 j i− 1

2 .

6



We note for comparison that it is known that

Ĉ (i ,0) ≈
√

π

8
i i− 1

2 ,

see [5, Corollary 5.19]. We can derive as a consequence an asymptotic formula for the expected number of

unicyclic components in G(n,n, p) which are appropriately balanced across the partition classes.

Theorem 3.4. For any i = i (n), j = j (n)∈N satisfying i , j →∞ and 1
2 ≤ i

j ≤ 2, and letting k = i + j , we have

E
(

X (i , j ,0)
)

≈
p

k

4
p

2πi j
e−δk

(

i

j

) j−i

exp

(

−
(i − j )2

2n
−

i 3 + j 3

6n2
+
ǫi j

n
++O

(

i j

n2

)

+O

(

i 4 + j 4

n3

))

. (10)

Proof. By Theorem 3.3 and (4), together with Stirling’s formula, if 1
2 ≤ i

j ≤ 2, then

E
(

X (i , j ,0)
)

=
(

n

i

)(

n

j

)

C (i , j ,0)pk (1−p)kn−i j−k ≈
(n)i

i !

(n) j

j !

√

π

8

p
ki j− 1

2 j i− 1
2 pk (1−p)kn−i j−k

≈
ek

p
k

4
p

2πi j

(

i

j

) j−i (n)i (n) j

nk
(1+ǫ)k

(

1−
1+ǫ

n

)kn−i j−k

. (11)

Hence, by (11), (2) and (6), we get

E
(

X (i , j ,0)
)

≈
p

k

4
p

2πi j
e−δk

(

i

j

) j−i

exp

(

−
(i − j )2

2n
−

i 3 + j 3

6n2
+
ǫi j

n
+O

(

i j

n2

)

+O

(

i 4 + j 4

n3

))

.

�

3.3. Complex components. In Section 5 we will also prove the following upper bound on the number of bipar-

tite graphs with a fixed excess which are appropriately balanced across the partition classes.

Theorem 3.5. There is a constant c such that for any i , j ,ℓ∈N with ℓ≤ i j − i − j and 1
2
≤ i

j
≤ 2,

C (i , j ,ℓ)≤ i j+ 1
2 j i+ 1

2 (i + j )
3ℓ+1

2

(

i

j

)
i− j

2 ( c

ℓ

)
ℓ
2

.

Furthermore, if ℓ≥ i + j , then

C (i , j ,ℓ)≤ i j− 1
2 j i− 1

2 (i + j )
3ℓ+1

2 ℓ−
ℓ
2 .

We note that for small enough ℓ, for example ℓ=O(1), the naive bound that follows from

C (i , j ,ℓ)≤C (i , j ,0)(i j )ℓ ≤
√

i + j i j+ℓ− 1
2 j i+ℓ− 1

2 (12)

is more effective than the first part of Theorem 3.5. We also note for comparison that it is known that there is an

absolute constant c such that

Ĉ (i ,ℓ)≤ cℓ−
ℓ
2 i i+ 3ℓ−1

2 ,

see [5, Corollary 5.21].

As before, using these bounds we can give an upper bound on the expected number of components with a

fixed excess which are appropriately balanced across the partition classes.

Theorem 3.6. For any i = i (n), j = j (n),ℓ= ℓ(n) ∈N satisfying 1
2 ≤ i

j ≤ 2, ℓ≤ i j − i − j , and k = i + j = o(n), we

have

E
(

X (i , j ,ℓ)
)

≤
p

k

(

i

j

)
j−i

2
(

ck3

ℓn2

)

ℓ
2

exp

(

−δk +
ǫk2

4n
−

(i − j )2

2n
+O

(

i j

n2

)

+ℓ log(1+ǫ)+
ℓ(1+ǫ)

n

)

, (13)

and for ℓ=O(1), we have

E
(

X (i , j ,ℓ)
)

=O

(p
k(i j )ℓ−1

nℓ

(

i

j

) j−i

exp

(

−δk +
ǫk2

4n
−

(i − j )2

2n
+O

(

i j

n2

))

)

. (14)

7



Proof. By Theorem 3.5 and (4), together with Stirling’s formula, if 1
2
≤ i

j
≤ 2 and ℓ ≤ i j − i − j , then there is an

absolute constant c such that,

E
(

X (i , j ,ℓ)
)

=
(

n

i

)(

n

j

)

C (i , j ,ℓ)pk+ℓ(1−p)kn−i j−k−ℓ

≤
(n)i

i !

(n) j

j !
i j+ 1

2 j i+ 1
2 (i + j )

3ℓ+1
2

(

i

j

)
i− j

2 ( c

ℓ

)
ℓ
2

pk+ℓ(1−p)kn−i j−k−ℓ

≤
p

ke−δk

(

i

j

)
j−i

2
(

ck3

ℓn2

)

ℓ
2 (n)i (n) j

nk
(1+ǫ)k+ℓ

(

1−
1+ǫ

n

)kn−i j−k−ℓ
. (15)

Hence, by (15), (3) and (6), we see that

E
(

X (i , j ,ℓ)
)

≤
p

k

(

i

j

)
j−i

2
(

ck3

ℓn2

)

ℓ
2

exp

(

−δk +
ǫi j

n
−

(i − j )2

2n
+O

(

i j

n2

)

+ℓ log(1+ǫ)+
ℓ(1+ǫ)

n

)

≤
p

k

(

i

j

)
j−i

2
(

ck3

ℓn2

)

ℓ
2

exp

(

−δk +
ǫk2

4n
−

(i − j )2

2n
+O

(

i j

n2

)

+ℓ log(1+ǫ)+
ℓ(1+ǫ)

n

)

.

For ℓ=O(1), using (12) instead of Theorem 3.5, we can instead bound

E
(

X (i , j ,ℓ)
)

=O

(p
k(i j )ℓ−1

nℓ

(

i

j

) j−i

exp

(

−δk +
ǫk2

4n
−

(i − j )2

2n
+O

(

i j

n2

))

)

.

�

3.4. More about components. Since we only have good estimates for C (i , j ,ℓ) when i and j are comparable in

size, it will be useful to show that the expected number of components of a given excess and order is dominated

by the contribution from those which are ‘evenly spread’ across the partition classes, and we should perhaps

expect by the symmetry in the model that this is the case for most components. For the most part, we are able

to get away with considering a relatively weak notion of ‘evenly spread’.

We say a component C of G(n,n, p) is balanced if |C∩N1| ≤ 2|C∩N2| and |C∩N2| ≤ 2|C∩N1|, and unbalanced

otherwise. The following lemma will be useful for simplifying certain calculations, which roughly says that we

do not expect there to be any large unbalanced components in G(n,n, p).

Lemma 3.7. Let ǫ= ǫ(n)> 0 be such that ǫ3n →∞ and ǫ= o(1), let p = 1+ǫ
n , and let α=α(n) →∞ be an increasing

function.

(i) With probability 1−O
(

n−1
)

, G(n,n, p) contains no unbalanced components of order ≥ 2000log n.

(ii) With probability 1−e−Ω(α), G(n,n, p) contains no unbalanced non-tree components of order ≥α.

(iii) With probability 1−O
(

n−1
)

, G(n,n, p) contains no unbalanced complex components.

Proof. Every unbalanced component of order k with excess at least ℓ must contain a spanning tree together

with ℓ+1 extra edges which is otherwise disconnected from the rest of the graph and hence G(n,n, p) contains a

component of order k and excess at least ℓ if and only if G(n,n, p) contains such a substructure. Let us denote by

Y (k ,ℓ) the number of such substructures. It follows that if Y (k ,ℓ) = 0, then G(n,n, p) contains no components

of order k with excess at least ℓ.

In order to count the expected size of Y (k ,ℓ) we note that we can specify such a substructure S by choosing i

vertices in the first partition class and j vertices in the second, such that that i + j = k and either j ≥ 2i or i ≥ 2 j ,

choosing one of the i j−1 j i−1 possible bipartite spanning trees on these vertices, and then choosing one of the

at most
(i j−i− j

ℓ+1

)

possible sets of ℓ+1 extra edges. Note that the number of non-edges from these k vertices to

the other vertices in G(n,n, p) is i (n − j )+ j (n − i )= kn −2i j (see Figure 1).

It follows that we can bound

E (Y (k ,ℓ))≤
∑

(i , j )∈Uk

(

n

i

)(

n

j

)

i j−1 j i−1

(

i j − i − j

ℓ+1

)

pk+ℓ(1−p)kn−2i j ,

where Uk =
{

(i , j ) ∈N
2 : i + j = k and i ≥ 2 j or j ≥ 2i

}

.

Therefore, using (3), (5) and Stirling’s approximation we can bound the expected number by
8



N1 N2

S

FIGURE 1. A substructure S (in the proof of Lemma 3.7) with i = 2 vertices in N1 and j = 4

vertices in N2 containing a spanning tree (whose edges are drawn with thin edges) and ℓ = 2

excess edges (which are drawn with thick edges), where none of the kn −2i j edges from V (S)

to the rest of the graph are in G(n,n, p).

E(Y (k ,ℓ))≤ n−ℓe−δk
∑

(i , j )∈Uk

(i j )ℓ−
1
2

2π

(

i

j

) j−i

exp

(

−
i 2 + j 2

2n
+

(1+ǫ)2i j

n
+O

(

i j

n2

)

+O

(

k

n

))

≤ n−ℓ ∑

(i , j )∈Uk

(i j )ℓ−
1
2

(

i

j

) j−i

exp

(

i j (1+2ǫ)

n
+O(1)

)

,

since ex < 1 for x < 0, −i 2 − j 2 +2i j < 0 and i , j ≤ k ≤ n.

However, if j ≥ 2i and i + j = k , then j ≥ 2k
3 and so j − i ≥ j

2 ≥ k
3 , and i j ≤ 2k2

9 . It follows that
(

i
j

) j−i
≤

(

1
2

)
k
3 . A

similar calculation holds if i ≥ 2 j . Hence the expected number of such substructures is at most

E(Y (k ,ℓ)) ≤n−ℓexp

(

2(1+2ǫ)k2

9n
−

k log2

3
+O(1)

)

∑

(i , j )∈Uk

(i j )ℓ−
1
2 ≤ n−ℓe− k

1000

∑

(i , j )∈Uk

(i j )ℓ−
1
2 ,

since 2(1+2ǫ)k2

9n − k log2
3 +O(1) ≤ k

(

2(1+2ǫ)
9 − log2

3

)

+O(1) ≤− k
1000 when ǫ is sufficiently small.

Hence, if we let Y≥r (ℓ) =
∑

k≥r Y (k ,ℓ), then with r = 2000log n

E (Y≥r (−1)) ≤ n
∑

k≥r

e− k
1000

∑

(i , j )∈Uk

(i j )−
3
2 ≤ n

∑

k≥r

e− k
1000 =O

(

1

n

)

.

Hence, by Markov’s inequality, with probability 1−O
(

n−1
)

, Y≥r (−1) = 0 and in particular there are no unbal-

anced components of order at least 2000log n.

Similarly, if α=α(n) →∞ is an increasing function, then

E (Y≥α(0)) ≤
∑

k≥α
e− k

1000

∑

(i , j )∈Uk

(i j )−
1
2 ≤

∑

k≥α

p
ke− k

1000 =O
(

e− α
2000

)

,

and so, again by Markov’s inequality, with probability 1−e−Ω(α), there are no unbalanced components of order

at least α with excess greater than zero, and so in particular no unicyclic components of order at least α.

Finally, we see that

E(Y≥1(1)) ≤
1

n

∑

k≥1

e− k
1000

∑

(i , j )∈Uk

(i j )
1
2 ≤

1

n

∑

k≥1

k2e− k
1000 =O

(

1

n

)

,

and so as before with probability 1−O
(

n−1
)

there are no unbalanced complex components. �

For most applications the rather coarse notion of balanced is enough for our purposes, but in one case we

will need to restrict our attention to components which are much more evenly distributed over the partition

classes. We say a component C of G(n,n, p) is ǫ-uniform if ||C ∩N1|− |C ∩N2|| < ǫ
1
4
p

n.
9



Lemma 3.8. Let ǫ= ǫ(n)> 0 be such that ǫ3n →∞ and ǫ= o(1), and let p = 1+ǫ
n

. Then with probability 1−o
(

n−1
)

,

G(n,n, p) contains no non-ǫ-uniform tree components of order at most n
2
3 .

Proof. As in the previous lemma, let us write Uk =
{

(i , j )∈N
2 : i + j = k , |i − j | ≥ ǫ

1
4
p

n
}

for the pairs (i , j ) repre-

senting non-ǫ-uniform components. Note that, if (i , j ) ∈Uk and k ≤n
2
3 , then

(

i

j

) j−i

≤
(

1−
ǫ

1
4
p

n

n
2
3

)ǫ
1
4
p

n

≤ e−
p
ǫn

1
3

.

Then, using (7), we can bound the expected number of non-ǫ-uniform tree components of order at most n
2
3

by

n
2
3

∑

k=1

∑

(i , j )∈Uk

E
(

X (i , j ,−1)
)

≤
n

2
3

∑

k=1

∑

(i , j )∈Uk

n

2π(i j )
3
2

(

i

j

) j−i

exp

(

ǫi j

n
+o(1)

)

≤
n

2
3

∑

k=1

ne
ǫk2

4n
−
p
ǫn

1
3

∑

(i , j )∈Uk

1

(i j )
3
2

≤
n

2
3

∑

k=1

n

k
1
2

e
ǫk2

4n
−
p
ǫn

1
3

.

However, since k ≤ n
2
3 and ǫ3n →∞, it follows that

ǫk2

4n
−
p
ǫn

1
3 =−Ω

(p
ǫn

1
3

)

≤−n
1
6 .

It follows that the expected number of non-ǫ-uniform tree components of order at most n
2
3 is at most

ne−n
1
6

n
2
3

∑

k=1

1

k
1
2

≤ n
4
3 e−n

1
6 = o

(

n−1
)

.

Hence, the result follows by Markov’s inequality. �

It will also be useful to have a bound on the variance of the number of ǫ−uniform tree components with

small order, which is given by the following lemma, whose proof is given in Appendix B.

Lemma 3.9. Let ǫ = ǫ(n) > 0 be such that ǫ3n → ∞ and ǫ = o(1), and let p = 1+ǫ
n . Given k̃, a ∈ N, set Za =

∑k̃
k=1

k a Z (k) where Z (k) is the number of ǫ-uniform tree components of order k in G(n,n, p). If k̃ ≤ n
2
3 and

3ǫk̃2

n < 1, then Var(Z1) =O
(

n
ǫ

)

.

4. A FINER LOOK AT COMPONENT STRUCTURE OF G(n,n, p)

Using the bounds from Section 3 on the expected number of components with a fixed order and excess we

can describe more precisely the component structure of G(n,n, p).

4.1. Distribution of the number of components: proof of Theorems 1.7–1.9. Firstly, as indicated in Theo-

rem 1.7, we show that whp there are no tree components in G(n,n, p) whose order is significantly larger than
1
δ

(

log
(

|ǫ|3n
)

− 5
2 log log

(

|ǫ|3n
))

. Moreover, we show that the number of tree components of order around this

tends to a Poisson distribution.

Proof of Theorem 1.7.

Part (i): Let us write ki = 1
δ

(

log
(

|ǫ|3n
)

− 5
2 loglog

(

|ǫ|3n
)

+ ri

)

for i ∈ {1,2}. Then for all k1 ≤ k ≤ k2, we have that
k3

n2 , k4

n3 and ǫk2

n
are all o(1). Therefore, it follows from (7) that

E(Yr1 ,r2
) ≈

n

2π

k2
∑

k=k1

e−δk
∑

i+ j=k

1

(i j )
3
2

(

i

j

) j−i

exp

(

−
(i − j )2

2n

)

=
4n

π

k2
∑

k=k1

e−δk
k−1
∑

d=−k+1

1

(k2 −d 2)
3
2

(

k −d

k +d

)d

exp

(

−
d 2

2n

)

,

where the last equality holds by reparameterising over d = j − i . Hence, by Lemma 2.2, we have

E(Yr1 ,r2
) ≈

2
p

2n
p
π

k2
∑

k=k1

e−δk

k
5
2

. (16)

10



Now, for any r1

δ
≤ a ≤ r2

δ
and

k =
1

δ

(

log
(

|ǫ|3n
)

−
5

2
loglog

(

|ǫ|3n
)

)

+a,

we have that

k
5
2 ≈ 4

p
2|ǫ|−5

(

log
(

|ǫ|3n
))

5
2 ,

since δ≈ ǫ2

2 , and hence in this range

e−δk

k
5
2

=
(

log
(

|ǫ|3n
))

5
2 e−δa

|ǫ3|nk
5
2

≈
|ǫ2|e−δa

4
p

2n
≈

δe−δa

2
p

2n
. (17)

Hence, substituting (17) into (16) we obtain

E(Yr1 ,r2
)≈

1
p
π

r2
δ

∑

a= r1
δ

δe−δa ≈
1
p
π

∫r2

r1

e−t d t =
1
p
π

(

e−r1 −e−r2
)

=:λ.

Next, we calculate the expected value of (Yr1 ,r2
)2, i.e. the second factorial moment of Yr1 ,r2

, which is the

expected number of ordered pairs of tree components whose orders lie between r1 and r2. We have that

E
(

(Yr1 ,r2
)2

)

=
k2
∑

k=k1

∑

i+ j=k

(

n

i

)(

n

j

)

pk−1(1−p)kn−i j−k+1
k2
∑

k ′=k1

∑

r+s=k

(

n − i

r

)(

n − j

s

)

pk ′−1(1−p)k ′n−r s−i s−r j−k ′+1,

and we note that the inner sum is the expected number of tree components of order between k1 and k2 in

G(n1,n2, p), where n1 = n−i ,n2 = n− j . However, since i , j ≤ k2 = o(n) the same argument as before shows that

this inner sum is asymptotically equal to E(Yr1 ,r2
), and hence

E
(

(Yr1 ,r2
)2

)

≈
(

E(Yr1 ,r2
)
)2 ≈λ2.

A similar argument shows that the i th factorial moment E
(

(Yr1 ,r2
)i

)

≈ λi for each i ∈ N, and hence Yr1,r2

converges in distribution to Po(λ) by Lemma 2.5.

Part (ii): Let us write k3 = 1
δ

(

log
(

|ǫ|3n
)

− 5
2 log log

(

|ǫ|3n
)

+α
)

and Y≥α for the number of tree components of

order at least k3. From (7), but using (3) instead of (2) to bound the falling factorial term, we can bound the

expected value of Y≥α from above as

E(Y≥α) ≤ n
n
∑

k=k3

e−δk
∑

i+ j=k

1

2π(i j )
3
2

(

i

j

) j−i

exp

(

−
(i − j )2

2n
−

i 3 + j 3

6n2
+
ǫi j

n
+O

(

i j

n2

))

.

For any k ≤ n and i + j = k we have that
i j

n2 ≤ 1/4,
ǫi j

n ≤ ǫk2

4n and also
i 3+ j 3

6n2 ≥ k3

24n2 , and so

E(Y≥α) ≤ e
1
4 n

n
∑

k=k3

exp

(

−δk +
ǫk2

4n
−

k3

24n2

)

∑

i+ j=k

1

2π(i j )
3
2

(

i

j

) j−i

exp

(

−
(i − j )2

2n

)

.

Then, reparameterising with d = j − i and applying Lemma 2.2 as before gives us that,

E(Y≥α)=O

(

n
n
∑

k=k3

1

k
5
2

exp

(

−δk −
k3

24n2
+
ǫk2

4n

)

)

. (18)

Let s = ǫn, then we are interested in the function

−δk +
ǫk2

4n
−

k3

24n2
=

k

n2

(

−
δs2

ǫ2
+

sk

4
−

k2

24

)

.

Now, since −δs2

ǫ2 + sk
4
− k2

24
as a function of k is a parabola, whose maximum comes at k = 3s, we can bound

k

n2

(

−
δs2

ǫ2
+

sk

4
−

k2

24

)

≤ k

(

−δ+
3ǫ2

4
−

9ǫ2

24

)

≤−
δk

5
. (19)
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Hence, by (18) and (19), we have

E(Y≥α)=O

(

n
n
∑

k=k3

1

k
5
2

exp

(

−
δk

5

)

)

.

Hence, if α≥ 10log
(

|ǫ|3n
)

, then

E(Y≥α) =O

(

n
n
∑

k=k3

1

k
5
2

exp

(

−
δk

5

)

)

=O

(

n
∑

k≥α/δ

1

k
5
2

exp

(

−
δk

5

)

)

=O

(

e− α
10 n

∑

k≥α/δ

1

k
5
2

exp

(

−
δk

10

)

)

=O

(

e− α
10

n

(αδ )
5
2

∑

k≥α/δ

exp

(

−
δk

10

)

)

=O






e− α

10
nδ

5
2 e− α

10

(

log
(

|ǫ|3n
)) 5

2

(

1−e− δ
10

)






=O



e− α
10

nδ
5
2

δ
(

log
(

|ǫ|3n
)) 5

2 |ǫ|3n





=O



e− α
10

1
(

log
(

|ǫ|3n
)) 5

2



≤ e−Ω(α).

Finally, if α ≤ 10log
(

|ǫ|3n
)

:= α̂, let k4 = 1
δ

(

log
(

|ǫ|3n
)

− 5
2 log log

(

|ǫ|3n
)

+ α̂
)

. We can argue as in the first part

that

E(Yα,α̂) = e−Ω(α),

since as in (17), as long as k = 1
δ

(

log
(

|ǫ|3n
)

− 5
2 log log

(

|ǫ|3n
)

+α
)

=Θ

(

log |ǫ|3n
δ

)

we have that e−δkk− 5
2 =Θ

(

δe−δαn−1
)

.

It follows that,

E(Y≥α) = E(Yα,α̂)+E(Y≥α̂) = e−Ω(α) +e−Ω(α̂) = e−Ω(α),

and so the result follows from Markov’s inequality. �

Secondly, as indicated in Theorem 1.8, we show that whp there are no unicyclic components in G(n,n, p) of

order significantly larger than 1
δ

, and moreover, that the number of unicyclic components of order around this

tends to a Poisson distribution.

Proof of Theorem 1.8.

Part (i): Let us write si = ui

δ for i ∈ {1,2}. We first note that, by Lemma 3.7, G(n,n, p) contains no unbalanced

non-tree components of order ≥ s1 with probability 1− e−Ω(s1), and hence whp Zu1,u2
= Z ′

u1,u2
where Z ′

u1,u2
is

the number of unicyclic balanced components with order between s1 and s2.

Let us write Bk =
{

(i , j ) ∈N
2 : i + j = k and 1

2
≤ i

j
≤ 2

}

. Since for s1 ≤ k ≤ s2 we have that k3

n2 , ǫk2

n
, k2

n2 and k4

n3 are

all o(1), it follows from (10) and Lemma 2.2 that

E(Z ′
u1,u2

) =
s2
∑

k=s1

∑

(i , j )∈Bk

E
(

X (i , j ,0)
)

≈
1

4
p

2π

s2
∑

k=s1

p
ke−δk

∑

(i , j )∈Bk

1

i j

(

i

j

) j−i

exp

(

−
(i − j )2

2n

)

≈
1

2

s2
∑

k=s1

1

k
e−δk ≈

1

2

∫u2

u1

e−t

t
d t := ν. (20)

As in Theorem 1.7 (i) a similar argument shows that E
(

(Z ′
u1,u2

)i

)

≈ νi for all i ∈ N and hence Z ′
u1,u2

, and so

also Zu1,u2
, converges in distribution to Po(ν).

Part (ii): Let s3 = α
δ and let Z≥α and Z ′

≥α be the number of unicyclic components and balanced unicyclic

components respectively of order at least s3. Note that, as before, Z≥α = Z ′
≥α with probability 1 − e−Ω(s3) =

1−e−Ω(α).

A similar argument as in Theorem 1.7 (ii) shows that for any i + j = k ≤ n

E
(

Z ′
≥α

)

=O

(

n
∑

k=s3

p
k exp

(

−δk −
k3

24n2
+
ǫk2

4n

)

∑

i+ j=k

1

i j

(

i

j

) j−i

exp

(

−
(i − j )2

2n

)

)

=O

(

n
∑

k=s3

1

k
e− δk

5

)

. (21)

On the other hand, it can be shown, see for example [1, Formulas 5.1.1 and 5.1.20], that

E1(x) :=
∫∞

x

e−t

t
d t ≤ e−x log

(

1+
1

x

)

12



and hence

n
∑

k=s3

1

k
e− δk

5 ≈
∫n

s3

1

u
e− δu

5 du =
∫ δn

5

α
5

e−t

t
d t ≤ e− α

5 log

(

1+
5

α

)

= e−Ω(α) (22)

for α≥ 5.

By (21) and (22), it follows that E
(

Z ′
≥α

)

= e−Ω(α). In the case where 1 <α≤ 5 we can use (20) to see

E
(

Z ′
≥α

)

= E
(

Z ′
α,5

)

+E
(

Z ′
≥5

)

≤
1

2
E1(α)+e−Ω(1) ≤ e−Ω(1).

�

Finally, as indicated in Theorem 1.9, we show that whp there are no large complex components in G(n,n, p),

and in fact no complex components at all in the subcritical regime.

Proof of Theorem 1.9.

Part (i): To show the first part, we use the observation that, since each complex component must contain a con-

nected subgraph of excess precisely two, it is sufficient to show that whp G(n,n, p) contains no such subgraphs.

We note that any connected graph of excess precisely two consists of a pair of cycles, which are either joined

by a path or whose intersection is a path. Let us denote the number of such subgraphs by Q . The key observation

is that any such graph of order k can be built by taking a path on k vertices and adding an edge from each of its

endpoints to another vertex in the path. Hence, we can choose such a subgraph on k vertices by first choosing

the i =
⌊

k
2

⌋

vertices of the path lying in one partition class and the j =
⌈

k
2

⌉

vertices of the path lying in the other

partition class, choosing the order which the vertices appear in the path in at most i ! j ! many ways and then

choosing for each endpoint of the path one of the at most k many edges from this endpoint to another vertex

in the path. It follows that

E(Q) ≤ 2
n
∑

k=3

(

n

k

)(

n

k

)

(k !)2k2p2k+1+2
k0
∑

k=2

(

n

k

)(

n

k +1

)

(k +1)!k !k2p2k+2

≤ 2
n
∑

k=3

nk

k !

nk

k !
(k !)2k2

(

1+ǫ

n

)2k+1

+2
k0
∑

k=2

nk

k !

nk+1

(k +1)!
(k +1)!k !k2

(

1+ǫ

n

)2k+2

≤ 4
n
∑

k=2

k2

n
e2ǫk ≤

4

n

∫∞

0
x2e2ǫxd x =

1

|ǫ|3n
.

Therefore, by Markov’s inequality, with probability at least 1− 1
|ǫ|3n

there are no complex components.

Part (ii) : As in Theorem 1.8 (i), let A(k ,ℓ) and A′(k ,ℓ) be the number of components and balanced compo-

nents respectively of order k with excess ℓ ≥ 1. If we write A =
∑n

2
3

k=1

∑

ℓ≥1 A(k ,ℓ) and A′ =
∑n

2
3

k=1

∑

ℓ≥1 A′(k ,ℓ),

then by Lemma 3.7 with probability 1−O
(

n−1
)

= 1−O
(

(

ǫ4n
)−1

)

, A = A′.

We split the computation of E(A′) into three cases: when k is small, when k is large and ℓ is small, and when

both k and ℓ are large. More explicitly, we write

E(A′) =
n

2
3

∑

k=1

∑

(i , j )∈Bk

i j−i− j
∑

ℓ=1

E
(

X (i , j ,ℓ)
)

=
ǫ−

1
2

∑

k=1

∑

(i , j )∈Bk

i j−i− j
∑

ℓ=1

E
(

X (i , j ,ℓ)
)

+
n

2
3

∑

k=ǫ−
1
2

∑

(i , j )∈Bk

3
∑

ℓ=1

E
(

X (i , j ,ℓ)
)

+
n

2
3

∑

k=ǫ−
1
2

∑

(i , j )∈Bk

i j−i− j
∑

ℓ=4

E
(

X (i , j ,ℓ)
)

:= S1 +S2 +S3,

where Bk is as in the proof of Theorem 1.8.

Let us deal with S3 first. Since k2

n2 = o(1) for k ≤ n
2
3 , we see by (13) in Theorem 3.6 that

S3 .
n

2
3

∑

k=1

p
k exp

(

−δk +
ǫk2

4n

)

∑

(i , j )∈Bk

(

i

j

)
j−i

2

exp

(

−
(i − j )2

2n

) i j−i− j
∑

ℓ=4

(

ck3

ℓn2

)

ℓ
2

exp

(

ℓ log(1+ǫ)+
ℓ(1+ǫ)

n

)

. (23)

13



Let us first deal with the innermost sum of (23)

i j−i− j
∑

ℓ=4

(

ck3

ℓn2

)

ℓ
2

exp

(

ℓ log(1+ǫ)+
ℓ(1+ǫ)

n

)

.

The ratio of consecutive terms in the sum is
√

k3

cn2

ℓ
ℓ
2

(ℓ+1)
ℓ+1

2

exp

(

log(1+ǫ)+
1+ǫ

n

)

< 1,

when ℓ is large enough compared to c . However, for any constant ℓ≥ 4 the individual terms can be seen to have

order

O

(

k3

n2

)

ℓ
2

=O

(

k6

n4

)

since k ≤n
2
3 . It follows that

i j−i− j
∑

ℓ=4

(

ck3

ℓn2

)

ℓ
2

exp

(

ℓ log(1+ǫ)+
ℓ(1+ǫ)

n

)

=O

(

k6

n4

)

. (24)

Next, we see that the second sum can be evaluated using Lemma 2.2 to give

∑

(i , j )∈Bk

(

i

j

)
j−i

2

exp

(

−
(i − j )2

2n

)

=O
(p

k
)

. (25)

Hence, by (24) and (25), and using that, since k ≤ n
2
3 = o(ǫn) we have ǫk2

4n = o(δk), we see that

S3 =O





n
2
3

∑

k=ǫ−
1
2

e− δk
2

k7

n4



=O





1

n4

n
2
3

∑

k=ǫ−
1
2

k7e− δk
2



=O

(

1

n4

∫∞

0
x7e− δx

2

)

=O

(

1

(ǫ4n)4

)

.

Next, to bound S2 we use (14) rather than (13), and see via similar calculations that

S2 =O





n
2
3

∑

k=ǫ−
1
2

p
k exp

(

−δk +
ǫk2

4n

)

∑

(i , j )∈Bk

(

i

j

) j−i

exp

(

−
(i − j )2

2n

) 3
∑

ℓ=1

(i j )ℓ−1

nℓ





=O





3
∑

ℓ=1

1

nℓ

n
2
3

∑

k=ǫ−
1
2

p
ke− δk

2

(

k2

4

)ℓ−1
∑

(i , j )∈Bk

(

i

j

) j−i

exp

(

−
(i − j )2

2n

)





=O





3
∑

ℓ=1

1

nℓ

n
2
3

∑

k=ǫ−
1
2

k2ℓ−1e− δk
2



=O

(

3
∑

ℓ=1

1

(ǫ4n)ℓ

)

.

Finally, let us deal with S1. As before, since k2

n2 = o(1) for k ≤ n
2
3 , it follows from (13) that

S1 .
ǫ−

1
2

∑

k=1

p
k exp

(

−δk +
ǫk2

4n

)

∑

(i , j )∈Bk

(

i

j

)
j−i

2

exp

(

−
(i − j )2

2n

) i j−i− j
∑

ℓ=1

(

ck3

ℓn2

)

ℓ
2

exp

(

ℓ log(1+ǫ)+
ℓ(1+ǫ)

n

)

.

Then, since
(

i
j

)
j−i

2 ≤ 1, ǫk2

4n = o(δk), and ℓ≤ i j ≤ k2 = o(n), we have that

S1 .
ǫ−

1
2

∑

k=1

p
k

∑

(i , j )∈Bk

i j−i− j
∑

ℓ=1

(

ck3

ℓn2

)

ℓ
2

exp
(

ℓ log(1+ǫ)+o(1)
)

.
ǫ−

1
2

∑

k=1

p
k

∑

(i , j )∈Bk

i j−i− j
∑

ℓ=1

(

ck3e2 log(1+ǫ)

ℓn2

) ℓ
2

=O





ǫ−
1
2

∑

k=1

p
k

∑

(i , j )∈Bk

k
3
2

n



=O

(

1

ǫ2n

)

.
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Hence, if ǫ4n →∞, then

E(A′) = S1 +S2 +S3 =O

(

1

ǫ2n

)

+O

(

3
∑

ℓ=1

1

(ǫ4n)ℓ

)

+O

(

1

(ǫ4n)4

)

=O

(

1

ǫ4n

)

,

and so the result follows by Markov’s inequality. �

4.2. Largest and second largest components: proof of Theorem 1.5. In order to show that there is in fact a

unique giant component in G(n,n, p) for an appropriate range of ǫ, we follow a relatively standard approach.

First, we estimate quite precisely the number of vertices which are contained in small tree or unicyclic compo-

nents, noting that by the lemmas in the previous section there are whp no large tree or unicyclic components

and no small complex components. It follows that whp all the remaining vertices are contained in large complex

components, and by a sprinkling argument we are able to show that whp these vertices are in fact all contained

in a single component.

Throughout this section, let us consider two quantities related to ǫ = ǫ(n) > 0 satisfying ǫ = o(1): firstly δ as

defined in (1), i.e.

δ= ǫ− log(1+ǫ) ≈
ǫ2

2
,

and secondly ǫ′ as in Theorem 1.5, which is defined implicitly as the unique positive solution to

(1−ǫ′)eǫ′ = (1+ǫ)e−ǫ. (26)

We note that ǫ′ = ǫ+ 2
3ǫ

2+O(ǫ3). We also note that ǫ′ has the following natural interpretation in terms of branch-

ing processes: If we consider a Po(1+ ǫ) branching process and condition on the event that it does not survive,

then it can be shown that this model is distributed as a Po
(

1−ǫ′
)

branching process. Whenever we use the terms

ǫ′ and δ they refer to these quantities for a fixed ǫ, which should be clear from the context.

As indicated in Theorem 1.9, in the weakly subcritical regime whp there are no complex components. How-

ever, for our proof it will be necessary to know more, namely that in this regime we do not expect to have many

vertices contained in ‘large’ components. The proof of this fact can be deduced from a standard comparison to

a branching process and we defer the details to Appendix C.

Theorem 4.1. Let ǫ= ǫ(n) > 0 be such that ǫ3n →∞ and ǫ= o(1), and let p = 1−ǫ
n . Then the expected number of

vertices in G(n,n, p) in components of order at least
√

n
3ǫ

is o
(√

n
ǫ

)

.

Let us begin then, by estimating the number of vertices contained in small tree or unicyclic components.

Lemma 4.2. Let ǫ= ǫ(n) > 0 be such that ǫ3n ≫ω→∞ and ǫ= o(1), and let p = 1+ǫ
n

. Let Y (−1) and Y (0) denote

the number of vertices in tree and unicyclic components of order at most n
2
3 in G(n,n, p) respectively. Then with

probability 1−O
(

ω−1
)

, we have

Y (0) ≤
4ω

δ
,

and
∣

∣

∣

∣

Y (−1)−
2(1−ǫ′)

1+ǫ
n

∣

∣

∣

∣

≤
ω
p

n
p
ǫ

.

Proof. First, we bound Y (0). As before, we let

Bk =
{

(i , j )∈N
2 : i + j = k and i < 2 j and j ≤ 2i

}

and Uk =
{

(i , j )∈N
2 : i + j = k

}

\ Bk .

Then we can split the calculation of E(Y (0)) into two parts

E(Y (0)) =
∑

k≤n
2
3

k
∑

(i , j )∈Bk

E
(

X (i , j ,0))
)

+
∑

k≤n
2
3

k
∑

(i , j )∈Uk

E
(

X (i , j ,0)
)

:= S1 +S2.

Since if i + j = k , then
ǫi j

n ≤ ǫk2

4n = o(δk) for k ≤ n
2
3 , it follows from (10) and Lemma 2.2 that

S1 ≤
1

4
p

2π

∑

k≤n
2
3

k
3
2 e−δk

∑

(i , j )∈Bk

1

i j

(

i

j

) j−i

exp

(

−
(i − j )2

2n
+
ǫi j

n

)

≤
1

2

∑

k≤n
2
3

e− δk
2 ≤

1

2

∫∞

0
e− δx

2 d x ≤
1

δ
.
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Furthermore, using the very naive bound that C (i , j ,0) ≤ i jC (i , j −1) ≤ i j j i , we can calculate as in (10)

S2 ≤
∑

k≤n
2
3

k
∑

(i , j )∈Uk

E(X (i , j ,0))≤
∑

k≤n
2
3

k
∑

(i , j )∈Uk

(

n

i

)(

n

j

)

i j j i pk (1−p)kn−i j−k

≈
1

2π

∑

k≤n
2
3

ke−δk
∑

(i , j )∈Uk

1

(i j )
1
2

(

i

j

) j−i

exp

(

−
(i − j )2

2n
+
ǫi j

n

)

≤
∑

k≤n
2
3

ke− δk
2

(

1

2

) k
3 ∑

(i , j )∈Uk

1

(i j )
1
2

≤
∑

k≤n
2
3

k
3
2

(

1

2

) k
3

=O(1).

The first part of the lemma then follows by Markov’s inequality.

So, let us consider the bound on Y (−1). Firstly, we note that by part (ii) of Theorem 1.7 with α(n) =
√

ǫ3n
16 ,

with probability 1−o

(

e−
√

ǫ3n
16

)

= 1−O
(

ω−1
)

there are no tree components in G(n,n, p) of order at least
√

n
3ǫ

,

and by Lemma 3.8 with probability 1− o
(

n−1
)

= 1−O
(

ω−1
)

there are no non-ǫ-uniform tree components in

G(n,n, p) of order at most n
2
3 . Hence, with probability 1−O

(

ω−1
)

, Y (−1) = Z1 where Z1 is, as in Lemma 3.9, the

number of vertices in ǫ-uniform tree components in G(n,n, p) of order at most k̃ =
√

n
3ǫ .

Next, following a technique of Bollobás [5, Theorem 6.6], we consider the model G(n,n, p ′) where p ′ = 1−ǫ′
n .

Let us write Y ′(−1) and Y ′(0) for the number of vertices in tree and unicyclic components in G(n,n, p ′) of order

at most n
2
3 respectively, and similarly Z ′

1 for the number of vertices in ǫ-uniform tree components in G(n,n, p ′)

of order at most
√

n
3ǫ .

We will show that almost every vertex in G(n,n, p ′) lies in ǫ-uniform tree components of order at most
√

n
3ǫ ,

and we are able to calculate the ratio E(Z1)/E(Z ′
1) quite precisely. Combining this with the bound on the variance

of Z1 from Lemma 3.9 we are able to deduce the second part of the lemma.

Indeed, by Theorem 4.1 the expected number of vertices in components of order greater than
√

n
3ǫ in G(n,n, p ′)

is o
(√

n
ǫ

)

. Furthermore, similar calculations as in the first part of this lemma, show that the expected number

of vertices in unicyclic and complex components of order at most n
2
3 in G(n,n, p ′) is o

(√

n
ǫ

)

.

Indeed, if we let Y ′(≥ 1) be the number of vertices in complex components of order at most n
2
3 in G(n,n, p ′),

then

E
(

Y ′(≥ 1)
)

=
∑

k≤n
2
3

k
∑

(i , j )∈Bk

i j−i− j
∑

ℓ=1

E
(

X (i , j ,ℓ)
)

+
∑

k≤n
2
3

k
∑

(i , j )∈Uk

i j−i− j
∑

ℓ=1

E
(

X (i , j ,ℓ)
)

:= S ′
1 +S ′

2.

One can bound S ′
2 in a similar fashion as with S2, since the exponentially small term

(

i
j

) j−i
is the dominating

term. For S ′
1 we use (15), and as in Theorem 1.9 we can argue

S ′
1 ≤

∑

k≤n
2
3

k
∑

(i , j )∈Bk

i j−i− j
∑

ℓ=1

p
ke−δk

(

i

j

)
j−i

2
(

ck3

ℓn2

)

ℓ
2 (n)i (n) j

nk
(1−ǫ′)k+ℓ

(

1−
1−ǫ′

n

)kn−i j−k−ℓ

≤
∑

k≤n
2
3

k
3
2 (1−ǫ′)k

∑

(i , j )∈Bk

i j−i− j
∑

ℓ=1

(

ck3

ℓn2

)

ℓ
2

=O





1

n

∑

k≤n
2
3

k4e−ǫ′k



=O

(

1

ǫ5n

)

= o

(
√

n

ǫ

)

,

as long as ǫ3n → ∞. The calculations for the expected number of vertices in small unicyclic components are

similar. Finally, the expected number of vertices in non-ǫ-uniform components of order at most n
2
3 in G(n,n, p ′)

is o(1), as follows from the proof of Lemma 3.8. It follows that

E
(

Z ′
1

)

= 2n −o

(
√

n

ǫ

)

.

16



Let us write Z1(k) and Z ′
1(k) for the number of vertices in ǫ-uniform tree components of order k ≤

√

n
3ǫ

in

G(n,n, p) and G(n,n, p ′) respectively, and let us consider the ratio

E (Z1(k))

E
(

Z ′
1(k)

) =

∑

i+ j=k

(n
i

)(n
j

)

i j−1 j i−1
(

1+ǫ
n

)k−1 (

1− 1+ǫ
n

)kn−i j−k+1

∑

i+ j=k

(n
i

)(n
j

)

i j−1 j i−1
(

1−ǫ′
n

)k−1 (

1− 1−ǫ′
n

)kn−i j−k+1
,

where the sums run over the ǫ-uniform pairs (i , j ).

Note that,
(

1−
1+ǫ

n

)kn−i j−k+1

=
(

n −1

n

)kn−i j−k+1 (

1−
ǫ

n −1

)kn−i j−k+1
=

(

n −1

n

)kn−i j−k+1

exp

(

−ǫk +
ǫi j

n
+o(1)

)

,

and similarly
(

1−
1−ǫ′

n

)kn−i j−k+1

=
(

n −1

n

)kn−i j−k+1

exp

(

ǫ′k −
ǫ′i j

n
+o(1)

)

.

Hence, we have

E(Z (k))

E(Z ′(k))
=

1−ǫ′

1+ǫ

(

(1+ǫ)e−ǫ

(1−ǫ′)eǫ′

)k e
O

(

ǫk2

n

)

e
−O

(

ǫ′k2

n

)

∑

i+ j=k

(n
i

)(n
j

)

i j−1 j i−1
(

n−1
n

)kn−i j−k+1

∑

i+ j=k

(n
i

)(n
j

)

i j−1 j i−1
(

n−1
n

)kn−i j−k+1
=

1−ǫ′

1+ǫ
e

O
(

ǫk2

n

)

,

since the second term is equal to 1 by the definition of ǫ′ in (26).

So, we see that

E (Z1(k))

E
(

Z ′
1(k)

) =
1−ǫ′

1+ǫ
+O

(

ǫk2

n

)

,

or, in other words,

E (Z1(k))=
1−ǫ′

1+ǫ
E
(

Z ′
1(k)

)

+O

(

ǫk2

n

)

E
(

Z ′
1(k)

)

.

Hence, by writing E
(

Z ′(k)
)

= kE
(

Ŷ (k)
)

where Ŷ (k) is the number of ǫ-uniform tree components of order k in

G(n,n, p ′) we see that

E(Z1) =

p
n
3ǫ

∑

k=1

E(Z1(k))=
1−ǫ′

1+ǫ

p
n
3ǫ

∑

k=1

E
(

Z ′
1(k)

)

+O
( ǫ

n

)

p
n
3ǫ

∑

k=1

k3
E
(

Ŷ (k)
)

=
1−ǫ′

1+ǫ
E
(

Z ′
1

)

+O
( ǫ

n

)

p
n
3ǫ

∑

k=1

k3
E
(

Ŷ (k)
)

=
1−ǫ′

1+ǫ

(

2n −o

(
√

n

ǫ

))

+O
( ǫ

n

)

p
n
3ǫ

∑

k=1

k3
E
(

Ŷ (k)
)

. (27)

The final sum can be bounded by the corresponding sum over all possible tree components, ǫ-uniform or

not. That is, writing X ′(i , j ,−1) for the number of tree components with i vertices in one partition class and j

vertices in the other in G(n,n, p ′) and noting that δ = ǫ− log(1+ ǫ) = log(1− ǫ′)− ǫ′, we can bound in a similar

manner to (7)

n
2
3

∑

k=1

k3
E
(

Y ′(k)
)

≤
n

2
3

∑

k=1

k3
∑

i+ j=k

E
(

X ′(i , j ,−1)
)

≤
n

2
3

∑

k=1

k3
∑

i+ j=k

(

n

i

)(

n

j

)

i j−1 j i−1p ′k−1(1−p ′)kn−i j−k+1

≤
n

2
3

∑

k=1

k3ne−δk
∑

i+ j=k

1

(i j )
3
2

(

i

j

) j−i

exp

(

−
(i − j )2

2n

)

:= S.

To bound S, we split into two cases. Let us take s such that s
7
2 = δ−

3
2 , and first consider the case when k ≤ s,

where

S1 := n
s

∑

k=1

k3e−δk
∑

i+ j=k

1

(i j )
3
2

(

i

j

) j−i

exp

(

−
(i − j )2

2n

)

≤ n
s

∑

k=1

k3
∑

i+ j=k

1

k
3
2

≤n
s

∑

k=1

k
5
2 ≤ ns

7
2 =O

(

n

δ
3
2

)

= o

(

(n

ǫ

)
3
2

)

.
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Conversely, when k ≥ s,we see that, by Lemma 2.2

S2 := n

p
n
3ǫ

∑

k=s

k3e−δk
∑

i+ j=k

1

(i j )
3
2

(

i

j

) j−i

exp

(

−
(i − j )2

2n

)

≤ n

p
n
3ǫ

∑

k=s

p
ke−δk ≤n

∫∞

0

p
xe−δx d x =O

(

n

δ
3
2

)

= o

(

(n

ǫ

)
3
2

)

.

Hence, S = S1 +S2 = o
(

(

n
ǫ

) 3
2

)

and so by (27)

E(Z1) =
1−ǫ′

1+ǫ

(

2n −o

(
√

n

ǫ

))

+O
( ǫ

n

)

o

(

(n

ǫ

)
3
2

)

=
2(1−ǫ′)

1+ǫ
n +o

(
√

n

ǫ

)

.

Finally, by Lemma 3.9 with k̃ =
√

n
3ǫ , which can be seen to satisfy 3ǫk̃2

n ≤ 1, we conclude that Var(Z1) =O
(

n
ǫ

)

.

Hence, by Chebyshev’s inequality,
∣

∣

∣Z1 − 2(1−ǫ′)
1+ǫ n

∣

∣

∣≤ωn
1
2 ǫ−

1
2 with probability 1−O

(

ω−1
)

. Thus, with probability

1−O
(

ω−1
)

∣

∣

∣

∣

Y (−1)−
2(1−ǫ′)

1+ǫ
n

∣

∣

∣

∣

≤ωn
1
2 ǫ−

1
2 .

�

Using Lemma 4.2, we can give a good bound on the number of vertices which are contained in components

of order at least n
2
3 in G(n,n, p). Then, using a sprinkling argument we can deduce that whp all these vertices

are contained in a unique ‘giant’ component, and determine asymptotically its order.

Proof of Theorem 1.5. Let L (G) denote the set of vertices lying in components of G of order at least n
2
3 , which

we call large. We first estimate quite precisely the size of L (G(n,n, p)) and then show that there is only one

large component in G(n,n, p).

Indeed, if we let ω=
(

ǫ4n
)

1
6 , then by part (ii) of Theorem 1.9 with probability 1−O

(

(

ǫ4n
)−1

)

≥ 1−ω−1 there are

no small complex components in G(n,n, p). We note that this is the only point in the proof that it is necessary

to assume that ǫ4n → ∞, and in what follows we could instead take ω = c(ǫ3n)
1
6 for an appropriately small

constant c .

Now, by Lemma 4.2, with probability 1−O
(

ω−1
)

the number of vertices in small unicyclic components is at

most ω
δ
≪ n

2
3 and the number of vertices in small tree components Y (−1) is such that

2(1−ǫ′)

1+ǫ
n −

n
2
3

100
≤

2(1−ǫ′)

1+ǫ
n −

ω
p

n
p
ǫ

≤ Y (−1) ≤
2(1−ǫ′)

1+ǫ
n +

ω
p

n
p
ǫ

≤
2(1−ǫ′)

1+ǫ
n +

n
2
3

100
.

It follows that with probability 1−O
(

ω−1
)

∣

∣

∣

∣

|L (G(n,n, p))|−2n

(

1−
1−ǫ′

1+ǫ

)∣

∣

∣

∣

≤
n

2
3

50
.

Note that ǫ′ = ǫ+O(ǫ2), and so |L (G(n,n, p))| ≈ 4ǫn.

In order to show the existence of a unique large component, we use a sprinkling argument. Let

p1 = p −
n− 4

3

10
and p2 =

p −p1

1−p1
≥

n− 4
3

20
,

and let us write p1 = 1+ǫ1

n . A standard argument allows us to couple an independent pair (G(n,n, p1),G(n,n, p2))

with G(n,n, p) so that G(n,n, p1)∪G(n,n, p2) =G(n,n, p).

If we let ǫ1 = ǫ− 1

10n
1
3

, then it is clear that ω =
(

ǫ4n
)

1
6 ≈

(

ǫ4
1n

)
1
6 . Hence, the same argument as before shows

that with probability 1−O
(

ω−1
)

∣

∣

∣

∣

|L (G(n,n, p1))|−2n

(

1−
1−ǫ′1
1+ǫ1

)∣

∣

∣

∣

≤
n

2
3

50
,

where ǫ′1 is defined as the solution to (1−ǫ′1)eǫ′1 = (1+ǫ1)e−ǫ1 .
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Next, some basic analysis tells us that these bounds for |L (G(n,n, p))| and |L (G(n,n, p1))| are not far apart.

More precisely, we claim that

1−ǫ′1
1+ǫ1

−
1−ǫ′

1+ǫ
≤

4

10n
1
3

.

Indeed, consider the function y = g (x) where y is given as the unique positive solution to (1− y)e y = (1+x)e−x .

Then, by the derivative of implicit functions formula, g ′
x = x

y
e−x−y . Thus, by Lagrange’s theorem there is a

ψ ∈ [ǫ1,ǫ] such that

ǫ′−ǫ′1 = g (ǫ)− g (ǫ1)= g ′(ψ)(ǫ−ǫ1)< 2(ǫ−ǫ1),

since g ′(ψ) = ψ)
g (ψ) e−ψ−g (ψ) < ψ

g (ψ) =
ψ

ψ+O(ψ2)
≤ 2.

Hence, it follows that

1−ǫ′1
1+ǫ1

−
1−ǫ′

1+ǫ
=

ǫ−ǫ1 +ǫ′−ǫ′1 −ǫ′1ǫ+ǫ′ǫ1

(1+ǫ)(1+ǫ1)
≤ 3(ǫ−ǫ1)+ǫ′ǫ1 −ǫ′1ǫ≤ 3(ǫ−ǫ1)+ǫ(ǫ′−ǫ′1) ≤ (3+2ǫ)(ǫ−ǫ1) ≤

4

10n
1
3

.

Hence with probability 1−O
(

ω−1
)

|L (G(n,n, p))|− |L (G(n,n, p1))| ≤
1−ǫ′1
1+ǫ1

2n −
1−ǫ′

1+ǫ
2n +

n
2
3

25
≤

4

5
n

2
3 +

n
2
3

25
< n

2
3 .

Since, by our coupling, G(n,n, p1) ⊆G(n,n, p), it follows that in this event every large component of G(n,n, p)

contains a large component of G(n,n, p1). Hence, in order to show that there is a unique large component

in G(n,n, p) it is be sufficient to show that all the large components in G(n,n, p1) are contained in a single

component in G(n,n, p).

By Lemma 3.7, with probability 1−O
(

n−1
)

≥ 1−O
(

ω−1
)

, each component of order at least n
2
3 in G(n,n, p1) is

balanced, and so we can partition the vertices in L (G(n,n, p1)) into subsets V1,W1,V2,W2, . . .Vm ,Wm such that

n
2
3

3 ≤ |Vi |, |Wi | ≤n
2
3 and Vi and Wi lie in the same component in G(n,n, p1) for each i , say in a greedy manner.

Now, let us consider the edges in G(n,n, p2). Either all vertices in L (G(n,n, p1)) are contained in one com-

ponent of G(n,n, p1)∪G(n,n, p2), or there is a family A =
{

(Vi1
,Wi1

), (Vi2
,Wi2

), . . . , (Vir
,Wir

)
}

, where 1 ≤ r ≤ m
2

such that there is no edge in G(n,n, p2) with one end point in (Vi ,Wi ) ∈ A and the other in (V j ,W j ) ∉ A (see

Figure 2). Note that, for any such family A , there are at least 2
9 r (m − r )n

4
3 many edges with one end point in

(Vi ,Wi ) ∈A and the other in (V j ,W j ) ∉A .

Hence, the probability that such a family A exists is bounded by

m
2

∑

r=1

(

m

r

)

(1−p2)
2
9

r (m−r )n
4
3 ≤

m
2

∑

r=1

(em

r

)r
(

1−
n− 4

3

20

)
2
9

r (m−r )n
4
3

≤
m
2

∑

r=1

(em

r
e−m−r

100

)r
≤

m
2

∑

r=1

(em

r
e− m

200

)r
.

However, since |L (G(n,n, p1))| ≈ 4ǫn, it follows that m =Θ

(

ǫn
1
3

)

=ω(1), and hence

m
2

∑

r=1

(em

r
e− m

200

)r
= e−Ω(m) =O

(

ω−1
)

.

It follows that, with probability 1−O
(

ω−1
)

, L (G(n,n, p)) consists of just the vertices in the largest component

L1

(

G(n,n, p)
)

, and so the claim follows.

For the last part, since with probability 1−O
(

ω−1
)

,

|L1| ≈
2(ǫ+ǫ′)

1+ǫ
n ≈ 4ǫn,

and by Theorems 1.7 and 1.8, with probability 1−O
(

ω−1
)

, there are no large tree or unicyclic components,

it suffices to show that with sufficiently small probability there are no complex components in G(n,n, p) of

order around 4ǫn which are very unbalanced. We shall bound from above the expected number of complex

components C of G(n,n, p) with order in the interval [3ǫn,5ǫn], which have |C ∩ N1| ≥ (1+ 2
p
ǫ)|C ∩ N2| or

|C ∩N2| ≥ (1+2
p
ǫ)|C ∩N1|. As in Lemma 3.7 we can bound the expected number of such components by the
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Vi1

Vir

Wi1

Wir

Vir+1

Vim Wim

Wir+1

N1 N2

U1

A

A
c

FIGURE 2. A partition of the vertices in L (G(n,n, p1)) into A and A
c with no edges between

Vis
∈A and Wi t

∈A
c or between Vis

∈A
c and Wi t

∈A .

expected number of trees with 2 extra edges, otherwise disconnected from the rest of the graph, which can be

bounded as in Lemma 3.7

5ǫn
∑

k=3ǫn

∑

i+ j=k ,

j≥(1+2
p
ǫ)i

(

n

i

)(

n

j

)

i j+1 j i+1pk+1(1−p)kn−2i j ≤
1

n

5ǫn
∑

k=3ǫn

∑

i+ j=k ,

j≥(1+2
p
ǫ)i

(i j )
1
2

(

i

j

) j−i

e
(1+2ǫ)i j

n

≤
1

n

5ǫn
∑

k=3ǫn

(

1

1+2
p
ǫ

)

p
ǫ

1+2
p
ǫ

k

e
(1+2ǫ)k2

4n

∑

i+ j=k ,

j≥(1+2
p
ǫ)i

(i j )
1
2 ≤

1

n

5ǫn
∑

k=3ǫn

k2 exp

(

−
2ǫ

(1+2
p
ǫ)2

k +
5(1+2ǫ)ǫ

4
k

)

≤
1

n

5ǫn
∑

k=3ǫn

k2e−Ω(ǫk) =O

(

1

ǫ3n

)

=O

(

1

ω

)

.

Hence, the result follows from Markov’s inequality. �

4.3. The excess of the giant component: proof of Theorem 1.6. Using Theorem 1.5, we can quite easily give a

bound on the excess of the giant component which is of the correct asymptotic order. Indeed, we can bound

the order of the giant component in quite a small interval, and then using Theorem 3.5 we can bound the

probability that any component of this order has too large an excess.

This is enough to show that whp the excess of the giant component is O
(

ǫ3n
)

. Note that, this can be seen to be

of the correct order by a simple sprinkling argument: If we take p1 =
1+ ǫ

2

n
and p2 =

p−p1

1−p1
≥ ǫ

2n
then our previous

results imply that, for an appropriate range of ǫ, whp there is a giant component of order Θ(ǫn) in G(n,n, p1)

which is equally distributed across the partition classes. However, then whp there are Θ
(

(ǫn)2p2

)

= Θ
(

ǫ3n
)

many edges of G(n,n, p2) on the vertex set of the giant component.

In order to find the correct leading constant, we follow an argument of Łuczak [17] and use a multi-round

exposure argument, starting with a supercritical p ′ which is significantly smaller than p . By our weaker bound

on the excess we can show that at the start of our process the excess of the giant component in G(n,n, p ′) is

o
(

ǫ3n
)

, and we can also estimate quite precisely the change in the excess of the giant component between each

stage of the multi-round exposure as we increase p ′ to p , giving us an asymptotically tight bound on the excess

of the giant.

So, let us begin by deriving our weak upper bound on the excess of the giant component.

Lemma 4.3. Let ǫ = ǫ(n) > 0 be such that ǫ4n ≫ ω → ∞ and ǫ ≤ 1
ω , and let p = 1+ǫ

n . Then with probability

1−O
(

(ǫ4n)−
1
6

)

the excess of the largest component in G(n,n, p) is O
(

ǫ3n
)

.
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Proof. We first note that, by Theorem 1.5, with probability 1−O
(

(

ǫ4n
)− 1

6

)

, the largest component L1 of G(n,n, p)

is balanced and satisfies
∣

∣

∣

∣

L1 −
2(ǫ+ǫ′)

1+ǫ
n

∣

∣

∣

∣

<
n

2
3

50
.

Let X be the number of balanced components in G(n,n, p) of order between

2(ǫ+ǫ′)

1+ǫ
n −

n
2
3

50
:= k1 ≤ k ≤ k2 =:

2(ǫ+ǫ′)

1+ǫ
n +

n
2
3

50
,

which have excess at least Cǫ3n, where we will choose C sufficiently large later. Then E(X ) can be bounded

above using Theorem 3.6 as

E(X ).
k2
∑

k=k1

p
k exp

(

−δk +
ǫk2

4n

)

∑

(i , j )∈Bk

(

i

j

)
j−i

2

exp

(

−
(i − j )2

2n

) i j−k
∑

ℓ=Cǫ3n

(

ck3(1+ǫ)2e
1+ǫ
2n

ℓn2

)
ℓ
2

,

where Bk is as before the set of balanced pairs (i , j ), since for k1 ≤ k ≤ k2 we have k2

n2 = o(1).

Let us first deal with the innermost sum. Since k =Θ(ǫn), for large enough C we can bound

i j−k
∑

ℓ=Cǫ3n

(

ck3(1+ǫ)2e
1+ǫ
2n

ℓn2

)
ℓ
2

≤
i j−k
∑

ℓ=Cǫ3n

(

1

e2

) ℓ
2

=O
(

e−Cǫ3n
)

.

The middle sum can be dealt with by Lemma 2.2 as usual to see that

∑

(i , j )∈Bk

(

i

j

)
j−i

2

exp

(

−
(i − j )2

2n

)

=O
(p

k
)

.

Therefore, we can bound

E(X ) =O

(

k2
∑

k=k1

k exp

(

−δk +
ǫk2

4n
−Cǫ3n

)

)

.

However, since k =Θ(ǫn), and so both δk and ǫk2

n are O(ǫ3n), for C large enough

E(X ) =O
(

(k2 −k1)ǫne−Ω(ǫ3n)
)

=O

(

ǫn
5
3 e−n

1
4

)

= o(1),

where we used that ǫ3n =ω
(

n
1
4

)

. �

Using Lemma 4.3, we can then determine asymptotically the excess of the giant component. As previously

mentioned, we will argue via a multi-round exposure argument, taking a sequence p1 ≤ p2 ≤ . . . ≤ ps of prob-

abilities such that p1 is supercritical, but significantly smaller than p , and ps = p . Via a standard coupling ar-

gument, we can think of sampling G(n,n, p1) and then sampling an independent sequence of bipartite random

graphs G(n,n, p ′
i
) where p ′

i
= pi+1−pi

1−pi
so that for each 1 ≤ i ≤ s

G(n,n, p1)∪
(

i−1
⋃

j=1

G(n,n, p ′
j )

)

∼ G(n,n, pi ),

and so we have the inclusions G(n,n, p1) ⊆G(n,n, p2) ⊆ . . . ⊆G(n,n, ps ).

Our choice of p0, together with Theorem 1.6, guarantees that the excess of L1

(

G(n,n, p1)
)

is significantly

smaller than ǫ3n. We then estimate precisely the change in the excess of the giant component in each of the

sprinkling steps. To do so, we bound whp from above and below the number ∆i of extra excess edges in the

giant component when adding each G(n,n, p ′
i
). Here, it is essential that the probability of failure in each step

is small enough that the sum of these probabilities over all 0 ≤ i ≤ s is still small. Then, we can asymptotically

determine the excess of L1

(

G(n,n, ps)
)

as a sum of the ∆i , which we can approximate by an integral.

Theorem 4.4. Let ǫ = ǫ(n) > 0 be such that ǫ4n ≫ ω → ∞ and ǫ ≤ 1
ω , and let p = 1+ǫ

n . Then with probability

1−O
(

ω−0.01
)

excess
(

L1

(

G(n,n, p)
))

≈
4

3
ǫ3n.
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u
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L1,i+1

v

u

step i +1step i

FIGURE 3. In step i +1 every edge uv in G(n,n, p ′
i
) with u, v ∈V

(

L1,i

)

contributes to ∆i .

Proof. For each i ∈N, let

ǫi =ω0.2n− 1
4

(

1+ω−0.1
)i−1

and pi =
1+ǫi

n
.

Throughout the proof we work under the assumption that i is small enough so that ǫi = o(1).

By a standard coupling argument we can think of moving from G(n,n, pi ) to G(n,n, pi+1) via sprinkling. That

is, we choose independently for each i a random graph G(n,n, p ′
i
) where

p ′
i =

pi+1 −pi

1−pi
=

ǫi+1 −ǫi

n −1−ǫi
,

in such a way that G(n,n, pi+1) =G(n,n, pi )∪G(n,n, p ′
i
) for each i . We note that, if we write L1,i for the largest

component of G(n,n, pi ) for each i , then by Theorem 1.5,

|L1,i ∩N1| ≈
ǫi +ǫ′

i

1+ǫi
n and |L1,i ∩N2| ≈

ǫi +ǫ′
i

1+ǫi
n, (28)

with probability 1−O
(

(

ǫ4
i
n

)− 1
6

)

. Furthermore, by Lemma 4.3 with probability 1−O
(

(

ǫ4
i
n

)− 1
6

)

,

ai := excess
(

L1,i

)

=O
(

ǫ3
i n

)

. (29)

Note that, by (29), with probability 1−O
(

(

ǫ4
0n

)− 1
6

)

, a1 =O
(

ω0.6n
1
4

)

= o
(

ω
3
4 n

1
4

)

= o
(

ǫ3n
)

, and so to begin with

we may assume that the excess is much smaller than ǫ3n.

We show that we can control quite precisely how the excess of the giant component changes in each sprin-

kling step. More precisely, we claim that for each i , with probability 1−O
(

(

ǫ4
i
n

)− 1
6

)

∆i := ai+1 −ai ≈
(ǫi +ǫ′

i
)2

(1+ǫi )2
n(ǫi+1 −ǫi ). (30)

In order to show (30) we bound from above and below the number of new excess edges added in step i +1.

Claim 4.5. With probability 1−O
(

(

ǫ4
i
n

)− 1
6

)

,

∆i &
(ǫi +ǫ′

i
)2

(1+ǫi )2
n(ǫi+1−ǫi ).

Proof of Claim 4.5. We note that every edge in G(n,n, p ′
i
) which has both ends in L1,i adds at least one to the

quantity ∆i (see Figure 3). Hence, by (28) and (29) with probability 1−O
(

(

ǫ4
i
n

)− 1
6

)

, ∆i stochastically dominates

a binomial random variable Bin(m, q) =Y with parameters

m ≈
(

ǫi +ǫ′
i

1+ǫi
n

)2

−2
ǫi +ǫ′

i

1+ǫi
n −O(ǫ3

i n) and q = p ′
i .

Now, we see that

E(Y )&
(ǫi +ǫ′

i
)2

(1+ǫi )2
n2 ǫi+1 −ǫi

n −1−ǫi
≈

(ǫi +ǫ′
i
)2

(1+ǫi )2
n(ǫi+1−ǫi ),
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v

step i step i +1

FIGURE 4. In step i + 1 the only contribution to ∆i comes from edges uv in G(n,n, p ′
i
) with

u, v ∈V
(

L1,i+1

)

or excess edges x y in components of G(n,n, pi ) joined to L1,i by such an edge.

and so E(Y ) =Ω(ǫ3
i

n). Hence, by Lemma 2.3 we obtain

P

(

|E(Y )−Y | ≥
E(Y )

(ǫ4
i

n)
1
4

)

≤ exp



−Ω





E(Y )
(

ǫ4
i
n

) 1
2







≤ exp
(

−
(

ǫ4
i n

)
1
2

)

=O
(

(

ǫ4
i n

)− 1
6

)

.

Hence, with probability 1−O
(

(

ǫ4
i
n

)− 1
6

)

, we get

Y & E(Y )&
(ǫi +ǫ′

i
)2

(1+ǫi )2
n(ǫi+1−ǫi ),

and so with at least this probability

∆i &
(ǫi +ǫ′

i
)2

(1+ǫi )2
n(ǫi+1−ǫi ).

�

Claim 4.6. With probability 1−O
(

(

ǫ4
i
n

)− 1
6

)

∆i .
(ǫi +ǫ′

i
)2

(1+ǫi )2
n(ǫi+1−ǫi ).

Proof of Claim 4.6. For an upper bound, we need to be slightly more careful. We note that there are two ways

that edges in G(n,n, p ′
i
) can contribute to ∆i . Firstly, edges in G(n,n, p ′

i
) which have both endpoints in L1,i+1

adds one to this quantity. However, there are some other edges, specifically excess edges in non-giant com-

ponents of G(n,n, pi ) which are joined to L1,i+1 by an edge of G(n,n, p ′
i
), which also add to this quantity (see

Figure 4).

We first show that the contribution from the former of these is approximately what we expect, and then show

that the contribution from the latter is negligible.

For the first of these, let A be the event that

max
{

|C ∩N j | : C a component of G(n,n, pi+1)} for j = 1,2
}

.
ǫi +ǫ′

i

1+ǫi
n.

Note that,
ǫi +ǫ′

i

1+ǫi
n ≈

ǫi+1 +ǫ′
i+1

1+ǫi+1
n.

Then, by (28), P(A ) ≥ 1−O
(

(

ǫ4
i+1

n
)− 1

6

)

and A is a decreasing property. Thus, by Harris’ inequality (Lemma

2.4), given any set of edges F the probability that F ⊆ G(n,n, p ′
i
) conditioned on A is strictly less than the

probability that F ⊆G(n,n, p ′
i
). Hence, with probability 1−O

(

(

ǫ4
i
n

)− 1
6

)

the number of edges added to the vertex

set of the new giant component is stochastically dominated by a binomial random variable Bin(m′, q ′) := Z with

parameters

m′ ≈
(

ǫi +ǫ′
i

1+ǫi
n

)2

and q ′ = p ′
i .
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As before, we have

E(Z ).
(ǫi +ǫ′

i
)2

(1+ǫi )2
n2.

ǫi+1 −ǫi

n −1−ǫi
≈

(ǫi +ǫ′
i
)2

(1+ǫi )2
n(ǫi+1 −ǫi ),

and so again by Lemma 2.3 with probability 1−O
(

(

ǫ4
i

n
)− 1

6

)

,

Z . E(Z ).
(ǫi +ǫ′

i
)2

(1+ǫi )2
n(ǫi+1−ǫi ).

Now, let us bound the contribution to ∆i from excess edges in non-giant components of G(n,n, pi ). By The-

orem 1.9 with probability 1−O
(

(

ǫ4
i

n
)− 1

6

)

there are no complex components of order smaller than n
2
3 and by

Theorem 1.5 with probability 1−O
(

(

ǫ4
i

n
)− 1

6

)

there are no components apart from the giant component of order

at most n
2
3 . Hence, it follows that with at least this probability every non-tree component in G(n,n, pi ) except

L1,i is unicyclic, and so the contribution to ∆i from excess edges in non-giant components of G(n,n, pi ) is equal

to the number of unicylic components in G(n,n, pi ) which are joined to L1,i by G(n,n, p ′
i
), which we can bound

from above by the number of edges in G(n,n, p ′
i
) which join such components to L1,i .

Then, by Lemma 4.2, with probability 1−O
(

(

ǫ4
i
n

)− 1
6

)

the number of vertices in unicyclic components of

G(n,n, pi ) is at most

O

(

(ǫ4
i

n)
1
6

ǫ2
i

)

= o
(

n
2
3

)

.

Hence, since rather crudely |V (L1,i )| ≤ 5ǫi n, the expected number of edges in G(n,n, p ′
i
) which connect uni-

cyclic components in G(n,n, pi ) to L1,i is less than

5ǫi nn
2
3 p ′

i =O
(

ǫi (ǫi+1 −ǫi )n
2
3

)

.

Then, by Markov’s inequality, with probability 1−O
(

(

ǫ4
i

n
)− 1

6

)

the number of such edges is at most

O
(

ǫi (ǫi+1 −ǫi )n
2
3

(

ǫ4
i n

)
1
6

)

= o

(

(ǫi +ǫ′
i
)2

(1+ǫi )2
n(ǫi+1−ǫi )

)

.

It follows that, with probability 1−O
(

(

ǫ4
i
n

)− 1
6

)

∆i .
(ǫi +ǫ′

i
)2

(1+ǫi )2
n(ǫi+1−ǫi ).

�

Hence, by Claims 4.5 and 4.6, (30) holds with probability 1−O
(

(

ǫ4
i
n

)− 1
6

)

. Therefore, by a union bound, (30)

holds for all i ∈N such that ǫi = o(1) with probability

1−O

(

∞
∑

i=1

(

ǫ4
i n

)− 1
6

)

≥ 1−O
(

ω−0.01
)

,

which can be seen by noting that the sum is a geometric series.

Let s ∈N be such that ǫs−1 ≤ ǫ≤ ǫs . Then

as −a1 =
s−1
∑

i=1

∆i ≈
s−1
∑

i=1

(ǫi +ǫ′
i
)2

(1+ǫi )2
n(ǫi+1 −ǫi ) ≈ n

∫ǫs

ǫ1

(x + y)2

(1+x)2
d x, (31)

where (1− y)e y = (1+x)e−x , and we can approximate the sum by the integral since ǫi+1 −ǫi = o(1).

If we let F (x, y) = (1−y)e y −(1+x)e−x then F (x, y)= 0 when (1−y)e y = (1+x)e−x . By the derivative of implicit

functions, we have

d y

d x
=−

F ′
x

F ′
y

=
x

y

1− y

1+x
.
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This implies that d
dx

(

x2−y 2

1+x

)

= (x+y)2

(1+x)2 . In this manner, we can conclude from (31) that with probability 1−O
(

ω−0.01
)

as −a1 ≈n

(

ǫ2
s −ǫ′2s
1+ǫs

−
ǫ2

1 −ǫ′21
1+ǫ1

)

≈n

(

1

1+ǫs

(

4

3
ǫ3

s +O
(

ǫ4
s

)

)

−
ǫ2

1 −ǫ′21
1+ǫ1

)

≈
4

3
ǫ3

s n,

where we used that ǫ′s = ǫs + 2
3
ǫ2

s +O(ǫ3
s ). Since, as previously mentioned, a1 = o(ǫ3n) it follows that as ≈ 4

3
ǫ3

s n. A

similar argument shows that as−1 ≈ 4
3ǫ

3
s−1n.

Then, since

ǫs−1 ≤ ǫ≤ (1+ω−0.1)ǫs−1 and
ǫs

1+ω−0.1
≤ ǫ≤ ǫs ,

and we can couple the three random bipartite graphs such that G(n,n, ps−1) ⊆G(n,n, p)⊆G(n,n, ps), it follows

that

excess
(

L1

(

G(n,n, p)
))

≈
4

3
ǫ3n.

�

Proof of Theorem 1.6. The theorem follows directly from Theorem 4.4. �

5. COUNTING BIPARTITE GRAPHS: PROOFS OF THEOREMS 3.3 AND 3.5

5.1. Unicyclic bipartite graphs: proof of Theorem 3.3. Since a unicyclic graph is the union of a cycle and a

forest, we are able to deduce Theorem 3.3 from a formula for the number of bipartite forests, which we derive

using a standard counting tool known as Prüfer codes.

Lemma 5.1. Given i , j , s, t ∈N satisfying s ≤ i and t ≤ j , let F (i , j , s, t ) denote the number of bipartite forests with

partition classes I = {x1, . . . , xi } and J = {y1, . . . , y j } with s + t components where the vertices x1, . . . , xs , y1, . . . , yt

belong to distinct components. Then

F (i , j , s, t )= si j−t−1 j i−s + t j i−s−1i j−t =
(

s

i
+

t

j

)

i j−t j i−s . (32)

Proof. Let us fix an arbitrary ordering on {0}∪I∪J so that the first s+t vertices are 0 followed by {x1 , . . . , xs , y1, . . . , yt }.

Given a bipartite forest F as in the definition of F (i , j , s, t ), let us construct a tree T (F ) ⊃ F by adding a new vertex

0 and edges from 0 to each vertex in {x1, . . . , xs , y1, . . . , yt }.

We construct a sequence w ∈ (I ∪ J ∪ {0})i+ j , normally called a Prüfer code, by recursively deleting the largest

leaf in T (F ) and adding its unique neighbour to the end of w , until just one vertex remains. We note that each

time we delete a leaf in I , we add a vertex in J ∪ {0} to the list, and vice versa. Furthermore, since the last s + t

leaves we delete are {x1, . . . , xs , y1, . . . , yt }, the final s + t entries in the list are 0, and the one just preceding this

is in {x1, . . . , xs , y1, . . . , yt }. Hence, w consists of a list u ∈ I j−t and a list v ∈ J i−s interleaved in some order, such

that either the last entry of u is in {x1, . . . , xs } or the last entry of v is in {y1, . . . , yt }, followed by s + t many 0s. Let

W =
{

(u, v)∈ I j−t × J i−s : u j−t ∈ {x1, . . . , xs } or vi−s ∈ {y1, . . . , yt }
}

.

It is a simple check that if F 6= F ′ then T (F ) 6= T (F ′) and so the Prüfer codes w and w ′ they produce are

different. Conversely, we claim that every pair (u, v) ∈ W uniquely determines an F such that the Prüfer code

for T (F ) consists of u and v interleaved in some order followed by s + t many 0s.

Indeed, we first note that the degree of a vertex z ∈ I ∪ J in F can be seen to be one plus the number of times

it appears in u or v , and hence from (u, v) we can recover the degree sequence d : I ∪ J ∪ {0} →N of F .

We construct the forest F in a recursive manner, keeping track of two integers t1(r ) + t2(r ) = r , two lists

ur ∈ I j−t−t1(r ) and v r ∈ J i−s−t2(r ) and a degree sequence d r : I ∪ J ∪ {0} → N where initially we have t1 = t2 = 0,

u0 = u, v 0 = v and d 0 = dT (F ) is the degree function of T (F ).

For each 0 ≤ r ≤ i + j − s − t we do the following: Let z = max{z ′ ∈ I ∪ J : d r (z ′) = 1}. If z ∈ I we add the edge

(z, v r
1 ) to F , we set t1(r +1) = t1(r ) and t2(r +1) = t2(r )+1 and we let ur+1 = ur and let v r+1 be formed from v r

by deleting v r
1 . Finally, we form d r+1 by reducing the degree of z and v1 by one in d r . If z ∈ J we instead add the

edge (z,ur
1) to F , set t1(r +1) = t1(r )+1 and t2(r +1) = t2(r ) and we let v r+1 = v r and let ur+1 be formed from ur

by deleting ur
1. Finally we form d r+1 by reducing the degree of z and ur

1 by one in d r . We continue until both ur

and v r are empty.
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FIGURE 5. Every unicyclic bipartite graph contains an even cycle C whose deletion leaves a

bipartite forst with |V (C )| many components.

It is easy to check that if w is the Prüfer code for T (F ), then this construction produces F , but only depends

on the pair (u, v) ∈ W which form w . Furthermore, given any pair (u, v) ∈ W it is easy to construct a bipartite

forest F such that the Prüfer code for T (F ) consists of u and v interleaved in some manner followed by s + t

many 0s. Hence, the number of such forest is |W |, which can clearly be seen to be si j−t−1 j i−s + t j i−s−1i j−t as

claimed. �

Using Lemma 5.1, we can prove Theorem 3.3.

Proof of Theorem 3.3. We note that every unicyclic bipartite graph with i vertices in one partition class and j in

the other contains a unique cycle, which has length 2r for some r ≤ min{i , j }, and if we delete the edges of this

cycle, then what remains is a forest with 2r components, each meeting one vertex of the cycle (see Figure 5).

Hence, we can count C (i , j ,0) by first choosing a cycle of length 2r , of which there are
(i )r ( j )r

2r
many possibili-

ties, and then choosing from the F (i , j ,r,r ) many possibilities for the forest left by the deletion of this cycle.

Hence, it follows from (32) that

C (i , j ,0) =
min{i , j }

∑

r=2

(i )r ( j )r

2r
F (i , j ,r,r )=

1

2

(

1

i
+

1

j

)

i j j i
min{i , j }

∑

r=2

(i )r ( j )r

i r j r
, (33)

proving the first part of Theorem 3.3.

So let us suppose further that i , j =ω(1) and 1
2
≤ i

j
≤ 2. By (3) we can conclude that

(i )r ( j )r

i r j r
≤ exp

(

−
r 2

2i
−

r 2

2 j

)

,

and furthermore by (2) it follows that if r = o
(

i
2
3

)

= o
(

j
2
3

)

, then

(i )r ( j )r

i r j r
≈ exp

(

−
r 2

2i
−

r 2

2 j

)

.

We split (33) into two parts. Firstly, when r ≤ i
5
9 we note that r = o

(

i
2
3

)

= o
(

j
2
3

)

, and hence

i
5
9

∑

r=2

(i )r ( j )r

i r j r
≈

i
5
9

∑

r=2

exp

(

−
r 2

2i
−

r 2

2 j

)

≈

√

πi j

2(i + j )
,

where the final line follows from a standard estimate that
∞
∑

r=1

e− r 2

2n ≈
∫∞

0
e− x2

2n d x =
√

πn

2
.

Conversely, when r ≥ i
5
9 we can naively bound

min{i , j }
∑

r=i
5
9

(i )r ( j )r

i r j r
≤ i exp

(

−
i

10
9

2i
−

i
10
9

2 j

)

≤ i exp
(

−Ω
(

i
1
9

))

= o(1).

It follows that

C (i , j ,0)≈

√

πi j

8(i + j )

(

1

i
+

1

j

)

i j j i =
√

π

8

√

i + j i j− 1
2 j i− 1

2 .

�
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5.2. Bipartite graphs with positive excess: proof of Theorem 3.5. In order to count the number of balanced

bipartite graphs with positive excess, we will split into two cases, when the excess is either small or large com-

pared to the number of vertices. The latter case will turn out to be much simpler.

When the excess is small compared to the number of vertices, we will count the number of such graphs

using an ingenious probabilistic method due to Łuczak [18], which turns the observation that E
(

X (i , j ,ℓ)
)

is

intimately related to C (i , j ,ℓ) on its head and uses rather the former to bound the latter.

Lemma 5.2. There exists a constant C > 0 such that for any i , j ,ℓ∈N satisfying 1
2
≤ i

j
≤ 2 and ℓ≤ i + j we have

C (i , j ,ℓ)≤ i j+ 1
2 j i+ 1

2 (i + j )
3ℓ+1

2

(

i

j

)
i− j

2 1
p
ℓ

(

C

ℓ

) ℓ
2

.

Proof. Let Z (i , j ,ℓ) denote the number of components with i vertices in the partition class N1, j vertices in the

partition class N2 and ℓ excess edges in the binomial random bipartite graph G(i r, j r, q), where we will choose

particular r and q later. Note, that it suffices to prove the statement for i + j sufficiently large.

Using (2) together with the bound

1−q = exp

(

−q −
q2

2
+O

(

q3
)

)

,

which holds for q ≪ 1, and Stirling’s approximation, and letting k = i + j , we see that, as long as q ≪ 1,

E(Z (i , j ,ℓ))=
(

i r

i

)(

j r

j

)

C (i , j ,ℓ)q i+ j+ℓ(1−q)i ( j r− j )+ j (i r−i )+i j−i− j−ℓ

=
(i r )i

i !

( j r ) j

j !
C (i , j ,ℓ)qk+ℓ(1−q)2i j r−i j−k−ℓ

=C (i , j ,ℓ)
1

i ! j !
(i r )i ( j r ) j qk+ℓexp

(

−
k

2r
−

k

6r 2
−O

(

k

r 3

)

−
(

q +
q2

2
+O

(

q3
)

)

(2i j r − i j −k −ℓ)

)

≥C (i , j ,ℓ)
i i j j

i ! j !

(qr )k+ℓ

r ℓ
exp

(

−
k

2r
−

k

6r 2
−O

(

k

r 3

)

−
(

q +
q2

2
+O

(

q3
)

)

(2i j r − i j )

)

. (34)

Since |N1| = i r , there can clearly be at most r components containing i vertices in N1, and so E(Z (i , j ,ℓ))≤ r .

This together with (34) implies that

C (i , j ,ℓ)≤
i ! j !r ℓ+1

i i j j

1

(qr )k+ℓ exp

(

k

2r
+

k

6r 2
+O

(

k

r 3

)

+
(

q +
q2

2
+O

(

q3
)

)

(2i j r − i j )

)

.

We set q = k(1+η)
2i j r , where we will choose η ≤ 1 later. Note that, in this case as long as i and j are sufficiently

large, q ≪ 1. Hence, using Stirling’s inequality we have

C (i , j ,ℓ)≤
√

i j r ℓ+1

ek

(2i j )k+ℓ

kk+ℓ
1

(1+η)k+ℓ exp

(

k

2r
+

k

6r 2
+O

(

k

r 3

)

+k(1+η)−
k(1+η)

2r
+

(

q2

2
+O

(

q3
)

)

2i j r

)

.

Then, as long as η≤ 1 we can conclude that 1+η≥ eη−η2

and so

C (i , j ,ℓ)≤
√

i j r ℓ+1

(

2i j

k

)k+ℓ
exp

(

−ηℓ+η2(k +ℓ)−
ηk

2r
+

k

6r 2
+O

(

k

r 3

)

+
(

q2

2
+O

(

q3
)

)

2i j r

)

.

Let us take r =
√

k
ℓ and η=

√

ℓ3

k3 , so that η≤ 1, and let us consider each of the terms inside the exponent of the

above inequality. We shall show that they are all O(ℓ). Indeed, for the first two terms, we note that η≤ 1 and so

ηℓ=O(ℓ), and furthermore, we see that

η2(k +ℓ) = ℓ
ℓ2(k +ℓ)

k3
≤ ℓ

k22k

k3
=O(ℓ).

For the next three terms, we note that

ηk

2r
=

ℓ2

2k
=O(ℓ) and

k

r 3
≤

k

r 2
= ℓ.
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Finally, for the last two terms, we see that

q2i j r =
k2(1+η)2

4i j r
≤

k2

i j
=O(1),

as long as 1
2 ≤ i

j ≤ 2, and similarly q3i j r = k3(1+η)3

8i 2 j 2r 2 ≤ k3

i 2 j 2 = o(1). This implies that

C (i , j ,ℓ)≤
√

i j r ℓ+1

(

2i j

k

)k+ℓ
exp(O (ℓ)) =

√

i j

√

k

ℓ
k

ℓ
2

(

2i j

k

)k+ℓ (

C

ℓ

) ℓ
2

.

Then, since by the AM-GM inequality we have that kk+2ℓ≥ 2k+2ℓ(i j )
k
2
+ℓ, we can conclude that

C (i , j ,ℓ)≤
√

i j

√

k

ℓ
k

ℓ
2

(

2i j

k

)k+ℓ (

C

ℓ

) ℓ
2

= i j+ 1
2 j i+ 1

2
1
p
ℓ

k
3ℓ+1

2

(

C

ℓ

) ℓ
2 2k+ℓi i+ℓ j j+ℓ

kk+2ℓ

≤ i j+ 1
2 j i+ 1

2 k
3ℓ+1

2

(

i

j

)
i− j

2 1
p
ℓ

(

C

ℓ

) ℓ
2

.

�

In the other case, when ℓ is larger than i + j , it is much simpler to bound C (i , j ,ℓ).

Lemma 5.3. For any i , j ,ℓ ∈N satisfying ℓ≥ i + j and 1
2 ≤ i

j ≤ 2, we have

C (i , j ,ℓ)≤ i j− 1
2 j i− 1

2 (i + j )
3ℓ+1

2 ℓ−
ℓ
2 .

Proof. Let k = i + j . We can naively bound C (i , j ,ℓ) by looking at the total number of ways of choosing k +ℓ

edges from the i j many possible edges. Note, this is an overcount, since we are also counting disconnected

graphs.

Since
(n

r

)

≤
(

en
r

)r
, it follows that

C (i , j ,ℓ)≤
(

i j

k +ℓ

)

≤
(

ei j

k +ℓ

)k+ℓ
≤ i j− 1

2 j i− 1
2 k

3ℓ+1
2 ℓ−

ℓ
2

(

ek+ℓi i+ℓ+ 1
2 j j+ℓ+ 1

2 ℓ
ℓ
2

k
3ℓ
2
+1(k +ℓ)k+ℓ

)

.

So, it is sufficient to show that this final term is at most one. However, by the AM-GM inequality we have that

k2 ≥ 4i j , and hence

i i+ℓ+ 1
2 j j+ℓ+ 1

2 ≤
kk+2ℓ+1

2k+2ℓ+1

(

i

j

)
i− j

2

≤
kk+2ℓ+1

2k+ℓ ,

since
(

i
j

)
i− j

2 ≤ 2ℓ by our assumptions on i , j and ℓ.

Therefore, we obtain
(

ek+ℓi i+ℓ+ 1
2 j j+ℓ+ 1

2 ℓ
ℓ
2

k
3ℓ
2
+1(k +ℓ)k+ℓ

)

≤
(e

2

)k+ℓ
(

k

k +ℓ

)k+ ℓ
2
(

ℓ

k +ℓ

) ℓ
2

≤
(e

2

)k+ℓ
exp



−
ℓ

(

k + ℓ
2

)

k +ℓ
−

ℓk

2(k +ℓ)



≤
(e

2

)k+ℓ
exp

(

−
k +ℓ

2

)

≤ 1,

where we used that

ℓ
(

k + ℓ
2

)

k +ℓ
+

ℓk

2(k +ℓ)
≥

2ℓk +ℓ2 +k2

2(k +ℓ)
=

k +ℓ

2

since ℓ≥ k . �

Proof of Theorem 3.5. The theorem follows as a direct consequence of Lemmas 5.2 and 5.3. �
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6. DISCUSSION

6.1. Critical window. The fact that some of our main results (Theorems 1.5, 1.6, and 1.9(ii)) only hold for

ǫ4n →∞ rather than in what might be the expected range of ǫ3n → ∞ seems to be an artefact of the proof:

our proof relies on enumerative results for the number of bipartite graphs with positive excess (Theorem 3.5)

which we suspect are not optimal. There is a natural bound to conjecture for the number of such bipartite

graphs (see Section 6.2), generalising the known bounds for the number of graphs, and assuming this bound it

is easy to adapt the proofs of our main results to cover the ‘correct’ range of ǫ (in fact, many of the calculations

in the proofs become more natural with this parameterisation).

6.2. Number of bipartite graphs with positive excess. More explicitly, we conjecture that the following bound

should hold.

Conjecture 6.1. There is a constant c > 0 such that for all i , j ,ℓ∈N with 1
2 ≤ i

j ≤ 2,

C (i , j ,ℓ)≤ i j− 1
2 j i− 1

2 (i + j )
3ℓ+1

2

(

i

j

)
i− j

2 ( c

ℓ

)
ℓ
2

.

There are a few natural methods that one might use to try to prove such a bound. One would be via the

so-called core and kernel method, used to prove similar results in the G(n, p) model (See for example [4, 17]).

Another would be to follow the methods of Bender, Canfield and McKay [3], who gave an asymptotic formula for

the number of graphs with n vertices and k edges, which we denote as c(n,k), which they derived by analysing

the following recursive formula

kc(n,k)=
((

n

2

)

−k +1

)

c(n,k −1)+
1

2

n−1
∑

t=1

k−n
∑

s=−1

(

n

t

)

t (n − t )c(t , t + s)c(n − t ,k − t − s −1),

which can be seen by deleting an edge from a graph with n vertices and k edges and splitting into two cases as

to whether this edge is a bridge or not. However, we were not able to implement either approach in the bipartite

case.

6.3. Open problems. We have presented some initial results about the structure of G(n,n, p) in the weakly

supercritical regime, however many interesting questions still remain. For example, Łuczak [16] described in

more detail the distribution of cycles in G(n, p) in this regime. In particular, if we let the girth of a graph be the

length of the shortest cycle and the circumference be the length of the longest cycle, then Łuczak determined

asymptotically the girth and circumference of the giant component of G(n, p) and the length of the longest cycle

outside of the giant component.

Question 6.2. Let ǫ = ǫ(n) > 0 be such that ǫ3n → ∞ and ǫ = o(1), and let p = 1+ǫ
n . What is the girth and cir-

cumference of the giant component in G(n,n, p)? What is the length of the longest cycle outside of the giant

component?

Using some of the results of Łuczak [16] on the distribution of cycles in the weakly supercritical regime in

G(n, p), together with Euler’s formula, Dowden, Kang and Krivelevich [9] were able to determine asymptotically

the genus of G(n, p) in this regime, in particular showing that whp the genus is asymptotically given by half of

the excess of the giant component. It is natural to ask if a similar statement holds in the bipartite model.

Question 6.3. Let ǫ= ǫ(n)> 0 be such that ǫ3n →∞ and ǫ= o(1), and let p = 1+ǫ
n

. Is it true that whp the genus g

of G(n,n, p) is such that

g ≈
1

2
excess

(

L1

(

G(n,n, p)
))

≈
2

3
ǫ3n?

Theorems 1.7-1.9 suggest an interesting relationship between the component structure of G
(

n,n, 1+ǫ
n

)

and

that of G
(

n,n, 1−ǫ
n

)

in the weakly super- and subcritical regimes. In the case of the binomial random graph

model, a much more precise relationship can be given. Given a graph G , let us write GL for the graph obtained

by deleting a component of G of maximum order, say L. Roughly speaking, it is known that GL
(

n, 1+ǫ
n

)

and

G
(

n −|L|, 1−ǫ
n−|L|

)

have approximately the same distribution. For a more detailed discussion of this phenomenon,

known as the symmetry rule, see for example [12, Section 5.6]. Using similar techniques as in [17], which uses
29



bounds on the excess of the giant component to prove a symmetry rule, we expect that Theorem 1.6 can be

used to show a similar statement in the bipartite binomial random graph model.

Conjecture 6.4. Let ǫ= ǫ(n)> 0 be such that ǫ4n ≫ω→∞ and ǫ≤ 1
ω , and let p = 1+ǫ

n . If we let

n± = (1−2ǫ±o(ǫ))n and p± =
1−ǫ±o(ǫ)

n± ,

then we can couple GL(n,n, p) with G(n−,n−, p−) and G(n+,n+, p+) such that whp

G(n−,n−, p−) ⊆GL(n,n, p)⊆G(n+,n+, p+).
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Structures & Algorithms, 56(1):97–121, 2020.
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APPENDIX A. PROOF OF LEMMA 2.2

Let us write

g (y) :=
1

(k2 − y2)m

(

k − y

k + y

)c y

exp

(

−
y2

2n

)

.

If we let h(y) := log
(

g (y)
)

=−m log(k2 − y2)+c y log
(

k−y

k+y

)

− y 2

2n , then

h′(y) =
2m y

k2 − y2
+c log

(

k − y

k + y

)

−
2ck y

k2 − y2
−

y

n
,

h′′(y)=
2mk2 −4ck3 +2m y2

(k2 − y2)2
−

1

n
,

h′′′(y) =
2y(6mk4 −4mk2 y2 −2m y4 −8ck5 +8ck3y2)

(k2 − y2)4
.
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Note that 0 is a solution of h′(y)= 0 and, since m is fixed and h′′(y)< 0 on [−L−1,L+1], 0 is the unique solution

on [−L−1,L+1]. Hence, h(y) is increasing on [−L−1,0] and deceasing on [0,L+1], and this is also true for g (y).

Therefore, by Lemma 2.1 we can bound the difference between

I :=
∫L

−L
g (y)d y,

and S as |S − I | ≤ 12g (0). We will later show that I =ω
(

g (0)
)

, and hence S ≈ I .

In order to estimate I , we approximate g by a Gaussian function. By the mean value form of the remainder

in Taylor’s theorem, for any y ∈ [−L,L] there is a real number z between 0 and y such that

h(y)=h(0)+
h′′(0)

2
y2 +

h′′′(z)

6
y3.

Note that, if |z| = o(k), then |h′′′(z)| = o
(

1
k2

)

. Therefore, for any |y | ≤ k
3
5 we have

h(y)= h(0)+
h′′(0)

2
y2 +o

(

y3

k2

)

= h(0)+
h′′(0)

2
y2 +o(1).

Hence, if we let R =min{k
3
5 ,L} then

I =
∫R

−R
exp

(

h(0)+
h′′(0)

2
y2 +o(1)

)

d y +
∫

L≥|y |≥R
eh(y)d y.

The first integral we can evaluate in a standard manner as
∫R

−R
exp

(

h(0)+
h′′(0)

2
y2 +o(1)

)

d y ≈
∫R

−R
exp

(

h(0)+
h′′(0)

2
y2

)

d y ≈ eh(0)

∫∞

−∞
exp

(

h′′(0)

2
y2

)

d y

≈

√

2π

|h′′(0)|
eh(0) =

√

π

2c
k

1
2
−2m ,

where we used that h′′(0) = 2m
k2 − 4c

k − 1
n ≈−4c

k and also that R =ω(1).

If R = L, then the second integral is 0, and so we may assume that R = k
3
5 . In order to bound the second

integral we note that all the terms in h(y) are negative, and in particular if |y | ≤ L ≤ k

log

(

k − y

k + y

)

= log

(

1−
2y

k + y

)

≤−
2y

k + y
.

Hence, if L ≥ |y | ≥ R , then

h(y)≤ c y log

(

k − y

k + y

)

≤−
c y2

k + y
≤−

ck
1
5

2
.

It follows that
∫

L≥|y |≥R
eh(y)d y ≤ 2

∫∞

k
3
5

exp

(

−
c y

1
5

2

)

d y =O

(

e− c
2

k
3

25
k

12
25

)

= o
(

k
1
2
−2m

)

.

Hence, I ≈
√

π
2c

k
1
2
−2m and, noting that g (0) = k−2m = o(I ), the result follows. �

APPENDIX B. PROOF OF LEMMA 3.9

Recall that we write X (i , j ,−1) for the number of tree components with i vertices in N1 and j vertices in N2,

and let

Λk =
{

(i , j )∈N
2 : i + j = k and |i − j | < ǫ

1
4

p
n
}

.

Then,

Za =
k̃
∑

k=1

k a
∑

(i , j )∈Λk

X (i , j ,−1),

and so

E
(

Z 2
1

)

=
k̃
∑

k1=1

k̃
∑

k2=1

k1k2

∑

(i , j )∈Λk1

∑

(s,t )∈Λk2

E
(

X (i , j ,−1)X (s, t ,−1)
)

.
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Let us write µi , j = E
(

X (i , j ,−1)
)

. Then, when (i , j ) 6= (s, t ) we have, by comparison with (8),

E
(

X (i , j ,−1)X (s, t ,−1)
)

=
(

n

i

)(

n

j

)(

n − i

s

)(

n − j

t

)

C (i , j ,−1)C (s, t ,−1)pk1+k2−2(1−p)n(k1+k2)−i j−st−s j−i j−k1−k2+2

=µi , jµs,t
(n)i+s

(n)i (n)s

(n) j+t

(n) j (n)t
(1−p)−i t−s j ,

and when (i , j ) = (s, t ) we have

E
(

X (i , j ,−1)2
)

=µi , j +µ2
i , j

(n)2i

(n)2
i

(n)2 j

(n)2
j

(1−p)−2i j .

Now, it can be seen that if 0≤ x ≤ y ≤ 1, then

1− y ≤ (1−x)ex−y ,

and so

(n)i+s

(n)i (n)s
=

i−1
∏

m=0

1− s+m
n

1− m
n

≤ exp

(

i−1
∑

m=0

m

n
−

s +m

n

)

= exp

(

−
i s

n

)

, (35)

and a similar bound holds for
(n) j+t

(n) j (n)t
. Hence, using (35) and the fact that (1−p)x ≤ e−px for any positive p and

x, we have

E
(

Z 2
1

)

=
k̃
∑

k1=1

k̃
∑

k2=1

k1k2

∑

(i , j )∈Λk1

∑

(s,t )∈Λk2

E
(

X (i , j ,−1)X (s, t ,−1)
)

= E(Z2)+
k̃
∑

k1=1

k̃
∑

k2=1

k1k2

∑

(i , j )∈Λk1

∑

(s,t )∈Λk2

µi , jµs,t
(n)i+s

(n)i (n)s

(n) j+t

(n) j (n)t
(1−p)−i t−s j

≤ E(Z2)+
k̃
∑

k1=1

k̃
∑

k2=1

k1k2

∑

(i , j )∈Λk1

∑

(s,t )∈Λk2

µi , jµs,t exp

(

−
i s

n
−

j t

n
+ (i t + s j )

(

1+ǫ

n

))

= E(Z2)+
k̃
∑

k1=1

k̃
∑

k2=1

k1k2

∑

(i , j )∈Λk1

∑

(s,t )∈Λk2

µi , jµs,t exp

(

(i − j )(t − s)

n
+ (i t + s j )

ǫ

n

)

≤ E(Z2)+
k̃
∑

k1=1

k̃
∑

k2=1

k1k2

∑

(i , j )∈Λk1

∑

(s,t )∈Λk2

µi , jµs,t exp

(

(i − j )(t − s)

n
+

2ǫk1k2

n

)

. (36)

Now, since we are only looking at ǫ-uniform components, if (i , j ) ∈Λk1
and (s, t )∈Λk2

, then

(i − j )(t − s)

n
≤
p
ǫ= o(1).

Hence, since 0 ≤ 2ǫk1k2

n
≤ 2

3
and ex ≤ 1+x +x2 for |x| ≤ 1 it follows that

exp

(

(i − j )(t − s)

n
+

2ǫk1k2

n

)

= 1+
(i − j )(t − s)

n

(

1+
2ǫk1k2

n

)

+
4ǫk1k2

n
+

(i − j )2(t − s)2

n2
. (37)

So, from (36) and (37) we can conclude that

E
(

Z 2
1

)

≤ E(Z2)+
k̃
∑

k1=1

k̃
∑

k2=1

k1k2

∑

(i , j )∈Λk1

∑

(s,t )∈Λk2

µi , jµs,t

·
(

1+
(i − j )(t − s)

n

(

1+
2ǫk1k2

n

)

+
4ǫk1k2

n
+

(i − j )2(t − s)2

n2

)

. (38)

We split the sum in (38) into four terms and consider them separately. The first three terms are relatively easy

to bound.
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Firstly, we have that
k̃
∑

k1=1

k̃
∑

k2=1

k1k2

∑

(i , j )∈Λk1

∑

(s,t )∈Λk2

µi , jµs,t = E(Z1)2. (39)

Secondly, since µi , j is symmetric in i and j and µs,t is symmetric in s and t and (i − j ) and (s − t ) are antisym-

metric, it follows that

k̃
∑

k1=1

k̃
∑

k2=1

k1k2

(

1+
2ǫk1k2

n

)

∑

(i , j )∈Λk1

∑

(s,t )∈Λk2

µi , jµs,t
(i − j )(t − s)

n
= 0. (40)

The third term can be seen to be

4ǫ

n

k̃
∑

k1=1

k̃
∑

k2=1

k2
1k2

2

∑

(i , j )∈Λk1

∑

(s,t )∈Λk2

(

1+
2ǫk1k2

n

)

=
4ǫ

n
E(Z2)2. (41)

For the fourth term, we have to be a bit more careful. Let us consider

k̃
∑

k1=1

k̃
∑

k2=1

k1k2

∑

(i , j )∈Λk1

∑

(s,t )∈Λk2

µi , jµs,t
(i − j )2(t − s)2

n2

=
(

k̃
∑

k1=1

k1

∑

(i , j )∈Λk1

µi , j
(i − j )2

n

)(

k̃
∑

k2=1

k2

∑

(s,t )∈Λk2

µs,t
(t − s)2

n

)

=S2,

where

S :=
k̃
∑

k=1

k
∑

(i , j )∈Λk

µi , j
(i − j )2

n
.

Using (7), we see that, since k̃ ≤n
2
3 , then

S =O

(

k̃
∑

k=1

ke− δk
2

∑

(i , j )∈Λk

(i − j )2

(i j )
3
2

(

i

j

) j−i

exp

(

−
(i − j )2

2n

)

)

=O

(

k̃
∑

k=1

ke− δk
2

∑

i+ j=k

(i − j )2

(i j )
3
2

(

i

j

) j−i

exp

(

−
(i − j )2

2n

)

)

=O

(

k̃
∑

k=1

ke− δk
2

k
∑

d=−k

d 2

(k2 −d 2)
3
2

(

k −d

k +d

)d

exp

(

−
d 2

2n

)

)

. (42)

Firstly, we note that for small k the sum is negligible. Indeed,

ǫ−
2
5

∑

k=1

ke− δk
2

k
∑

d=−k

d 2

(k2 −d 2)
3
2

(

k −d

k +d

)d

exp

(

−
d 2

2n

)

≤
ǫ−

2
5

∑

k=1

k
k
∑

d=−k

d 2 ≤ ǫ−2 =O

(
√

n

ǫ

)

. (43)

For k ≥ ǫ−
2
5 , we split the inner sum up further into two ranges

T1 :=
∑

|d |≤k
3
5

d 2

(k2 −d 2)
3
2

(

k −d

k +d

)d

exp

(

−
d 2

2n

)

and T2 :=
∑

k≥|d |≥k
3
5

d 2

(k2 −d 2)
3
2

(

k −d

k +d

)d

exp

(

−
d 2

2n

)

.

By the same argument as in Lemma 2.2, we see that, since k =ω(1),

T2 .

∫∞

k
3
5

y2 exp

(

−
y

1
5

2

)

d y =O

(

e− 1
2

k
3

25
k

42
25

)

= o
(

k− 5
4

)

. (44)

Furthermore, we can bound T1 naively, using Hölder’s inequality and Lemma 2.2, to obtain

T1 =
∑

|d |≤k
3
5

d 2

(k2 −d 2)
3
2

(

k −d

k +d

)d

exp

(

−
d 2

2n

)

≤
√

∑

|d |≤k
3
5

d 4

√

√

√

√

√

∑

|d |≤k
3
5

1

(k2 −d 2)
3
2

(

k −d

k +d

)d

exp

(

−
d 2

2n

)

=O

(

√

k3

√

k− 11
2

)

=O
(

k− 5
4

)

. (45)
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Therefore, by (44) and(45), we have

k̃
∑

k=ǫ−
2
5

ke− δk
2

k
∑

d=−k

d 2

(k2 −d 2)
3
2

(

k −d

k +d

)d

exp

(

−
d 2

2n

)

=O





k̃
∑

k=ǫ−
2
5

k− 1
4 e− δk

2



=O

(
∫∞

y=1
y− 1

4 e− δy

2 d y

)

=
(

ǫ−
3
2

∫∞

x= ǫ2

4

x− 1
4 e−x d x

)

=O
(

ǫ−
3
2

)

. (46)

Hence, by (42), (43), and (46) we see that

S =O

(
√

n

ǫ
+ǫ−

3
2

)

=O

(
√

n

ǫ

)

,

and so
k̃
∑

k1=1

k̃
∑

k2=1

k1k2

∑

(i , j )∈Λk1

∑

(s,t )∈Λk2

µi , jµs,t
(i − j )2(t − s)2

n2
= S2 =O

(n

ǫ

)

. (47)

Hence, by (38), (39), (40), (41) and (47) we can conclude that

Var(Z1) ≤ E(Z2)+
4ǫ

n
E(Z2)2 +O

(n

ǫ

)

. (48)

Using (7) and Lemma 2.2, we can bound

E(Z2) ≤
n

2
3

∑

k=1

k2
∑

(i , j )∈Λk

µi , j =O



n
n

2
3

∑

k=1

k2e− δk
2

∑

(i , j )∈Λk

1

(i j )
3
2

(

i

j

) j−i

exp

(

−
(i − j )2

2n

)





=O



n
n

2
3

∑

k=1

1
p

k
e− δk

2



=O

(

n

∫∞

y=1

1
p

y
e− δy

2 d y

)

=O

(

n
p
δ

∫∞

x= δ
2

1
p

x
e−xd x

)

=O
(n

ǫ

)

.

Finally, putting this together with (48), we can conclude that

Var(Z1)≤O
(n

ǫ

)

+
4ǫ

n
O

(

n2

ǫ2

)

+O
(n

ǫ

)

=O
(n

ǫ

)

.

APPENDIX C. PROOF OF THEOREM 4.1

A standard argument tells us that, for a fixed vertex v the order of the component in G(n,n, p) containing v

is stochastically dominated by the order of the component of the root in a random subgraph of Tn , the infinite

(n +1)-regular rooted tree, where we include each edge independently with probability p .

It is shown in [7, Corollary 3], that if we let t (k ,n) be the number of subtrees of Tn that contain the root and

have order k and k =ω(1), then

t (k ,n)≈
1

p
2πk

3
2

nk−1
( n

n −1

)k(n−1)+2
.

Hence, the probability that the component of the root in a random subgraph of Tn has order k is given by

Pk (n, p)= t (k ,n)pk−1(1−p)k(n−1)+2 ≈
(pn)k−1

p
2πk1.5

(

n(1−p)

n −1

)k(n−1)+2

.

It follows that, if we let p = 1−ǫ
n , then

Pk (n, p)≈
1

p
2πk1.5

(1−ǫ)k−1
(

1+
ǫ

n −1

)k(n−1)+2
≤

1
p

2πk1.5
(1−ǫ)k−1exp

(

ǫk +O
( ǫ

n

))

.
1

p
2πk1.5

(

(1−ǫ)eǫ
)k−1

.

Furthermore, it is clear by comparison with a branching process that with probability 1 the component of

the root is finite, and hence
∑

k Pk (n, p)= 1. It follows that the probability that a vertex in G(n,n, p) belongs to a

component of order larger than k0 ∈N is equal to
∑

k≥k0

Pk (n, p).
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Hence, if we let Y≥k0
be the number of vertices in G(n,n, p) which belong to a component of order larger than

k0, then we have that

E(Y≥k0
)= n

∑

k≥k0

Pk (n, p).n
∑

k≥k0

1
p

2πk1.5

(

(1−ǫ)eǫ
)k−1

.nk
− 3

2

0

((1−ǫ)eǫ)k0

1− (1−ǫ)eǫ
.

However, (1−ǫ)eǫ = 1− ǫ2

2 +O(ǫ3) and so

E(Y≥k0
).nk

− 3
2

0

4

ǫ2
.

Taking k0 =
√

n
3ǫ , we see that

E

(

Y≥
p

n
3ǫ

)

=O

(

n
1
4

ǫ
5
4

)

= o

(
√

n

ǫ

)

.
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