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Summary 

 

The porosity of paper is a crucial quantity for most applications. Correspondingly, it is highly desirable to study to which extent 

the porosity of paper influences strongly related properties such as the air permeance, which is one of the key properties of sack 

paper. In this article, we investigate the local variability of porosity in sack paper as well as the joint distribution of local porosity 

and local mean geodesic tortuosity. The latter one is an important microstructure characteristic for air permeance since it is a 

measure for the sinuosity of transport paths through the pore space. For this investigation, we statistically analyze the 3D porous 

microstructure of sack paper based on tomographic 3D imaging. The values of local porosity and local mean geodesic tortuosity 

of multiple, non-overlapping cutouts of the considered sample are determined to obtain a distribution of these quantities. Our 

analysis clearly shows a negative correlation between local porosity and tortuosity. Using a copula approach, we model the joint 

probability distribution of local porosity and local mean geodesic tortuosity. This model quantifies the porosity-tortuosity 

correlation and allows, e.g., for a prediction of the conditional distribution of local mean geodesic tortuosities for a given value 

of local porosity. 

 

 

Introduction 

 

As for functional materials in general, the microstructure of paper materials has a strong influence on their macroscopic 

properties. For analyzing microstructures, the combination of 3D imaging and a subsequent image analysis is a powerful tool, as 

it allows to compute related characteristics, which are not experimentally accessible, see, e.g., Serra, 1982 or Ohser and Schladitz, 

2009.  

To characterize pore structures in paper-based materials, X-ray computed tomography (µ-CT) has been established as an 

appropriate method as illustrated for example by Antoine et al., 2002 and Rolland du Roscoat et al., 2005. Such microstructures 

reconstructed by µ-CT are typically analyzed in terms of global characteristics such as porosity, air permeance, and mean 

tortuosity. For sack paper, which is used for the packing of powdered goods, air permeance is – besides tensile energy absorption 

– the main property (Gurnagul et al., 2009) as it enables an efficient de-aeration of bags during filling. Air permeance, in turn, is 

assumed to depend on the sinuosity of transport paths (Axelsson and Svensson, 2010). Both, porosity as well as the sinuosity of 

transport paths, also affect macroscopic properties like effective conductivity and permeability (Koivu et al., 2009, Stenzel et al., 

2016, Neumann et al., 2019). This sinuosity is quantified by mean geodesic tortuosity (Neumann et al., 2019). 

However, since paper-based materials consist of a complex network of fibers, their microstructure characteristics can have large 

local fluctuations. This heterogeneity is studied in Rolland du Roscoat et al., 2007 and Rolland du Roscoat et al., 2012, where 

the authors investigate for which sample sizes global characteristics can be reliably computed despite of local fluctuations. It is 

also highly desirable to quantify the variability between distinct locations itself. In our case, we particularly consider porosity 

and mean geodesic tortuosity as local characteristics and investigate their local distributions. Rather than considering just the two 

individual (univariate) distributions, we also investigate the joint (bivariate) distribution of these quantities. In particular, we 

utilize so-called copulas (Nelsen, 2007) to parametrically model the bivariate distribution of local porosity and local mean 

geodesic tortuosity. Note that for this investigation of local effects in the pore structure, the focus is on the quantification of the 

local variability and we do not intend to determine a representative volume element of the paper sheet as in Rolland du Roscoat 

et al., 2007 and Rolland du Roscoat et al., 2012. 

 
Having fitted the model to the sample, it allows us to (i) quantify the correlation between local porosity and local mean geodesic 

tortuosity and to (ii) compute the conditional distribution of local mean geodesic tortuosity for given a local porosity. Our results 

reveal information about the impact of local variability of porosity on local variability of the sinuosity of transport path, and thus 

on the local air permeance of sack paper. 
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Material, imaging and data pre-processing for the investigation of local characteristics 

We consider the microstructure of sack paper made of unbleached pulp with a specific basis weight of 70 𝑔𝑚−2. This type of 

sack paper is used for the packing of powdered goods, since it exhibits intrinsically a high porosity and a superior mechanical 

strength. 3D imaging is performed using µ-CT, which leads to an image sample of size 2.0 𝑚𝑚 × 2.8 𝑚𝑚 in 𝑥𝑦-plane with 

cubic voxels having a side length of 1.5 𝜇𝑚. The images are binarized, i.e. for each voxel, we determine, whether it belongs to 

cellulose material or to the pore space.  For a detailed description of these pre-processing steps leading to the 3D pore structure, 

visualized in Fig. 1, we refer to Machado Charry et al., 2018, in which a global statistical analysis for this sample is provided. In 

the following, we denote the direction specifying the paper thickness by 𝑧, and the plane orthogonal to 𝑧 is denoted as the 𝑥𝑦-

plane. 

 

 

              
Fig. 1. 3D visualization of the paper sheet reconstructed by µ-CT imaging (left). Top view on the 𝑥𝑦-plane of the paper sheet (right) and a 

zoom to a cutout on the surface of size 120 𝜇𝑚 × 120 𝜇𝑚.  
 

 

In order to investigate the local heterogeneity of the 3D microstructure of sack paper, we consider a set of non-overlapping three-

dimensional cutouts, which are square-shaped in 𝑥𝑦-plane and the centers of the cutouts in 𝑥𝑦-plane are arranged on a square 

grid with a side length of 150 𝜇𝑚. In 𝑧-direction, the complete microstructure of cellulose material is taken into account. This 

setting leads to a total number of 204 cutouts. The side length of the squares defining the size of cutouts in 𝑥𝑦-plane is varied in 

the range 30𝜇𝑚, 60 𝜇𝑚, … , 150 𝜇𝑚. The thickness of cutouts, i.e. the extension in 𝑧-direction, is approximately 0.1 𝑚𝑚.  A 

cutout of side length 120 𝜇𝑚 is visualized in Fig. 1 (right panel). The maximum size of the cutouts is chosen such that they do 

not overlap each other. Note that by considering cutouts with the above mentioned size our focus is on local effects in the 

microstructure of sack paper, while effects at a larger scale are not taken into account.   

 

We evaluate porosity as well as mean geodesic tortuosity of these cutouts. The mean geodesic tortuosity is defined as the ratio 

of the expected length of the shortest transport path through the paper sheet (starting at a predefined location at one chosen 

surface of the sack paper) and the paper thickness. Note that when computing mean geodesic tortuosity for a cutout, we consider 

all paths the starting points of which are located in the cutout, while the paths themselves are allowed to leave the cutout. 

 
 

Statistical methods 

 

In this section, we briefly describe the statistical methods which we use to parametrically model the bivariate distribution of local 

porosity and local mean geodesic tortuosity. The main idea of modeling the bivariate distribution is to use so-called 

copulas (Nelsen, 2007). This means that we model the univariate – also called marginal – distributions of local porosity and local 

mean geodesic tortuosity, respectively, at first. In a second step, the joint distribution is modeled under the constraint of given, 

i.e. the previously determined, marginal distributions.  

 

In the following, we consider local porosity and local mean geodesic tortuosity as random variables, denoted by 𝑋 and 𝑌, 

respectively. To model their marginal distributions, we use a beta distribution for 𝑋 and a generalized gamma distribution for 𝑌. 

Both distributions are continuous and are thus defined by their probability density functions. 

 

The probability density function of the beta distribution is given by  
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𝑓𝑋(𝑥) =
Γ(𝑝 + 𝑞)

Γ(𝑝)Γ(𝑞)
 𝑥𝑝−1 (1 − 𝑥)𝑞−1, 

 

for each 𝑥 ≥ 0 and 𝑓𝑋(𝑥) = 0 for 𝑥 < 0, where 𝑝, 𝑞 > 0 are some model parameters and Γ denotes the gamma function. In order 

to fit the parameters 𝑝 and 𝑞 to the observed values of local porosity, we use maximum likelihood estimation as described 

in Beckman and Tietjen, 1978. The probability density function of the generalized gamma distribution is given by  

 

𝑔𝑌(𝑦) =
𝑘 𝑦𝑑−1

𝑎𝑑 Γ (
𝑑
𝑘

)
  𝑒−(

𝑦
𝑎

)
𝑘

, 

for each 𝑦 ≥ 0 and 𝑔𝑌(𝑦) = 0 for 𝑦 < 0, where 𝑎, 𝑑, 𝑘 > 0 are some model parameters. Parameter estimation is performed by 

maximum likelihood estimation, where the log-likelihood function is maximized by means of the Nelder-Mead algorithm (Nelder 

and Mead, 1965).       

 

To model the joint distribution of local porosity and local mean geodesic tortuosity, it turns out that the Frank copula (Genest, 

1987) is an appropriate model, i.e., we assume that the joint density ℎ𝑋,𝑌 of 𝑋 and 𝑌 is given by  

 

ℎ𝑋,𝑌(𝑥, 𝑦) = 𝑓𝑋(𝑥)𝑔𝑌(𝑦) (
𝜕2𝐶

𝜕𝑥 𝜕𝑦
) (∫ 𝑓𝑋(𝑡) d𝑡,

𝑥

0

 ∫ 𝑔𝑌(𝑠) d𝑠 
𝑦

0

), 

for each 𝑥, 𝑦 > 0 and ℎ𝑋,𝑌(𝑥, 𝑦) = 0 otherwise, where  

 

𝐶(𝑥, 𝑦) =  −
1

𝜃
 log (1 +

(𝑒−𝜃𝑥 − 1)(𝑒−𝜃𝑦 − 1)

𝑒−𝜃 − 1
) 

and 𝜃 ∈  ℝ ∖ {0} is a model parameter describing the correlation between local porosity and local mean geodesic tortuosity. The 

larger the absolute value of 𝜃, the stronger is the correlation, where positive values means positive correlation and vice versa. 

For quantitative analytical relationships between 𝜃 and the correlation measures Kendall’s tau and Spearman’s rho, we refer to 

Genest et al., 1995. Note that when modeling the bivariate distribution by means of the density ℎ𝑋,𝑌, the marginal densities of 𝑋 

and 𝑌 are given by 𝑓𝑋 and 𝑔𝑌, respectively. Moreover, using this approach, one easily obtains parametric conditional distributions 

of 𝑋 and 𝑌. In particular, the conditional distribution of local mean geodesic tortuosity given the local porosity has the density 

function  

 

ℎ𝑌|𝑋=𝑥 (𝑦) =
ℎ𝑋,𝑌(𝑥, 𝑦)

𝑓𝑋(𝑥)
=  𝑔𝑌(𝑦) (

𝜕2𝐶

𝜕𝑥 𝜕𝑦
) (∫ 𝑓𝑋(𝑡) d𝑡,

𝑥

0

 ∫ 𝑔𝑌(𝑠) d𝑠 
𝑦

0

), 

for each 𝑥 with 𝑓𝑋(𝑥) > 0. The parameter 𝜃 is determined via pseudo-likelihood estimation as described in Genest et al., 1995.  
 
To enable a comparison of the presented parametric model with the data obtained from image data, we estimate probability 

density functions based on the observation of discrete data points. For this purpose, kernel density estimation via diffusion (Botev 

et al., 2010) is used in the univariate as well as in the bivariate case. 

 

 

Results and Discussion 

 

The marginal distributions of local porosity and local mean geodesic tortuosity estimated from image data for different side 

lengths of cutouts are visualized in the left panels of Fig. 2. We show the corresponding parametric probability density functions, 

which are fitted as described in the previous section, in the right panels. The estimated and modeled distributions agree well for 

both microstructure properties and the general trends are preserved. Firstly, the microstructure properties exhibit a decreasing 

variability with increasing side lengths of cutouts. Secondly, the distributions of local mean geodesic tortuosity are right-skewed. 

The skewness is more pronounced for smaller sizes of cutouts. 

 
Table 1. Estimated values and the corresponding standard deviations of the parameter 𝜃 describing the correlation between local porosity and 

local mean geodesic tortuosity.  

 

side length of cutouts 30 𝜇𝑚 60 𝜇𝑚 90 𝜇𝑚 120 𝜇𝑚 150 𝜇𝑚 

estimated value for 𝜃  −2.97 ± 0.50 −3.50 ± 0.52 −4.22 ± 0.54 −4.61 ± 0.55 −4.39 ± 0.55 
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The values of the parameter 𝜃 appearing in the Frank copula correspond to the correlation between local porosity and local mean 

geodesic tortuosity. The values estimated for each cutout size and the corresponding standard deviations of the estimated values, 

obtained by Monte-Carlo simulation are given in Table 1. There is a clear negative correlation between the considered 

microstructure characteristics. The correlation |𝜃| increases with cutout size until a side length of 120 𝜇𝑚, while |𝜃| decreases 

slightly upon further increasing the cutout size to 150 𝜇𝑚. The standard deviations of the estimator for 𝜃 are between 0.50 and 

0.55 for all cutout sizes. Note that these deviations imply that the apparent slight decrease in 𝜃 from 120 𝜇𝑚 to 150 𝜇𝑚 do not 

necessarily imply a lesser pronounced correlation. 

The left panel in Fig. 3 shows the joint distribution of local porosity and local mean geodesic tortuosity estimated from image 

data for cutouts with a side length of 90 𝜇𝑚. The corresponding joint distribution of the fitted parametric model, right panel in 

Fig. 3, shows a good visual accordance between model and data. However, the probability density function estimated from image 

data shows a small peak for local mean geodesic tortuosity larger than 1.5 which we consider as an inaccuracy of the kernel 

density estimation based on 204 cutouts. Such effects occur more likely when performing kernel density estimation for vector 

data than for real-valued data (Scott, 2015). Going beyond visual inspection, the model is formally validated by testing the 

following hypothesis: the values of local porosity and local mean geodesic tortuosity computed from image data follow the same 

distribution as 204 virtual pairs of local porosity and local mean geodesic tortuosity drawn from the copula model. For this 

purpose, we use the two sample test proposed in Baringhaus and Franz, 2004. For all cutout sizes, the hypothesis test is not 

rejected at a significance level of 5 %.  

 

 
           

Fig. 2. Distributions of local porosity (top left) and local mean geodesic tortuosity (bottom left) estimated from image data and the 

corresponding beta (top right) and generalized gamma (bottom right) distributions.  
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Fig. 3. Joint distribution of local porosity and local mean geodesic tortuosity estimated from image data (left) and of the fitted model (right) 

for cutouts with a side length of 90 𝜇𝑚. 

 

 
Fig. 4. Conditional distributions of local mean geodesic tortuosities for given local porosities computed by means of the copula model. The 

side lengths of cutouts are 90 𝜇𝑚 (left) and 150 𝜇𝑚 (right). 

 

 

Based on the fitted parametric model for the joint distribution of local porosity and local mean geodesic tortuosity, we compute 

conditional distributions of local mean geodesic tortuosity for given local porosities. Such conditional distributions, as 

exemplarily shown in Fig. 4 for cutouts with side lengths of 90 𝜇𝑚 and 150 𝜇𝑚, change their shape with increasing porosity.  

Provided that the local porosity is 0.4 or 0.5, the conditional distributions of local mean geodesic tortuosity are right-skewed, 

reminiscent to the unconditional distribution of local mean geodesic tortuosity (Fig. 2). 

 

 

Conclusion 

 

We have parametrically modeled the joint distribution of local porosity and local mean geodesic tortuosity of sack paper, the 

microstructure of which has been recently investigated with respect to global characteristics in Machado Charry et al., 2018. For 

this purpose, we have considered cutouts of 3D image data obtained by µ-CT. The parametric model is fitted to different sizes 

of cutouts. Using the parametric model, which is based on a copula approach, we compute the conditional distribution of local 

mean geodesic tortuosity given the local porosity of a cutout. Moreover, the model quantifies the negative correlation between 

both characteristics. Our analysis gives deeper insights regarding the influence of local porosity on the sinuosity of transportation 

paths through the pore space of sack paper. This is an important step to understand the impact of local porosity on local air 

permeance – a key property of sack paper. 
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