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Preface

One of the grand challenges in our digital world are the large, complex, high-
dimensional and often weakly structured data sets and massive amounts of un-
structured information. This “big data” challenge (V4: volume, variety, velocity,
veracity) is most evident in biomedical informatics: The trend toward precision
medicine (P4 medicine: predictive, preventive, participatory, personalized) has
resulted in an explosion in the amount of generated biomedical data sets, not
only from traditional patient data, but additionally also due to more and more
“omics” data (e.g., from genomics, proteomics, metabolomics, lipidomics, tran-
scriptomics, epigenetics, microbiomics, fluxomics, phenomics, etc.). Neither the
medical doctor nor the biomedical researcher of today is capable of memoriz-
ing all these data. Therefore, modern biomedicine simply will not develop any
further without computational solutions for analyzing these data.

With steady progress in analyzing these data, the direction is toward integra-
tive approaches that combine data sets using rich networks of specific
relationships, such as physical protein interactions, transcriptional regulatory
networks, microRNA, gene regulatory networks, metabolic and signaling path-
ways, to name just a few. However, several challenges remain open.

A synergistic combination of methodologies and approaches from two ar-
eas offer ideal conditions for solving these aforementioned problems: human-—
computer interaction (HCI) and knowledge discovery and data mining (KDD).
The central goal is to support human intelligence with machine learning, in order
to interactively gain new and previously unknown insights into these data.

Consequently, the objective of the HCI-KDD task force is to combine the
best of both worlds—HCI, with the emphasis on human issues including per-
ception, cognition, interaction, reasoning, decision making, human learning and
human intelligence; and KDD, encompassing data integration, fusion, prepro-
cessing, data mining, and visualization, concerting computational statistics, ma-
chine learning, and artificial intelligence — while always considering the privacy,
data protection, and safety and security issues.

The mission of the HCI-KDD task force is to form a network of excellence
by bringing together professionals from diverse areas with various backgrounds
who share a common vision: making sense of complex data.

The HCI-KDD expert network organizes special sessions at least twice a year;
the first took place in Graz (Austria), the second in Macau (China), the third
in Maribor (Slovenia), the fourth in Regensburg (Germany), the fifth in Lisbon
(Portugal), the sixth in Warsaw (Poland), the seventh in Vienna (Austria) and
the eighth is planned to take place at the international research station for
mathematical innovation and discovery in Banff (Canada) in summer 2015.

Volume 8401 of the Lecture Notes in Computer Science is a state-of-the-art
volume focusing on hot topics from interactive knowledge discovery and data



VI Preface

mining in biomedical informatics. Each paper describes the state of the art and
focuses on open problems and future challenges in order to provide a research
agenda to stimulate further research and progress.

To acknowledge here all those who contributed to all our efforts and stimu-
lating discussions would be impossible. Many people contributed to the devel-
opment of this book, either directly or indirectly, so we will use the plural form
here: First of all we thank the HCI-KDD expert network for their expertise and
reviews on the papers collected in this book — we are grateful for the comments
and discussions from the members of the international scientific board, the clin-
ical advisory board, and the industrial board and the international students
committee. We thank multiple funding agencies, industry, and governments for
supporting this international effort, and our institutes for the academic free-
dom we enjoy, the intellectual environments, and opportunity for carrying out
such scientific enterprises. We thank our families, our friends, and our colleagues
for their nurturing and positive encouragement. Last but not least we thank
Springer’s management team and production team for their smooth support.

March 2014 Andreas Holzinger
Igor Jurisica
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Knowledge Discovery and Data Mining in Biomedical
Informatics: The Future Is in Integrative, Interactive
Machine Learning Solutions

Andreas Holzinger' and Igor Jurisica®

' Medical University Graz, Institute for Medical Informatics, Statistics and Documentation
Research Unit HCI, Austrian IBM Watson Think Group,
Auenbruggerplatz 2/V, A-8036 Graz, Austria
a.holzinger@hcidall.at
% Princess Margaret Cancer Centre, University Health Network, IBM Life Sciences Discovery
Centre, and TECHNA Institute for the Advancement of Technology for Health,
TMDT 11-314, 101 College Street, Toronto, ON M5G 1L7, Canada
juris@ai.utoronto.ca

Abstract. Biomedical research is drowning in data, yet starving for knowledge.
Current challenges in biomedical research and clinical practice include
information overload — the need to combine vast amounts of structured, semi-
structured, weakly structured data and vast amounts of unstructured information
— and the need to optimize workflows, processes and guidelines, to increase
capacity while reducing costs and improving efficiencies. In this paper we
provide a very short overview on interactive and integrative solutions for
knowledge discovery and data mining. In particular, we emphasize the benefits
of including the end user into the “interactive” knowledge discovery process.
We describe some of the most important challenges, including the need to
develop and apply novel methods, algorithms and tools for the integration,
fusion, pre-processing, mapping, analysis and interpretation of complex
biomedical data with the aim to identify testable hypotheses, and build realistic
models. The HCI-KDD approach, which is a synergistic combination of
methodologies and approaches of two areas, Human—Computer Interaction
(HCI) and Knowledge Discovery & Data Mining (KDD), offer ideal conditions
towards solving these challenges: with the goal of supporting human
intelligence with machine intelligence. There is an urgent need for integrative
and interactive machine learning solutions, because no medical doctor or
biomedical researcher can keep pace today with the increasingly large and
complex data sets — often called “Big Data”.

Keywords: Knowledge Discovery, Data Mining, Machine Learning,
Biomedical Informatics, Integration, Interaction, HCI-KDD, Big Data.
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1 Introduction and Motivation

Cinical practice, healthcare and biomedical research of today is drowning in data, yet
starving for knowledge as Herbert A. Simon (1916-2001) pointed it out 40 years ago:
“A wealth of information creates a poverty of attention and a need to allocate that
attention efficiently among the overabundance of information sources that might
consume it [1].”

The central problem is that biomedical data models are characterized by significant
complexity [2-5] making manual analysis by the end users difficult, yet often
impossible. Hence, current challenges in clinical practice and biomedical research
include information overload — an often debated phenomenon in medicine for a long
time [6-10].

There is the pressing need to combine vast amounts of diverse data, including
structured, semi-structured and weakly structured data and unstructured information
[11]. Interestingly, many powerful computational tools advancing in recent years have
been developed by separate communities following different philosophies: Data
mining and machine learning researchers tend to believe in the power of their
statistical methods to identify relevant patterns — mostly automatic, without human
intervention. There is, however, the danger of modelling artefacts when end user
comprehension and control are diminished [12-15]. Additionally, mobile, ubiquitous
computing and automatic medical sensors everywhere, together with low cost storage,
will even accelerate this avalanche of data [16].

Another aspect is that, faced with unsustainable health care costs worldwide and
enormous amounts of under-utilized data, medicine and health care needs more
efficient practices; experts consider health information technology as key to
increasing efficiency and quality of health care, whilst decreasing the costs [17].

Moreover, we need more research on methods, algorithms and tools to harness the
full benefits towards the concept of personalized medicine [18]. Yet, we also need to
substantially expand automated data capture to further precision medicine [19] and
truly enable evidence-based medicine [20].

To capture data and task diversity, we continue to expand and improve individual
knowledge discovery and data mining approaches and frameworks that let the end
users gain insight into the nature of massive data sets [21-23].

The trend is to move individual systems to integrated, ensemble and interactive
systems (see Figure 1).

Each type of data requires different, optimized approach; yet, we cannot interpret
data fully without linking to other types. Ensemble systems and integrative KDD are
part of the answer. Graph-based methods enable linking typed and annotated data
further. Rich ontologies [24-26] and aspects from the Semantic Web [27-29] provide
additional abilities to further characterize and annotate the discoveries.
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2 Glossary and Key Terms

Biomedical Informatics: similar to medical informatics (see below) but including the
optimal use of biomedical data, e.g. from the “~omics world” [30];

Data Mining: methods, algorithms and tools to extract patterns from data by
combining methods from computational statistics [31] and machine learning: “Data
mining is about solving problems by analyzing data present in databases [32]”;

Deep Learning: is a machine learning method which models high-level
abstractions in data by use of architectures composed of multiple non-linear
transformations [33].

Ensemble Machine Learning: uses multiple learning algorithms to obtain better
predictive performance as could be obtained from any standard learning algorithms
[34]; A tutorial on ensemble-based classifiers can be found in [35].

Human—Computer Interaction: involves the study, design and development of the
interaction between end users and computers (data); the classic definition goes back
to Card, Moran & Newell [36], [37]. Interactive user-interfaces shall, for example,
empower the user to carry out visual data mining;

Interactome: is the whole set of molecular interactions in a cell, i.e. genetic
interactions, described as biological networks and displayed as graphs. The term goes
back to the work of [38].

Information Overload: is an often debated, not clearly defined term from decision
making research, when having to many alternatives to make a satisfying decision
[39]; based on, e.g. the theory of cognitive load during problem solving [40-42].

Knowledge Discovery (KDD): Exploratory analysis and modeling of data and the
organized process of identifying valid, novel, useful and understandable patterns from
these data sets [21].

Machine Learning: the classic definition is “A computer program is said to learn
from experience E with respect to some class of tasks T and performance measure P,
if its performance at tasks in T, as measured by P, improves with experience E” [43].

Medical Informatics: in the classical definition: “... scientific field that deals with
the storage, retrieval, and optimal use of medical information, data, and knowledge
for problem solving and decision making* [44];

Usability Engineering: includes methods that shall ensure that integrated and
interactive solutions are useable and useful for the end users [45].

Visual Data Mining: An interactive combination of visualization and analysis with
the goal to implement workflow that enables integration of user’s expertise [46].
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3 State-of-the-Art of Interactive and Integrative Solutions

Gotz et al. (2014) [47] present in a very recent work an interesting methodology for
interactive mining and visual analysis of clinical event patterns using electronic health
record data. They start with the evidence that the medical conditions of patients often
evolve in complex and unpredictable ways and that variations between patients in
both their progression and eventual outcome can be dramatic. Consequently, they
state that understanding the patterns of events observed within a population that most
correlate with differences in outcome is an important task. Their approach for
interactive pattern mining supports ad hoc visual exploration of patterns mined
from retrospective clinical patient data and combines three issues: visual query
capabilities to interactively specify episode definitions; pattern mining techniques to
help discover important intermediate events within an episode; and interactive
visualization techniques that help uncover event patterns that most impact outcome
and how those associations change over time.

Pastrello et al. (2014) [48] emphasize that first and foremost it is important to
integrate the large volumes of heterogeneous and distributed data sets and that
interactive data visualization is essential to obtain meaningful hypotheses from the
diversity of various data (see Figure 1). They see network analysis (see e.g. [49]) as
a key technique to integrate, visualize and extrapolate relevant information from
diverse data sets and emphasize the huge challenge in integrating different types of
data and then focus on systematically exploring network properties to gain insight
into network functions. They also accentuate the role of the inferactome in connecting
data derived from different experiments, and they emphasize the importance of
network analysis for the recognition of interaction context-specific features.

A previous work of Pastrello et al. (2013) [50] states that, whilst high-throughput
technologies produce massive amounts of data, individual methods yield data,
specific to the technique and the specific biological setup used. They also emphasize
that at first the integration of diverse data sets is necessary for the qualitative
analysis of information relevant to build hypotheses or to discover knowledge.
Moreover, Pastrello et al. are of the opinion that it is useful to integrate these data sets
by use of pathways and protein interaction networks; the resulting network needs to
be able to focus on either a large-scale view or on more detailed small-scale views,
depending on the research question and experimental goals. In their paper, the authors
illustrate a workflow, which is useful to integrate, analyze, and visualize data from
different sources, and they highlight important features of tools to support such
analyses.
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o Integrative, interactive
visual data mining

Ensemble ML

Statistics
Morphology-based methods
Neural networks

Support vector machines
Decisions trees

Association rule mining
Case-based reasoning
Inductive logic, ...

Image-based data

Sequence-based data
Molecular profiles
Text-based data
Clinical data

Fig. 1. Integrative analysis requires systematically combining various data sets and diverse
algorithms. To support multiple user needs and enable integration of user’s expertise, it is
essential to support visual data mining.

An example from Neuroimaging provided by Bowman et al. (2012) [51], shows
that electronic data capture methods will significantly advance the populating of
large-scale neuroimaging databases: As these archives grow in size, a particular
challenge is in the examination of and interaction with the information that these
resources contain through the development of user-driven approaches for data
exploration and data mining. In their paper they introduce the visualization for
neuroimaging (INVIZIAN) framework for the graphical rendering of, and the
dynamic interaction with the contents of large-scale neuroimaging data sets. Their
system graphically displays brain surfaces as points in a coordinate space, thereby
enabling the classification of clusters of neuroanatomically similar MRI-images and
data mining.
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Koelling et al. (2012) [52] present a web-based tool for visual data mining
colocation patterns in multivariate bioimages, the so-called Web-based Hyperbolic
Image Data Explorer (WHIDE). The authors emphasize that bioimaging techniques
rapidly develop toward higher resolution and higher dimension; the increase in
dimension is achieved by different techniques, which record for each pixel an n-
dimensional intensity array, representing local abundances of molecules, residues or
interaction patterns. The analysis of such Multivariate Bio-Images (MBIs) calls for
new approaches to support end users in the analysis of both feature domains: space
(i.e. sample morphology) and molecular colocation or interaction. The approach
combines principles from computational learning, dimension reduction and
visualization within, freely available via: http://ani.cebitec.uni-bielefeld.de/BioIMAX
(login: whidetestuser; Password: whidetest).

An earlier work by Wegman (2003) [53], emphasizes that data mining strategies
are usually applied to “opportunistically” collected data sets, which are frequently in
the focus of the discovery of structures such as clusters, trends, periodicities,
associations, correlations, etc., for which a visual data analysis is very appropriate and
quite likely to yield insight. On the other hand, Wegman argues that data mining
strategies are often applied to large data sets where standard visualization techniques
may not be appropriate, due to the limits of screen resolution, limits of human
perception and limits of available computational resources. Wegman thus envisioned
Visual Data Mining (VDM) as a possible successful approach for attacking high-
dimensional and large data sets.

4 Towards Finding Solutions: The HCI-KDD Approach

The idea of the HCI-KDD approach is in combining the “best of two worlds”:
Human—Computer Interaction (HCI), with emphasis on perception, cognition,
interaction, reasoning, decision making, human learning and human intelligence, and
Knowledge Discovery & Data Mining (KDD), dealing with data-preprocessing,
computational statistics, machine learning and artificial intelligence [54].

In Figure 2 it can be seen how the concerted HCI-KDD approach may provide
contributions to research and development for finding solutions to some challenges
mentioned before. However, before looking at further details, one question may arise:
What is the difference between Knowledge Discovery and Data Mining? The
paradigm “Data Mining (DM)” has an established tradition, dating back to the early
days of databases, and with varied naming conventions, e.g., “data grubbing”, “data
fishing” [55]; the term “Information Retrieval (IR)” was coined even earlier in 1950
[56, 57], whereas the term “Knowledge Discovery (KD)” is relatively young, having
its roots in the classical work of Piatetsky-Shapiro (1991) [58], and gaining much
popularity with the paper by Fayyad et al. (1996) [59]. Considering these definitions,
we need to explain the difference between Knowledge Discovery and Data Mining
itself: Some researchers argue that there is no difference, and to emphasize this it is
often called “Knowledge Discovery and Data Mining (KDD)”, whereas the original
definition by Fayyad was “Knowledge Discovery from Data (KDD)”, which makes
also sense but separates it from Data Mining (DM). Although it makes sense to
differentiate between these two terms, we prefer the first notion: “Knowledge
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Discovery and Data Mining (KDD)” to emphasize that both are of equal importance
and necessary in combination. This orchestrated interplay is graphically illustrated in
Figure 2: Whilst KDD encompasses the whole process workflow ranging from the
very physical data representation (left) to the human aspects of information
processing (right), data mining goes in depth and includes the algorithms for
particularly finding patterns in the data. Interaction is prominently represented by HCI
in the left side.

Within this “big picture” seven research areas can be identified, numbered from
area 1 to area 7:

Data
Interactive pjning Knowledge Discovery

[
Data Mining Data Prepro- Data

Visualization | Algorithms  Mapping  cessing Fusion

HCI GDM e Graph-based Data Mining KDD

EDM e Entropy-based Data Mining

DM e Topological Data Mining

Privacy, Data Protectign, Safety and Security

Fig. 2. The big picture of the HCI-KDD approach: KDD encompasses the whole horizontal
process chain from data to information and knowledge; actually from physical aspects of raw
data, to human aspects including attention, memory, vision, interaction etc. as core topics in
HCI, whilst DM as a vertical subject focuses on the development of methods, algorithms and
tools for data mining (Image taken from the hci4all.at website, as of March, 2014).

4.1  Area 1: Data Integration, Data Pre-processing and Data Mapping

In this volume three papers (#4, #8 and #15) are addressing research area 1:

In paper #4 “On the Generation of Point Cloud Data Sets: Step one in the
Knowledge Discovery Process” Holzinger et al. [60] provide some answers to the
question “How do you get a graph out of your data?” or more specific “How to get
point cloud data sets from natural images?”. The authors present some solutions,
open problems and a future outlook when mapping continuous data, such as natural
images, into discrete point cloud data sets (PCD). Their work is based on the
assumption that geometry, topology and graph theory have much potential for the
analysis of arbitrarily high-dimensional data.
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In paper #8 “A Policy-based Cleansing and Integration Framework for Labour and
Healthcare Data” Boselli et al. [61] report on a holistic data integration strategy
for large amounts of health data. The authors describe how a model based cleansing
framework is extended to address such integration activities. Their combined
approach facilitates the rapid prototyping, development, and evaluation of data
preprocessing activities. They found, that a combined use of formal methods and
visualization techniques strongly empower the data analyst, which can effectively
evaluate how cleansing and integration activities can affect the data analysis. The
authors show also an example focusing on labour and healthcare data integration.

In paper #15 “Intelligent integrative knowledge bases: bridging genomics,
integrative biology and translational medicine”, Nguyen et al. [62] present a
perspective for data management, statistical analysis and knowledge discovery related
to human disease, which they call an intelligent integrative knowledge base (12KB).
By building a bridge between patient associations, clinicians, experimentalists and
modelers, I2KB will facilitate the emergence and propagation of systems medicine
studies, which are a prerequisite for large-scaled clinical trial studies, efficient
diagnosis, disease screening, drug target evaluation and development of new
therapeutic strategies.

In paper #18 “Biobanks — A Source of large Biological Data Sets: Open Problems
and Future Challenges”, Huppertz & Holzinger [63] are discussing Biobanks in light
of a source of large biological data sets and present some open problems and future
challenges, amongst them data integration and data fusion of the heterogeneous
data sets from various data banks. In particular the fusion of two large areas, i.e. the
business enterprise hospital information systems with the biobank data is essential,
the grand challenge remains in the extreme heterogeneity of data, the large amounts
of weakly structured data, in data complexity, and the massive amount of unstructured
information and the associated lack of data quality.

4.2  Area 2: Data Mining Algorithms

Most of the papers in this volume are dealing with data mining algorithms, in
particular:

In paper #3 “Darwin or Lamarck? Future Challenges in Evolutionary Algorithms
for Knowledge Discovery and Data Mining” Katharina Holzinger et al. [64] are
discussing the differences between evolutionary algorithms, beginning with some
background on the theory of evolution by contrasting the original ideas of Charles
Darwin and Jean-Baptiste de Lamarck; the authors provide a discussion on the
analogy between biological and computational sciences, and briefly describe some
fundamentals of various algorithms, including Genetic Algorithms, but also new and
promising ones, including Invasive Weed Optimization, Memetic Search, Differential
Evolution Search, Artificial Immune Systems, and Intelligent Water Drops.
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In paper #5 “Adapted Features and Instance Selection for Improving Co-
Training”, Katz et al. [65] report on the importance of high quality, labeled data as it
is essential for successfully applying machine learning to real-world problems.
Because often the amount of labeled data is insufficient and labeling that data is time
consuming, Katz et al. propose co-training algorithms, which use unlabeled data in
order to improve classification. The authors propose simple and effective strategies
for improving the basic co-training framework, i.e.: the manner in which the features
set is partitioned and the method of selecting additional instances. Moreover, they
present a study over 25 datasets, and prove that their proposed strategies are
especially effective for imbalanced datasets.

In paper #6 “Knowledge Discovery & Visualization of Clusters for Erythromycin
Related Adverse Events in the FDA Drug Adverse Event Reporting System”, Yildirim
et al. [66] present a study to discover hidden knowledge in the reports of the public
release of the Food and Drug Administration (FDA)’s Adverse Event Reporting
System (FAERS) for the antibiotic Erythromycin. This is highly relevant, due to the
fact that bacterial infections can cause significant morbidity, mortality and high costs
of treatment and are known as a significant health problem in the world. The authors
used cluster analysis and the DBSCAN algorithm. Medical researchers and
pharmaceutical companies may utilize these results and test these relationships along
with their clinical studies.

In paper #10 “Resources for Studying Statistical Analysis of Biomedical Data and
R”, Kobayashi [67] introduces some online resources to help medical practitioners
with little or no background in predictive statistics, to learn basic statistical concepts
and to implement data analysis methods on their personal computers by using R, a
high-level open source computer language that requires relatively little training. This
offers medical practitioners an opportunity to identify effectiveness of treatments for
patients using summary statistics, so to offer patients more personalized medical
treatments based on predictive analytics. Some open problems emphasized by
Kobayashi include Privacy Preserving Data Mining (PPDM) algorithms and High
Speed Medical Data Analysis.

In paper #11 “A Kernel-based Framework for Medical Big-Data Analytics”,
Windridge & Bober [68] point out that issues of incompleteness and heterogeneity are
problematic and that data in the biomedical domain can be as diverse as handwritten
notes, blood pressure readings, and MR scans, etc., and typically very little of this
data will be co-present for each patient at any given time interval. Windridge & Bober
therefore advocate a kernel-based framework as being most appropriate for
handling these issues, using the neutral point substitution method to accommodate
missing inter-modal data, and advocates for the pre-processing of image based MR
data a deep learning solution for contextual areal segmentation, with edit-distance
based kernel measurement, used to characterize relevant morphology. Moreover, the
authors promote the use of Boltzmann machines.
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In paper #16 “Biomedical Text Mining: Open Problems and Future Challenges”
Holzinger et al. [69] provide a short, concise overview of some selected text mining
methods, focusing on statistical methods (Latent Semantic Analysis, Probabilistic
Latent Semantic Analysis, Latent Dirichlet Allocation, Hierarchical Latent Dirichlet
Allocation, Hierarchical Latent Dirichlet Allocation, Principal Component Analysis),
but also introduces relatively new and promising text mining methods including
graph-based approaches and topological text mining. Although in our modern
graphic-driven multimedia world, the importance of text is often debated, it should
not be underestimated, as particularly in the medical domain “free text” is a very
important type of data for medical communication; however, the increasing volumes
of this unstructured information makes manual analysis nearly impossible, and calls
for machine learning approaches for text mining.

4.2.1 Area 3: Graph Based Data Mining

In paper #14 “Multi-touch Graph-Based Interaction for Knowledge Discovery on
Mobile Devices: State-of-the-Art and Future Challenges” Holzinger et al. [70]
provide an overview on graph-based knowledge representation: Graphs are most
powerful tools to map structures within a given data set and to recognize relationships
between specific data objects. Many advantages of graph-based data structures can be
found in the applicability of methods from network analysis, topology and data
mining (e.g. small world phenomenon, cluster analysis). Moreover, Holzinger et al.
present graph-based approaches for multi-touch interaction on mobile devices
(tablets, smartphones), which is particularly important in the medical domain, as a
conceptual graph analysis may provide novel insights on hidden patterns in data,
hence support interactive knowledge discovery. Amongst the open problems the
authors list the question “Which structural properties possess the multi-touch
interaction graphs?”, which calls for investigating graph classes beyond small world
and random networks.

In paper #13 “Sparse Inverse Covariance Estimation for Graph Representation of
Feature Structure”, Lee [71] states that higher dimensionality makes it challenging to
understand complex systems. The author reports on structure learning with the
Gaussian Markov random field, by identifying conditional independence structure of
features in a form that is easy to visualize and understand. The learning is based on a
convex optimization problem, called the sparse inverse covariance estimation, for
which many efficient algorithms have been developed in the past. When dimensions
are much larger than sample sizes, structure learning requires to consider statistical
stability, in which connections to data mining arise in terms of discovering common
or rare sub-graphs as patterns. Lee discusses the outcome of structure learning, which
can be visualized as graphs provide a perceivable way to investigate complex feature
spaces. He identifies two major open challenges for solving the sparse inverse
covariance estimation problem in high-dimensions: development of efficient
optimization algorithms and consideration of statistical stability of solutions.
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4.2.2  Area 4: Entropy Based Data Mining

In paper #12 “On Entropy-based Data Mining”, Holzinger et al. [72], start with some
basics on information entropy as measure for the uncertainty of data. Then the
authors provide a taxonomy of various entropy methods, whereby describing in more
detail: Approximate Entropy, Sample Entropy, Fuzzy Entropy, and particularly
Topological Entropy for finite sequences. Holzinger et al. state that entropy
measures have successfully been tested for analysing short, sparse and noisy time
series data, but that they have not yet been applied to weakly structured data in
combination with techniques from computational topology, which is a hot and
promising research route.

4.2.3 Area 5: Topological Data Mining

In paper #19 “Topological Data Mining in a Nutshell” [73] Holzinger presents a
nutshell-like overview on some basics of topology and data and discusses some
issues on why this is important for knowledge discovery and data mining: Humans are
very good at pattern recognition in dimensions of lower or equal than 3, this suggests
that computer science should develop methods for exploring this capacity, whereas
computational geometry and topology have much potential for the analysis of
arbitrarily high-dimensional data sets. Again, both together could be powerful beyond
imagination.

4.3  Area 6: Data Visualization

In paper #2 “Visual Data Mining: Effective Exploration of the Biological Universe”,
Otasek et al. [74] present their experiences with Visual Data Mining (VDM),
supported by interactive and scalable network visualization and analysis, which
enables effective exploration within multiple biological and biomedical fields. The
authors discuss large networks, such as the protein interactome and transcriptional
regulatory networks, which contain hundreds of thousands of objects and millions of
relationships. The authors report on the involved workflows and their experiences
with biological researchers on how they can discover knowledge and new theories
from their complex data sets.

In paper #7 “On Computationally-enhanced Visual Analysis of Heterogeneous
Data and its Application in Biomedical Informatics”, Turkay et al. [75] present a
concise overview on the state-of-the-art in interactive data visualization, relevant for
knowledge discovery, and particularly focus on the issue of integrating computational
tools into the workplace for the analysis of heterogeneous data. Turkay et al.
emphasize that seamlessly integrated concepts are rare, although there are several
solutions that involve a tight integration between computational methods and
visualization. Amongst the open problems, the most pressing one is the application of
sophisticated visualization techniques, seamlessly integrated into the (bio)-medical
workplace, useable and useable to the medical professional.
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In paper #9 “Interactive Data Exploration using Pattern Mining” van Leeuwen
[76] reports on challenges in exploratory data mining to provide insight in data, i.e. to
develop principled methods that allow both user-specific and task-specific
information to be taken into account, by directly involving the user into the discovery
process. The author states that pattern mining algorithms will need to be combined
with techniques from visualization and human-computer interaction. As ultimate goal
van Leeuwen states to make pattern mining practically more useful, by enabling the
user to interactively explore the data and identify interesting structures.

4.4  Area 7: Privacy, Data Protection, Safety and Security

In the biomedical domain it is mandatory to consider aspects of privacy, data
protection, safety and security, and a fair use of data sets, and one paper is particularly
dealing with these topics:

In paper #17 Kieseberg et al. [77] discuss concerns of the disclosure of research
data, which raises considerable privacy concerns, as researchers have the
responsibility to protect their (volunteer) subjects and must adhere to respective
policies. The authors provide an overview on the most important and well-researched
approaches to deal with such concerns and discuss open research problems to
stimulate further investigation: One solution for this problem lies in the protection of
sensitive information in medical data sets by applying appropriate anonymization
techniques, due to the fact that the underlying data set should always be made
available to ensure the quality of the research done and to prevent fraud or errors.

5 Conclusion and Future Outlook

Some of the most important challenges in clinical practice and biomedical research
include the need to develop and apply novel tools for the effective integration,
analysis and interpretation of complex biomedical data with the aim to identify
testable hypothesis, and build realistic models. A big issue is the limited time to make
a decision, e.g. a medical doctor has in average five minutes to make a decision [78],
[79].

Data and requirements also evolve over time — we need approaches that seamlessly
and robustly handle change.

The algorithms must also handle incomplete, noisy, even contradictory/ambiguous
information, and they have to support multiple viewpoints and contexts.

Solutions need to be interactive, seamlessly integrating diverse data sources, and
able to scale to ultra-high dimensions, support multimodal and rapidly evolving
representations.

Major future research areas in HCI-KDD in the biomedical field include graph-
based analysis and pattern discovery, streaming data mining, integrative and
interactive visual data mining. Thus, solutions will need to use heuristics,
probabilistic and data-driven methods, with rigorous train-test-validate steps.
Especially the last point highlights the need for open data.
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It is paramount importance that the data is broadly available in usable formats —
without relevant reliable and clean data there is no data mining; without accessible
data we cannot assure correctness; without data, we cannot train and validate machine
learning systems. It is alarming to see an exponential trend in number of retracted
papers per year, and especially since the majority of them are fraud — 21.3% being
attributed to error and 67.4% to (suspected) fraud [80]: A detailed review of over
2,000 biomedical research articles indexed by PubMed as retracted by May, 2012
revealed that only 21.3% of retractions were attributable to error [80]. In contrast,
67.4% of retractions were attributable to misconduct, including fraud or suspected
fraud (43.4%), or duplicate publication (14.2%), and even plagiarism (9.8%) [80].
Incomplete, uninformative or misleading retraction announcements have led to a
previous underestimation of the role of fraud in the ongoing retraction epidemic.
Machine learning and data mining also plays a significant role in identifying outliers,
errors, and thus could contribute to ‘cleaning up’ science from fraud and errors.

Concluding, there are a lot of open problems and future challenges in dealing with
massive amounts of heterogeneous, distributed, diverse, highly dynamic data sets,
complex, high-dimensional and weakly structured data and increasingly large
amounts of unstructured and non-standardized information. The limits of our human
capacities makes it impossible to deal manually with such data, hence, efficient
machine learning approaches becomes indispensable.
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Abstract. Visual Data Mining (VDM) is supported by interactive and scalable
network visualization and analysis, which in turn enables effective exploration
and communication of ideas within multiple biological and biomedical fields.
Large networks, such as the protein interactome or transcriptional regulatory
networks, contain hundreds of thousands of objects and millions of
relationships. These networks are continuously evolving as new knowledge
becomes available, and their content is richly annotated and can be presented in
many different ways. Attempting to discover knowledge and new theories
within this complex data sets can involve many workflows, such as accurately
representing many formats of source data, merging heterogeneous and
distributed data sources, complex database searching, integrating results from
multiple computational and mathematical analyses, and effectively visualizing
properties and results. Our experience with biology researchers has required us
to address their needs and requirements in the design and development of a
scalable and interactive network visualization and analysis platform,
NAViGaTOR, now in its third major release.

Keywords: Visual Data Mining, Interactive Data Mining, Knowledge
Discovery, Scalable Network Visualization, Biological Graphs, Networks.

1 Introduction and Motivation

1.1  The Need for Visual Data Mining

One of the grand challenges in our “networked 21* century” is in dealing with large,
complex, and often weakly structured data sets [1], [2], and in big volumes of
unstructured information [3].

This “big data” challenge is most evident in the biomedical domain [4]: the
emergence of new biotechnologies that can measure many molecular species at once,
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large scale sequencing, high-throughput facilities and individual laboratories
worldwide produce vast amounts of data sets including nucleotide and protein
sequences, protein crystal structures, gene-expression measurements, protein and
genetic interactions, phenotype studies etc. [5]. The increasing trend towards
personalized medicine brings together data from very different sources [6].

The problem is that these data sets are characterized by heterogeneous and
diverse features. Individual data collectors prefer their own different schema or
protocols for data recording, and the diverse nature of the applications used results in
various data representations. For example, patient information may include simple
demographic information such as gender, age, disease history, and so on as non-
standardized text [7]; results of X-ray examination and CT/MR scan as image or
video data, and genomic or proteomic-related tests could include microarray
expression data, DNA sequence, or identified mutations or peptides. In this context,
heterogeneous features refer to the varied ways in which similar features can be
represented. Diverse features refer to the variety of features involved in each distinct
observation. Consider that different organizations (or health practitioners) have their
own schemata representing each patient. Data heterogeneity and diverse
dimensionality issues then become major challenges if we are trying to enable data
aggregation by combining data from all sources [8], [9].

This increasingly large amount of data requires not only new, but efficient and
most of all end-user friendly solutions for handling it, which poses a number of
challenges [10]. With the growing expectations of end-users, traditional approaches
for data interpretation often cannot keep pace with demand, so there is the risk of
modelling artefacts or delivering unsatisfactory results. Consequently, to cope with
this flood of data, interactive data mining approaches are vital. However, exploration
of large data sets is a difficult problem and techniques from interactive visualization
and visual analytics may help to assist the knowledge discovery process generally and
data mining in particular [11], [12], leading to the approach of Visual Data Mining
(VDM).

1.2 A Short History of Visual Data Mining

One of the first VDM approaches was in a telecommunications application. This
application involved a graph-based representation and a user interface to manipulate
this representation in search of unusual calling patterns. This approach proved
extremely effective for fraud detection [13].

A further work by Alfred Inselberg (1998) [14] proposed the use of parallel
coordinates for VDM, which transforms the search for relations into a 2-D pattern
recognition problem. Parallel coordinates are a splendid idea for visualizing multi-
dimensional geometry [15]; a good overview on parallel coordinates can be found in
[16], however, to date they are still rarely used in biomedical applications.

The field of VDM started to expand to diverse domains, as highlighted in a special
issue in issue 5 of the 1999 volume of IEEE Computer Graphics and Applications
[17] including a work on visual mining of high-dimensional data [18]. A state-of-the
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art analysis was provided by Keim et al. at the EUROGRAPHICS 2002 [19]. A good
overview of VDM can be found in [20]. A recent overview on VDM for knowledge
discovery, with a focus on the chemical process industry can be found in [21] and a
recent work on VDM of biological networks is [12]. A very recent medical example
for interactive pattern visualization in n-dimensional data sets by application of
supervised self- organizing maps is [22]. A general overview on the integration of
computational tools in visualization for interactive analysis of heterogeneous data in
biomedical informatics can be found in [23].

1.3  Interactivity and Decision Support

For data mining to be effective, it is important to include the human expert in the data
exploration process, and combine the flexibility, creativity, and general knowledge of
the human with the enormous computational capacity and analytical power of novel
algorithms and systems. VDM integrates the human in the data exploration process; it
aims to effectively represent data visually to benefit from human perceptual abilities,
allowing the expert to get insight into the data by direct interaction with the data.
VDM can be particularly helpful when little is known about the data and the
exploration goals are ill-defined or evolve over time. The VDM process can be seen
as a hypothesis generation process: the visualizations of the data enable the user to
gain insight into the data, and generate new hypotheses to support data mining and
interpretation [24], [25].

VDM often provides better results, especially in cases where automatic algorithms
fail [11]. However, it is indispensable to combine interactive VDM with automatic
exploration techniques; hence we need machine learning approaches due to the
complexity and the largeness of data, which humans alone cannot systematically and
comprehensively explore. Consequently, a central goal is to work towards enabling
effective human control over powerful machine intelligence by the integration of both
machine learning methods and manual VDM to enable human insight and decision
support [26], the latter is still the core discipline in biomedical informatics [27].

2 Glossary and Key Terms

Biological Pathway Exchange (BioPAX): is a RDF/OWL-based language to represent
biological pathways at the molecular and cellular level to facilitate the exchange of
pathway data. It makes explicit use of relations between concepts and is defined as an
ontology of concepts with attributes [28].

CellML: is an open standard XML, for describing mathematical models, originally
created out of the Physiome Project, and hence used primarily to describe models
relevant to the field of biology [29, 30].

Graph dRawing with Intelligent Placement (GRIP): is based on the algorithm of
Gajer, Goodrich & Kobourov [31] and written in C++ and OpenGL, and uses an
adaptive Tcl/Tk interface. Given an abstract graph, GRIP produces drawings in 2D
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and 3D either directly or by projecting higher dimensional drawings into 2D or 3D
space [32].

KEGG Markup Language (KGML): is an exchange format of the KEGG pathway
maps, which is converted from the KGML+ (KGML+SVG) format. KGML enables
automatic drawing of KEGG pathways and provides facilities for computational
analysis and modeling of gene/protein networks and chemical networks [33].

Proteomics Standards Initiative Molecular Interaction XML format (PSI MI): was
developed by the Proteomics Standards Initiative (PSI) as part of the Human
Proteome Organization (HUPO) [34]. PSI-MI is the standard for protein—protein
interaction (PPI), intended as a data exchange format for molecular interactions, not a
database structure [35].

Protein-Protein Interactions (PPls): are fundamental for many biological functions
[36], [37]. Being able to visualize the structure of a protein and analyze its shape is of
great importance in biomedicine: Looking at the protein structure means to locate
amino acids, visualize specific regions of the protein, visualize secondary structure
elements, determine residues in the score or solvent accessible residues on the surface
of the protein, determine binding sites, etc. [38], [39].

Systems Biology Markup Language (SBML): is a language intended as future
standard for information exchange in computational biology and especially within
molecular pathways. The aim of SBML is to model biochemical reaction networks,
including cell signaling, metabolic pathways and gene regulation [40].

Visual Data Mining (VDM): is an approach for exploring large data sets by
combining traditional data mining methods with advanced visual analytics methods
and can be seen as a hypothesis generation process [14], [11], [41].

3 Representing Biological Graphs

3.1 A Constantly Changing Understanding

The functions of life on a sub-cellular level rely on multiple interactions between
different types of molecules. Proteins, genes, metabolites, all interact to produce
either healthy or diseased cellular processes. Our understanding of this network of
interactions, and the interacting objects themselves, is continuously changing; and the
network itself is evolving as we age or as disease progresses. Our methods for
discovering new relationships and pathways change as well.

NAViGaTOR 3 addresses these realities by having a very basic core rooted in
graph theory, with the flexibility of a modular plugin architecture that provides data
input and output, analysis, layout and visualization capabilities. NAViGaTOR 3
implements  this architecture =~ by  following the  OSGi standard
(http://www.osgi.org/Main/HomePage). Available API enables developers to expand
standard distribution by integrating new features and extending the functionality of
the program to suit their specific needs.
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3.2 Data Formats

The ability to share data effectively and efficiently is the starting point for successful
analysis, and thus several attempts have been made to standardize formats for such
data exchange: PSI-MI [35], BioPAX [42], KGML, SBML [40], GML, CML, and
CelIML [30].

Each of these formats has a different focus and thus uniquely affects the way a
particular network can be described. Some formats, like PSI, focus on describing
binary interactions. Others, such as BioPAX, can describe more complex topology,
allowing for many-to-many interactions and concepts such as meta-graphs. However,
the majority of biological data remains represented in tabular format, which can vary
wildly in content and descriptiveness.

NAViGaTOR 3 was designed with the knowledge that a researcher may need to
combine heterogeneous and distributed data sources. The standard distribution
supports the loading, manipulation, and storage of multiple XML formats and tabular
data. XML data is handled using a suite of file loaders, including XGMML, PSI-MI,
SBML, KGML, and BioPAX, which store richly-annotated data and provide links to
corresponding objects in the graph. Tabular data is stored using DEX [43], a
dedicated graph database from Sparsity Technologies (http://www.sparsity-
technologies.com/dex).

3.3 Biological Scale

A sense of the scale biologists might contend with in attempting to model protein
behavior can be seen in UniProt (http://www.uniprot.org), a database that documents
protein sequences. In its 2013_10 release, UniProt contained 20,277 sequences for
human proteins, while 12D (http://ophid.utoronto.ca/i2d) [44], a database that includes
interactions between these proteins, in its 2.3 version contains 241,305 experimental
or predicted interactions among 18,078 human proteins. If the protein interaction
network is integrated with other data of similar size, such as transcriptome regulatory
network, microRNA:gene regulation network, or drug:protein target network, the
visualization can become challenging, not only because of the size of the graph, but
due to rich annotation and underlying topology of these ‘interactomes’.

Often, even the best case layouts produce a gigantic ‘hairball’ in which a user is
unable to trace paths between different objects in the network. It is important to keep
in mind that such a network is still limited in scope; it doesn’t take into account
genetic, metabolite or drug interactions. In a true ‘systems biology’ view, we need to
integrate multiple layers of these individual networks into a larger, comprehensive,
typed graph. Tools that attempt to analyse this data must take this scale into account.
To be useful, visualization tools, and particularly interactive visualization tools must
effectively handle networks of this size. In the case of NAViGaTOR, DEX can handle
networks of up to 1 Billion objects. Visualizing networks is handled through JOGL
(http://jogamp.org/jogl/www/), a library that speeds up large network rendering by
taking advantage of the acceleration provided by GPU hardware whenever it is
available.
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4 Visualization, Layout and Analysis

Exploring data is often a combination of analysis, layout and visualization. We have
found that being able to utilize and combine all three of these aspects quickly and
efficiently simplifies and in turn enables effective research.

A central idea to NAViGaTOR 3’s architecture is providing multiple views of the
data. While the structure of the network and its annotations remains constant,
NAViGaTOR 3 allows the user to view and manipulate it as a spreadsheet of nodes or
edges, a matrix, or an OpenGL rendered graph. Individual views allow a user to make
a selection of objects, which can then be transferred to another view. For example, a
user can select the top 10 rows of a spreadsheet that sorts the network’s nodes by a
measurement such as gene expression, and then transfer that selection to the OpenGL
view, allowing them to see those nodes in the context of their neighbors.

The most basic level of analysis supports access, search and data organization. The
tabular data associated with a network can be searched using DEX queries, allowing
for basic numeric searches (equals, greater than, less than, etc.) and text (exact match,
regular expression, etc.). The spreadsheet view supports effective searching, data
sorting and selecting. XML data benefits from rich data annotation, and can be
searched using XPath, a dedicated XML query language.

XPath is extremely versatile, mixing logical, numeric and text queries in a single
language. It also handles translation of XML data into tabular data.

Network structure provides additional insights, as it relates to the function of
proteins that form it [45], [46]. Examining the network structure can range from
searches for node neighbors and nodes of high degree to more mathematically
complex operations such as all pairs shortest path calculations, flow analysis, or
graphlets [47].

A key part of NAViGaTOR’s tool set is the subset system, which enables the storage
of selections from various graph views. Once they are stored, they can be manipulated
with set arithmetic operations (union, difference, intersection). This allows the user to
intelligently combine the results of searches and selections from other views.

Further strengthening the link between visualization and data is the concept of
filters. Filters are visualization plugins for the OpenGL view that allow a user to map
node or edge feature to a visual attribute, i.e., enabling interactive exploration of
typed graphs by seamlessly combining analysis and human insight. For example, a
confidence value for an edge can be translated into its width, color, shape or
transparency. Similarly, node height, width, color, transparency, outline color, and
outline size can be used to visualize gene, protein or drug characteristics and
measurements. Thus, layout and presentation of rich, annotated networks can be
easily modified, enabling new insight into complex data.

Graph layout is essential for effective visual analysis of complex graphs.
NAViGaTOR 3 uses a combination of manual and automated layout tools. The
standard distribution includes several versions of the GRIP (Graph dRawing with
Intelligent Placement) [48], [49], [50] layout algorithm, which enables fast layouts of
tens of thousands of nodes and edges. For example, visualizing protein interaction
network topology changes in the presence or absence of specific receptors [51].



Visual Data Mining: Effective Exploration of the Biological Universe 25

Besides GRIP, the user also has a selection of circular, arc and linear layouts, as well
as moving, scaling and rotating tools to manually place nodes in a desired topology.

Usually, combinations of these layouts are necessary to effectively visualize the
network [12]. Large and complex biological networks, even with the benefit of the
GRIP layout, are usually tangled and poorly interpretable graphs. Analyzing network
topology (hubs, graphlets, cliques, shortest path, flow, etc.) provides rich topological
features that may aid in discovery and visualization of important insights. Researchers
may have to map a data attribute to transparency to make areas of interest visible, or
use an overlap of searches to color a selection of nodes or edges. Being able to use
different analysis and layout methods combined with user’s insight provides the
flexibility to highlight desired results in the network, or discover novel insights and
form hypotheses. Thus, NAViGaTOR extends the basic concept of network
visualization to visual data mining.

To demonstrate the versatility of NAViGaTOR 3 we created an integrated network
by combining metabolic pathways, protein-protein interactions, and drug-target data.
We first built a network using metabolic data collected and curated in our lab,
combining several steroid hormone metabolism pathways: androgen, glutathione, N-
nitrosamine and benzo(a)pyrene pathway, the ornithine-spermine biosynthesis
pathway, the retinol metabolism pathway and the TCA cycle aerobic respiration
pathway. The reactions in the dataset are in the following format: metabolite A -
enzyme —-> metabolite B. As shown in Figure 1, the different pathways are integrated
and highlighted with different edge colours. The edge directionality highlights
reactions and flow between the individual pathways.

As the dataset is centred on steroid hormone metabolism, we decided to include
data from hormone-related cancers [52]. In particular, we retrieved the list of FDA-
approved drugs used for breast, ovarian and prostate cancer from the National Cancer
Institute website (http://www.cancer.gov/). We then searched in the DrugBank
(http://www.drugbank.ca [53]) for targets for each drug and integrated them in the
network.

Three targets are enzymes that are part of the original network (HSD11BI,
CYPI19A1, CYP17A1l). Polymorphisms in CYP19 have been associated with
increased risk of breast cancer [54], while polymorphisms in CYP17 have been linked
to increased risk of prostate cancer [55].

CYP17 inhibitors are considered key drugs for castration resistant prostate
tumours, due to their ability to block the signaling of androgen receptors even when
the receptor expression is increased [56].

Thanks to the ability of NAViGaTOR to include various types of nodes, we can
also see how frequently DNA is a target. In fact, many of the drugs used for breast
and ovarian cancer treatment are DNA intercalating agents [57].

To further investigate whether drug targets are directly connected to the metabolic
network we searched for direct interactions between the two types of nodes using
protein interactions from I2D and identified three such targets (TUBA1, TOP1 and
EGFR).



26 D. Otasek et al.

Fig. 1. Partially explored network — connecting drugs and metabolism. A network comprising
metabolites, enzymes, and drugs in the early stages of exploration, colored according to the
pathway (see complete overview in Figure 2).

EGFR overexpression appears in breast cancer, especially in triple-negative and in
inflammatory breast cancer, and is associated with large tumor size, poor
differentiation, and poor clinical outcomes [58]. EGFR inhibitor treatments (e.g.,
Erlotinib or Cetuximab) have been suggested for triple-negative breast cancer
patients, and a few clinical trials showed promising results [59].

It would be interesting to study the effect of EGFR mutations in this network, to
evaluate if they can have an effect on the patient’s response to inhibitors similar to
response to Erlotinib in non-small-cell-lung cancer patients [60].
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Interestingly, several CYP and UGT proteins are key connectors of different
metabolic pathways (highlighted in green in Figure 2), and have a biologically
important role in the network. Both families of proteins have important roles in
metabolic pathways (CYP450 are ubiquitously expressed in the body as they catalyze
the fundamental carbon—oxidation reaction used for unnumbered metabolic reactions,
while UGTs are used in reactions that form lipophilic glucuronides from a high
variety of non—membrane-associated substrates, either endogenous or xenobiotics and
has evolved as a highly specialized function in higher organisms) but they have
mainly been associated with drug metabolism, in their wild-type or polymorphic
forms [61], [62], [63].

This example shows only one of the several possible integrated networks that can
be built using NAViGaTOR 3, and highlights the role of the analysis of the network
structure in pointing out major biological players.
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Fig. 2. Completed network — the same network as in Figure 1 with drugs and biologically
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Biological networks will continue becoming larger and more complex thanks to the
higher throughput of novel technologies and increased data integration. This
highlights the need for tools that scale up to large and complex networks. Moreover,
and maybe more importantly, this highlights the necessity for tools with the ability to
integrate different -omics data collections, to discover cross-talk and to build an
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increasingly more complete representation of the real cell or an organism.
NAViGaTOR fits perfectly in this context and provides the researcher with the
functionality needed to advance data discovery at the same speed of high-throughput
data production.

5 Open Problems and Future Work

The deployment of VDM techniques in commercial products remains sparse — and in
today’s traditional hospital information systems such approaches are completely
missing. Future work must involve the tight integration of sophisticated interactive
visualization techniques with traditional techniques from machine learning with the
aim to combine fast automatic data mining algorithms with the intuitive power and
creativity of the human mind [64]. A further essential aspect at the clinical workplace
is to improve both the quality and speed of the VDM process. VDM techniques also
need to be tightly integrated with available systems used to manage the vast amounts
of relational, semi-structured and unstructured information such as the typical patient
records [3] and omics data [9]. The ultimate goal is to broaden the use of visualization
technologies in multiple domains, leading to faster and more intuitive exploration of
the increasingly large and complex data sets. This will not only be valuable in an
economic sense but will also enhance the power of the end user, i.e. the medical
professional.

There are several reasons for slower commercial acceptance of VDM [65],
including multi-disciplinarity and the resulting lack of expertise, and resistance to
changing system architectures and workflows. While so-called guided data mining
methods have been produced for a number of data mining areas including clustering
[66], association mining [67] and classification [68], there is an architectural aspect to
guided data mining, and to VDM in general, which has not been adequately explored
so far, and which represents a rich area for future research.

Another area of future work for the VDM community is quantification. Since
VDM methods can be more time-consuming to develop and special expertise is
needed for their effective use, successful deployment requires proper metrics that
demonstrates time improvement or quality improvement over non-visual methods.

Technological challenges are present in problem solving, decision support and
human information discourse; according to Keim et al. (2008) [65], the process of
problem solving supported by technology requires the understanding of technology on
the one hand, and comprehension of logic, reasoning, and common sense on the other
hand. Here the danger lies in the fact that automatic methods often fail to recognize
the context, if not explicitly trained.

A grand challenge is to find the most appropriate visualization methodology and/or
metaphor to communicate analytical results in an appropriate manner. A recent
example on Glyph-based visualizations can be seen in [69], while noting that most
often such approaches are limited to a certain domain.

User acceptability, which is also on Keim’s 2008 list is an additional grand
challenge: many sophisticated visualization techniques have been introduced, but they
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are not yet integrated in the clinical workplace, mainly due to end users’ refusal to
change their routine — this is most apparent in the medical domain [70]; an often
ignored aspect in that respect is the previous exposure to technology [71]; in
particular elderly end users are not so enthusiastic in adopting new technologies to
their daily routine. Consequently, it is very important that advantages of VDM tools
are presented and communicated to future users to overcome such usage barriers,
taking usability engineering into full account [72].

Faced with unsustainable costs and enormous amounts of under-utilized data,
health care needs more efficient practices, research, and tools to harness the full
benefits towards the concept of personalized medicine [73].

A major challenge lies in the development of new machine learning methods for
knowledge discovery in protein-protein interaction sites, e.g. to study gene regulatory
networks and functions. However, when applied to such big data, the computational
complexities of these methods become a major drawback. To overcome such
limitations Extreme Learning Machines provide a trade-off between computational
time and generalization performance [74].
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1 Introduction

The original idea behind the EAs goes back to the early days of computer science [1]
and started with some initial thoughts on adaptive systems introduced by John H.
Holland [2]. Since the 1980ies, EAs have been used to address optimization problems
due to their robustness and flexibility, especially in fields where traditional greedy
algorithms did not provide satisfactory results. A typical example can be found in [3]
in finding near-minimal phylogenetic trees from protein sequence data; a good Web-
based tool for the display, manipulation and annotation of such phylogenetic trees is
described in [4].

Traditional evolutionary paradigms are usually divided into two groups according
to the principle invoked to explain the biological change: While Lamarck (see section
3.3) proposed the inheritance of acquired characteristics; Darwin (see section 3.2)
underlines the role of selection on random genetic variation. A Lamarckian
Algorithm, for example, would have nothing to do with selection.

Rather than referring to Darwin's original work [5], computer scientists use terms
like “natural selection theory”, “natural genetics”, “the genetic theory of natural
selection”, etc., because EAs are inspired from the selection and genetic principles
observed in nature. However, EAs do not prove anything with respect to the
evolution in nature presumed in the original work by Darwin. So, a good question is
why are we speaking then of “evolutionary algorithms”?

One aim of this paper is to shortly introduce to computer scientists the original
work of Darwin, and to contrast these ideas to an earlier evolution theory of Lamarck,
which might be even less familiar to the computer science community, but which has
started to gain some popularity among researchers in evolutionary computing in
recent years. For example, a search in the Web of Science repository, with the words
“evolutionary algorithms” in the title, returns 1,886 results (as of February, 19, 2014).
The oldest contribution is a paper in Lecture Notes in Economics and Mathematical
Systems dating back to 1991 [6], which, interestingly, got no citation so far; the
newest is a contribution in the April 2014 issue of the Journal of Industrial
Management Optimization [7]; and the paper with the highest number of citations is
in the Nov. 1999 issue of the IEEE Transactions on Evolutionary Computation [8].

This paper is organized as follows: First, we define the key terms to ensure mutual
understanding. Then, we contrast the work of Darwin and Lamarck and focus on
some computational aspects, because it will be necessary to define a new terminology
for the Lamarckian version of an evolutionary algorithm. In the central part of the
paper, we describe the state-of-the-art in EAs, where we shortly describe the main
classes of current EA approaches. We finally stimulate a discussion on the use of EAs
for Knowledge Discovery and Data Mining tasks, by presenting current challenges in
the area and some new “hot ideas” that may inspire future research.

2 Glossary and Key Terms

Classification: Computational learning process to identify the class or category (from
a set of possible classes) to which a new observation belongs, on basis of a training
set containing observations whose category memberships are known.
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Clustering: Grouping a set of objects in such a way that objects in the same group
(or cluster) are more similar to each other than to those in other groups (clusters).

Epigenetics: is the study of heritable changes in genes, not caused by changes in
the DNA. Whereas genetics is based on changes to the DNA sequence (the genotype),
the changes in gene expression or cellular phenotype of epigenetics have other causes,
therefore the prefix epi- (Greek: eni- outside) [9], [10].

Evolution: The change of inherited characteristics of biological populations over
successive generations.

Evolutionary Computation (EC): Subfield of computational intelligence that
involves mainly optimization with a metaheuristic or stochastic character inspired
from biological processes observed in nature.

Evolutionary Algorithm (EA): An algorithm that uses mechanisms inspired by
biological evolution, such as reproduction, mutation, recombination, and selection.

Genetic Algorithm (GA): Search heuristic that mimics the processes from natural
genetics to generate useful solutions in optimization and search problems.

Genetic Programming (GP): Set of genetic operations and a fitness function to
measure how well a computer program has performed a task, and used to optimize a
population of computer programs.

Knowledge Discovery (KDD): Exploratory analysis and modeling of data and the
organized process of identifying valid, novel, useful and understandable patterns from
data sets.

Machine Learning: The discipline concerned with methods and systems that can
built and used to learn from data; a subfield of computer science.

Multi-Objective Optimization: aka Pareto optimization, involves more objective
functions to be optimized simultaneously.

Optimization: is the selection of a best solution to a given problem (with regard to
some criteria) from a set of available alternatives.

Phylogenetic tree: is a branching tree diagram displaying the evolutionary
relationships among biological species [11], [12].

3 Background

3.1 Basic Principles

The fundamental principle of evolutionary algorithms is to use ideas inspired by
selection and genetic mechanisms observed in nature to find the best solution for a
given optimization problem. Consequently, EAs include a class of optimization
techniques that imitate natural selection principles and social behavior in nature, and
embrace genetic algorithms, swarm optimization algorithms, ant colony algorithms,
bacteria foraging algorithms, to name only a few.

Today, EAs field has grown to represent a big branch of computational intelligence
and machine learning research [13]. Evolutionary methods are used in many different
research fields such as medicine [14], genetics [15], or engineering [16], and there are
nearly countless application areas of EAs, due to their adaptive nature and ability in
solving difficult optimization problems [17], [18], [19].
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EAs scale well into high dimensions, are robust to noise and are in general a good
choice for problems where traditional methods do not provide a solid foundation.
However, due to the global search process of evolutionary methods, an optimal
solution within finite time cannot be guaranteed. Before we continue with recent
state-of-the-art on EAs, we will shortly look back into history first.

3.2 Darwin’s Theory

The theory of evolution, which Charles Darwin (1809—1882) presented in 1859 in his
book "On the origin of species" [5] can be summarized with a simple algorithm:
Mutation — variability — competition — selection — inheritance.

Fitness: A key concept in Darwinian evolution is the idea of fitness, or the
capability of organisms to survive and reproduce. Genomic variations in the form of
mutation or recombination could cause changes in fitness. Fitter organisms are
positively selected and their genomic information is inherited by their descendants.
The descendants inherit the selected variations and the phenotypic traits associated
with them. The phenotypic variability is then caused by inherited mutations in the
DNA sequence. Similar to individuals, there is also a competition among the alleles,
for the presence in the DNA of the population. Alleles are the possible genetic
variations of a gene that are present in the population. Depending on how successful
the carriers of this specific allele are, after several generations it will either be fixed or
die out — therefore, disappear from the gene pool. However, the success of an allele
carrier only depends on the allele, if it occurs phenotypically in morphological,
physiological or ethological terms, therefore, has an influence on appearance, body
function or behavior of the organism in question. Consequently, in Darwinism, the
evolution is only a secondary process. The organisms do not actively adapt to their
environment, but out of a variety of different characteristics and manifestations, the
ones that are selected are those that give their bearers an advantage in survival or
reproduction. As has already been emphasized above, what a central role the selection
plays in Darwinism, it is essential to look at the different types of selection:

Natural Selection: This is the selection by biotic or abiotic environmental factors.
Abiotic factors for example include climate, biotic factors include pressure from
predators. Darwin used the term as opposed to artificial selection and emphasized that
natural selection must end with the death or incapacity of reproduction of the
organism. “(...) for of the many individuals of any species which are periodically
born, but a small number can survive. I have called this principle, by which each
slight variation, if useful, is preserved, by the term of Natural selection (...)” [5].

Sexual Selection: In modern evolutionary biology, sexual selection is counted
among natural selection. Darwin himself described sexual selection as “less rigorous”
than natural selection because it does not decide over life and death, but on the
number of offspring, which is only indirectly crucial for the survival or success of a
species. Sexual selection is the competition within a species to reproduce, hence, the
efforts of the males to impress the females and the males fighting each other for the
right to mate. The structures and trades resulting from these processes do not always
coincide with natural selection, but often are even contradictory to it. Well known



Darwin or Lamarck? Future Challenges in Evolutionary Algorithms 39

examples of such structures are the tail feathers of a male peacock and the antlers of a
male deer. As for the survival of a species, however natural selection is the stronger
force.

Artificial Selection: Artificial selection occurs when humans select animals with
desired characteristics and breed them. The many breeds of dogs and horses are a
result of artificial selection.

Gene Selection: It is of great importance in modern evolutionary research, as
individual alleles compete for the maximum frequency in the population. In modern
evolutionary biology, gene selection has replaced the selection of individuals as
postulated in the theory of classical Darwinism, where individuals are selected
because of phenotypic characteristics.

Stabilizing selection: eliminates individuals with an extreme value of a specific
characteristic, for example size. A possible scenario would be a pond with fish in
different sizes, where the small fish are prayed on by birds and the large fish get
caught by fishermen. Therefore medium sized fish will become a majority within the
pond.

Distributive Selection: This is the exact opposite of stabilizing selection, because it
eliminates individuals with mediocre value of a certain characteristic. If we return to
our exemplary pond of fish, this time the medium sized fish will get prayed on by
bigger birds. On the other hand the extreme fish — the small and the big — will survive.

Directional Selection: This type of selection is particularly interesting and aimed at
one side of the extremes and the mediocre; e.g., in our exemplary pond directional
selection, if an otter preyed on small and medium sized fish. Thus, the chances of
survival increase for the fish with their size. The bigger the safer. Under such a kind
of selective pressure this species of fish will gradually increase in size.

Hard selection: This refers to selective pressure at which an individual is
eliminated if it does not reach a certain value, such as size or color. For example, all
fish bigger than 30 cm will be caught in the nets of fishermen.

Soft selection: This does not use an absolute value, but a ratio. In our fish example
soft selection would mean the biggest fish will be caught, no matter how big they are
exactly.

3.3 Lamarck’s Theory

However, Darwinism was not the only theory of evolution of the time. In addition to
the catastrophism of Georges Cuvier (1769-1832), there is also Lamarckism, which
states, unlike Darwinism, that selection is not the driving force of evolution, but the
inheritance of acquired characteristics or inherited “effort” of the organisms
themselves. Jean-Baptiste de Lamarck (1744-1829) assumed that appropriate
characteristics arise from the desire of the organisms to achieve them (strive for
perfection).

Unlike Darwinism, where evolution is only a result of competition and selection, in
Lamarckism the organisms themselves control evolution. This is accomplished
through practice, training, and the frequent use of specific organs. Lesser used organs,
however, wither with time. The most popular example to illustrate the idea
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Lamarckism is the evolution of the giraffe’s neck: The giraffe is striving to reach the
highest leaves, and stretched her neck. This acquired trait is inherited by her
descendants, who again stretch their necks. However, this very simple explanation of
a deliberate adaptation results in some questions from modern biological perspective:
Why should organisms have the desire to change? Can new structures be build trough
training? By what means is it decided which adaptions will be passed on? Why does
not an amputated leg get inherited? In biology, Lamarckism would be possible if there
was a mechanism that translates phenotypic changes into the sequence of the
responsible gene. However, Lamarckism should not be entirely rejected, as it can
provide some answers, especially in modern genetics and medicine. In epigenetics —
which very early dealt with questions of evolution [20],[21], it was found that there
are special traits which can be inherited without being part of the genetic code; That
would, for example, explain a possible higher function of the thumb in the upcoming
post-millennial younger generations (“Net Gen” [22]) due to frequent use of text
messaging on mobile phones, which is being allegedly claimed by some people, but
still to be confirmed. The possibility that acquired behavior or marks can be passed
from parents to children is in serious debate and the advent of epigenetics is hailed as
a profound shift in our understanding of inheritance, i.e. that genes also have a kind of
“memory” [23], [24], epigenetics being an upcoming hype in medical research [25],
with a very recent example in cancer research found here [26].

4 Brief Survey on Evolutionary Algorithms

4.1 Why Evolutionary Algorithms?

Due to the adaptive and robust nature of performing a global instead of a local search
for solutions in the search space, which improves their handling of interactions
between attributes [27], methods based on evolutionary algorithms are being used in a
wide array of different research fields. They are mostly used for traditional KDD
tasks, such as clustering and classification as well as for optimization. Another benefit
of evolutionary methods is the possibility of using them for multi-objective
optimization, making them well suited for many real-world use-cases where
simultaneous optimization of several objectives is of importance [28]. There are many
different algorithms in the universe of evolutionary methods, but the most prevalent
are genetic algorithms and genetic programming which we describe in section 4.4.

4.2  Biological Sciences versus Computational Sciences

Darwin explains in his book “The Origin of Species by Means of Natural Selection, or
the Preservation of Favoured Races in the Struggle for Life” [5] the diversity and
complexity of living organisms: Beneficial traits resulting from random variation are
favored by natural selection, i.e. individuals with beneficial traits have better chances
to survive, procreate and multiply, which may also be captured by the expression
differential reproduction. In order to understand evolutionary algorithms, some basic
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notions are important, which will highlight the applicability of biological principles to
computer science. Good resources for further details are: [13], which is also available
in German [29], and [30], [31], [32], [33].

Evolutionary algorithms operate on a search space S, where S denotes a given set.
Points are assigned via an objective function f. In the context of evolutionary
algorithms, this is usually called fitness function f:S — R, where R is the set of
arbitrary possible fitness values, and the evolutionary algorithm operates on a
collection of points from S, called a population P. Each member of the population
(points in the search space) is called individual. A number ¢ € N is used to denote
the size of the population, i.e. u = |P].

A population is a multiset over S, i.e., it may contain multiple copies of
individuals. Since the population changes from generation to generation, we denote
the population at the #-th generation as P,. Choosing the first population, Py, at the
beginning is called initialization.

Table 1. Biology vs Computing: basic evolutionary notions in the biological vs. computational
sciences; compare with Kruse et al. (2013) [13]

NOTION BIOLOGICAL UNIVERSE COMPUTATIONAL UNIVERSE
Allele “Value” of a gene Value of a information object
Chromosome DNA, protein, and RNA sequence in | Sequence of information objects
cells (describes the “construction plan” | (describes the “construction plan™ and
and traits of an individual) “traits of an individual™)

Fitness Aptitude/conformity of a living Aptitude/quality of a solution
organism, determines chances of candidate, determines chances of
survival and reproduction survival and reproduction

Gene Part of a Chromosome, as a Information object, e.g. a bit, a

fundamental unit of inheritance, which | character, number etc., fundamental
determines a (partial) characteristic of |unit of inheritance, which determines a

an individual (partial) characteristic of an individual
Generation Population at a point in time Population at a point in time
Genotype Genetic constitution of a living Encoding of a solution candidate
organism
Individual Living organism Solution candidate
Locus position of a gene, at each position in a | position of an information object, at

Chromosome there is exactly one gene |each position in a Chromosome there
is exactly one gene

Phenotype Physical appearance of a living Implementation or application of a
organism solution candidate

Population Set of living organisms Bag or multi-set of Chromosomes

Reproduction Creating offspring of one or multiple |Creating (child) chromosomes from

(usually two) parent organisms one or multiple (parent) chromosomes
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For each member x of the population, its fitness f(x) is computed and stored. The
first step in each generation is to select some individuals from the population that will
be used to create new points in the search space. These individuals are referred to as
parents. This process is called selection for reproduction. Often this selection is done
fitness-based, i.e., the chances of individuals to become parents increase with their
fitness. Then some random variation is applied to the parents, where small changes
are more likely than large changes [30].

4.3  Foundations of Evolutionary Algorithms

As already mentioned, the basic idea of an evolutionary algorithm is to apply
evolutionary principles to generate increasingly better solution candidates in order to
solve an optimization problem. This may be achieved by evolving a population of
solution candidates by random variation and fitness-based selection of the next
generation. According to [13], an EA requires the following building blocks:

an encoding for the solution candidates,

a method to create an initial population,

a fitness function to evaluate the individual solutions (chromosomes),
a selection method on the basis of the fitness function,

a set of genetic operators to modify chromosomes,

a termination criterion for the search, and

values for various parameters.

The (natural) selection process of biological evolution can be simulated by a
method for selecting candidate solutions according to their fitness, i.e., to select the
parents of offspring that are transferred to the next generation. Such a selection
method may simply transform the fitness values into a selection probability, such that
better individuals have higher chances of getting chosen for the next generation. The
random variation of chromosomes can be simulated by so-called genetic operators
that modify and recombine chromosomes, for example, mutation, which randomly
changes individual genes, and crossover, which exchanges parts of the chromosomes
of parent individuals to produce offspring. While biological evolution is unbounded,
we need a criterion to decide when to stop the process in order to retrieve a final
solution. Such a criterion may be, for example, that the algorithm is terminated (1)
after a user-specified number of generations have been created, (2) there has been no
improvement (of the best solution candidate) for a user-specified number of
generations, or (3) a user-specified minimum solution quality has been obtained. To
complete the specification of an evolutionary algorithm, we have to choose the values
of several parameters, which include, for example, the size of the population to
evolve, the fraction of individuals that is chosen from each population to produce
offsprings, the probability of a mutation occurring in an individual etc. [13]. The
general procedure of such an evolutionary algorithm may look as presented in table 2:
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Table 2. General Scheme of an Evolutionary Algorithm

procedure evolutionary algorithm;
begin
t « 0; (* initialize the generation counter *)
initialize pop(t); (* create the initial population *)
evaluate pop(t); (* and evaluate it (compute fitness) *)
while not termination criterion do (* loop until termination *)
t o« t+1; (* count the created generation *)
select pop(t)from pop(t-1); (*select individuals
based on fitness*)
alter pop(t); (* apply genetic operators *)
evaluate pop(t); (* evaluate the new population *)
end

end

4.4  Types of Evolutionary Algorithms

4.4.1 Genetic Algorithms (GA)

Genetic algorithms (GAs) are a machine learning method inspired from genetic and
selection mechanisms found in nature [34], which conduct a randomized and parallel
search for solutions that optimize a predefined fitness function [35].

In nature, the genetic information is defined in a quaternary code, based on the four
nucleotides Adenine, Cytosine, Guanine and Thymine, stringed together in a DNA
sequence, which forms the basis of the genetic code [36]. In transferring this structure
to computer science, it seems natural to base all encodings on the ultimately binary
structure of information in a computer. That is, we use chromosomes that are bit
strings, to encode problem solutions, and exactly this is the distinctive feature of
genetic algorithms [37]. The algorithm performs a global search in the space of
solution candidates, where the space consists of data vectors. The first step is to
initialize the solution candidate space with randomly generated individual solutions.
At each iteration, the available candidates are mutated or crossed with other solutions
in order to create new candidates. At the end of each iteration, every individual
solution candidate is evaluated using a predefined fitness function. Consequently, the
fitness function is the core part of every evolutionary algorithm, and designed to find
out which solutions are the best fits for the problem. Once each individual has been
evaluated, the least fit candidates get dismissed, leaving only the best available
solutions in the population. This is Darwin’s principle of survival of the fittest in
solving computing problems. The loop of iterations is repeated until a predefined
stopping criterion has been reached. Stopping criteria can vary in their definition from
just the number of iterations to go through to a certain threshold of fitness value that
has to be reached within the solution space. For more details on GAs refer to [38],
[39], [40].
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4.4.2 Genetic Programming (GP)

Genetic programming (GP) differs from genetic algorithms mainly in the form of the
input and output values the algorithm needs and produces [41]. In the case of GP, the
values are not simple data points, but parts of functions or programs. The goal is to
find a procedure which solves the given problem in the most efficient way. The
algorithm itself works in the same way as described in the section above, where
initially there is a randomly generated space of candidate solutions (random programs
in this case), which are evolved using mutation and crossover processes, generating
new program trees. The end result is supposed to be a function or a program, which
can be used to solve a specific type of problem. An example of linear genetic
programming applied to medical classification problems from a benchmark database
compared with results obtained by neural networks can be found in [42].

4.4.3 Evolution Strategies (ES)

Evolution Strategies (ES) are a stochastic approach to numerical optimization that
shows good optimization performance in general and which goes attempt to imitate
principles of organic evolution in the field of parameter optimization [43]. In order to
improve the "self-adaptive" property of strategy parameters, Ohkura et al. (2001) [44]
proposed an extended ES called Robust Evolution Strategy (RES), which has
redundant neutral strategy parameters and which adopts new mutation mechanisms in
order to utilize selectively neutral mutations to improve the adaptability of strategy
parameters, a similar approach was proposed in [45] and more details can be found in
[46], [47], [48].

444 Swarm Intelligence (SI)

Swarm intelligence (SI) studies the collective behavior of self-organized systems
composed of many individuals interacting locally with each other and with their
environment, using decentralized control to achieve their goals. Swarm-based systems
have been developed in response to the observed success and efficiency of such
swarms in nature [49].

Approaches that came out as a result of studying the collective behavior of
populations of “simple agents”, i.e. individuals with limited abilities without central
control, can be employed in many different areas. They have been inspired by the
behavior of certain species of animals, especially social insects (ants, bees) and
animals that live and search for food in swarms, flocks, herds or packs (fish, birds,
deer, wolves, rabbits etc.) and also bacteria. Such swarms can find the shortest paths
to food sources, they can build complex nests like bee hives, hunt for prey (for
example, packs of wolves), and protect themselves against predators [13]. In joint
efforts, these animals are often able to solve complex problems — demonstrating
collective intelligence [50]. This is a recent and important research area in computer
science [51] which can be applied for many purposes, a prominent example being the
NASA crater finding [52] using human collective intelligence [53], [54].
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Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is an evolutionary computation technique
developed by Eberhart & Kennedy in 1995 [55], the concept being originated from
the simulation of a simplified social system, i.e. to graphically simulate the graceful
but unpredictable choreography of a bird flock.

Initial simulations were modified to incorporate nearest-neighbor velocity
matching, eliminate ancillary variables, and incorporate multidimensional search and
acceleration by distance. At some point in the evolution of this algorithm, it was
realized that the conceptual model was an optimizer. Through a process of trial and
error, a number of parameters extraneous to optimization were eliminated from the
algorithm, resulting in a very simple implementation [56], similar to a genetic
algorithm, where the system is initialized with a population of random solutions.

Unlike GAs, there is no mutation operator, although each potential solution is also
assigned a randomized velocity, and the potential solutions, called particles, are then
"flown" through the problem space. Each particle keeps track of its personal best
position in the problem space, which is associated with the best fitness value of the
particle found so far. Another "best" value that is tracked by the particle swarm
optimizer is the overall best value, and its location, obtained by any particle in the
population [57], [58] — the so-called “global best”.

Ant Colony Optimization (ACO)

Ants do not possess a great deal of intelligence by themselves, but collectively a
colony of ants performs sophisticated tasks such as finding the shortest path to food
sources and sharing this information with other ants by depositing pheromone. Ant
Colony Optimization (ACO) models the collective intelligence of ants, which are
transformed into optimization techniques [59]. ACO was introduced by Dorigo et al.
(1991) [60], [61] as a novel nature-inspired metaheuristic for the solution of hard
combinatorial optimization (CO) problems. Such metaheuristics are approximate
algorithms used to obtain satisfactory solutions to hard CO problems in a reasonable
amount of computational time. Other examples of such metaheuristics are tabu search,
simulated annealing, and evolutionary computation [62]. More details can be found in
[63], [64] and a recent example can be found in [65]. A prominent example as a data
mining algorithm is the Ant-Miner (Ant-colony-based data miner), aiming at
extracting classification rules from data. This algorithm was inspired by both research
on the behavior of real ant colonies and known data mining concepts [66].

Bacteria Foraging Algorithms (BFA)

Foraging theory is based on the assumption that animals search for and obtain
nutrients in a way that maximizes their energy intake E per unit time 7 spent foraging.
The Escherichia coli bacterium is probably the best understood microorganism and
much what is known cytokinesis in bacteria has come from studies with E. coli, and
efforts to understand fundamental processes in this organism continue to intensify
[67]. When E. coli grows, it gets longer, then divides in the middle into two so-called
“daughters.” Given sufficient food and held at the temperature of the human gut (one
place where they live) of 37° C, this bacterium can synthesize and replicate
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everything it needs to make a copy of itself in about 20 minutes. Hence, the growth of
a population of bacteria is exponential, with a relatively short time to double [68]. The
foraging behavior of E. coli can be used by analogy in the Bacteria Foraging
Algorithms (BFA) to solve global optimization problems [69]. An example of an
electrical engineering application of the BFA can be found in [70]. An approach
applied in human psychology is the Information Foraging Theory by Pirolli & Card
(1999) [71]; this assumes that people try to modify their information seeking
strategies to maximize their rate in gaining valuable information. The adaptation
analysis develops information patch models, which deal with time allocation and
information filtering; information scent models, which address the identification of
information value from proximal cues; and information diet models, which address
decisions about the selection and pursuit of information items. The theory has been
used to study e.g. the “surf behaviour” on the Web [72], but has also been used for
data mining [73], and for knowledge discovery in the biomedical domain [74].

Bees Algorithm (BA)

The population-based search algorithm called the Bees Algorithm (BA) mimics the
food foraging behaviour of a swarm of honey bees and was proposed by Pham et al.
(2006) [75]. In its basic version, the algorithm performs a kind of neighbourhood
search combined with random search, and can be used for combinatorial optimisation
as well as functional optimisation [76]. BAs are also meta-heuristics, which try to
model the natural behavior of bees in food foraging, such as mechanisms like waggle
dance to optimally locate food sources and to search for new ones [77]. Basturk &
Karaboga (2007), [78] proposed the Artificial Bee Colony (ABC) algorithm for
constrained optimization problems. The idea is that the collective intelligence of bee
swarms consists of three components: food sources, employed bees, and unemployed
bees; the latter further segregated into onlookers and scouts. This results into three
main phases of ABC: employed phase, onlooker phase, and scout phase.A recent
work described the integration of Artificial Bee Colony (ABC) and Bees Algorithm
(BA) to an ABC-BA algorithm which performs better than each single one [79].

Invasive Weed Optimization (IWO)

The Invasive Weed Optimization Algorithm (IWO) was proposed by Mehrabian &
Lucas (2006) [80], as an ecologically inspired metaheuristic that mimics the process
of weeds colonization and distribution, which is capable of solving multi-
dimensional, linear and nonlinear optimization problems with appreciable efficiency.
Moreover, the IWO can also be used in the validation of reached optima and in the
development of regularization terms and non-conventional transfer functions that do
not necessarily provide gradient information [81]. A recent example of IWO for
knowledge discovery purposes can be found in [82], .

4.4.5 Memetic Algorithms (MA)

Memetic algorithms (MA) are amongst the growing areas in evolutionary
computation and were inspired by Richard Dawkins’ meme [83]; an implementation
of an “selfish gene algorithm” can be found here [84]. The term MA is widely used as
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a synergy of evolutionary or any other population-based approach with separate
individual learning or local improvement procedures for search problems [85]. MAs
are often also referred to as Baldwinian evolutionary algorithms (see [86] about the
Baldwin effect), Lamarckian EAs, cultural algorithms, or genetic local search.

A novel correlation based memetic framework (MA-C), which is a combination of
a genetic algorithm (GA) and local search (LS) using correlation based filter ranking
has been proposed in [87]: The local filter method fine-tunes the population of GA
solutions by adding or deleting features based on Symmetrical Uncertainty (SU)
measures. Such approaches have many possibilities for the use in real-world
problems, particularly in bio-computing and data mining for high-dimensional
problems [88]. Amongst a very recent meta-heuristic is the Grey Wolf Optimizer
(GWO), which mimics the leadership hierarchy and hunting mechanism of grey
wolves (canis lupus) in nature [89].

4.4.6 Differential Evolution Search

An example of Differential Evolution (DE) search is the Artificial Bee Colony (ABC)
algorithm, mentioned in section 4.3.4. Its main idea is that the algorithm makes use of
differential evolution operators to update the information on the food source in order
to enhance the local search ability at the stage of onlooker bees, and a chaotic
sequence is introduced to the differential mutation operator for this purpose.
Simulation results show that this algorithm, introducing chaotic differential evolution
search, is a promising one in terms of convergence rate and solution accuracy,
compared to the ABC algorithm [90]. A memetic DE algorithm, that utilizes a chaotic
local search (CLS) with a shrinking strategy, in order to improve the optimizing
performance of the canonical DE by exploring a huge search space in the early run
phase to avoid premature convergence can be found in [91].

4.4.7  Artificial Immune Systems (AIS)

Artificial immune systems (AIS) developed by Farmer et al. (1986) [92], can be
defined as adaptive computational systems inspired from immunology, i.e. by the
observed immune functions, principles and mechanisms. The idea was that the
immune system as highly evolved biological system, is able to identify (and
eliminate) foreign substances [93]. Consequently, it must be able to determine
between gens and antigens, which requires a powerful capability of learning, memory
and pattern recognition. The development and application domains of AIS follow
those of soft computing paradigms [94], such as artificial neural networks (ANN) and
fuzzy systems (FS). A framework which discusses the suitability of AIS as a soft
computing paradigm that integrate AIS with other approaches, focusing on ANN, EA
and FS has been proposed by [95].

4.4.8 Gravitational Search Algorithm (GSA)

Gravitational Search Algorithms (GSA) are based on the analogy with the law of
gravity and mass interactions: the search agents are a collection of masses which
interact with each other based on the Newtonian gravity and the laws of motion [96].
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GSA falls also under the category of metaheuristics as general search strategies that,
at the exploitation stage, exploit areas of the solution space with high quality solutions
and, at the exploration stage, move to unexplored areas of the solution space [97].
GSA is a stochastic population-based metaheuristic that was originally designed for
solving continuous optimization problems.

The Binary Gravitational Search Algorithm (BGSA) is a new variant for discrete
optimization problems, and experimental results confirm its efficiency in solving
various nonlinear benchmark problems [98].

A recent work on a Discrete Gravitational Search Algorithm (DGSA) to solve
combinatorial optimization problems [99] can be found in [97].

4.4.9 Intelligent Water Drops Algorithm (IWD)

A natural river often finds optimal paths among a number of different possible paths
in its ways from the source to destination. These near optimal or optimal (natural)
paths are obtained by the actions and reactions that occur among the water drops and
between the water drops and the riverbeds.

The Intelligent Water Drops (IWD) algorithm is a new population-based
optimisation algorithm inspired from observing natural water drops flowing in rivers.
The authors of [100] tested this algorithm to find solutions of the n-queen puzzle with
a simple local heuristic, solved the travelling salesman problem (TSP) and tested it
with multiple knapsack problems (MKP) in which near-optimal or optimal solutions
were obtained [101].

There are various application areas for IWD thinkable, e.g. Agarwal et al. (2012)
[102], propose the use of IWD as an optimised code coverage algorithm by using
dynamic parameters for finding all the optimal paths using basic properties of natural
water drops. A recent example application is in using IWD for solving multi-objective
job-shop scheduling: Niu et al. (2013) customized it to find the best compromising
solutions (Pareto non-dominance set) considering multiple criteria, namely make-
span, tardiness and mean flow time of schedules, and proved that the customized IWD
algorithm can identify the Pareto non-dominance schedules efficiently.

5 Evolutionary Algorithms for Knowledge Discovery and Data
Mining

5.1 Classification and Clustering with EAs

In traditional data mining tasks, evolutionary algorithms can easily be used for both
classification and clustering as well as for data preparation in the form of attribute
generation and selection [27].

Classification is a central application for EAs, where they can be used for
classification rule mining. These rules can be of different complexity and forms. In
some cases, a whole set of rules is the goal, where interactions between the rules play
an important role, whereas it is also possible to mine independent rules for
classification. For details on the topic of classification rule mining, please refer to
[27] and [103]. A very recent work, which shows that the implementation of
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evolutionary algorithms in machine learning can be achieved without extensive effort,
meaning much experimentation can be performed quickly in order to discover novel
areas where genetic algorithms can complement machine learning algorithms to
achieve better classification results [104].

Clustering analysis is another application area for EAs to knowledge discovery tasks.
There are different approaches to this problem, which are discussed in detail in [103].
The most important criteria when performing clustering analysis using EAs is the
representation of solution candidates as well as the fitness evaluation, which can be a
problematic issue considering the complexity of evaluating unsupervised knowledge
discovery methods in general.

5.2 Advantages and Disadvantages

EAs have certain pros and cons as general optimization methods, including when they
are used for knowledge discovery and data mining tasks, as shown in Table 3.

Table 3. Advantages and Disadvantages of EAs

Advantages

Disadvantages

Robust to noise

EA methods do not guarantee finding of an
optimal solution in finite time

Deals well with attribute interaction

Domain specific knowledge has to be explicitly
added using external processes

Comparatively easy to implement

Optimization runtime not constant, variance
between best- and worst-case can differ greatly

Well suited for multi-objective optimization

Computational complexity can be an issue

Good scalability due to parallelization

Fitness-function needs to be specified, otherwise
EAs do not work

Very flexible (widely usable)

Slower than greedy algorithms in many cases

Good option for problems without a traditional
best practice method

Not the first choice if a traditional method already
solves the problem in an efficient way

Good amount of programming libraries available

Small amount of specific mathematical
knowledge necessary for using EAs

Suitable for efficiently solving NP-hard problems

5.3

Available Software and Programming Libraries

There is a broad range of different software packages and libraries available for using
EAs in KDD and DM tasks, The list below contains only the most well-known

examples:

WEKA - http://www.cs.waikato.ac.nz/ml/weka

KEEL - http://www.keel.es

SolvelT - http://www.solveitsoftware.com
MCMLL - http://mcmll.sourceforge.net
Jenetics - http://jenetics.sourceforge.net
Jenes - http://jenes.intelligentia.it
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jMetal - http://jmetal.sourceforge.net

JGAP - http://jgap.sourceforge.net

epochX - http://www.epochx.org

SAS - https://www.sas.com

Discipulus - http://www.rmltech.com

XpertRule - http: //www.attar.com

MATLAB GA-Toolbox http://www.mathworks.com/discovery/
genetic-algorithm

6 Open Problems and Challenges

Evolutionary algorithms, by default, are so called “blind” methods, which means that
the used operators do not use or depend on domain specific knowledge. While this
feature enriches their generality, it is in most cases a negative factor compared to
methods making use of existing relevant knowledge within the domain [103]. This
aspect can however be remedied by introducing mechanisms such as a preceding local
search into the execution of evolutionary algorithms, and enriching the fitness
function with domain specific data.

Another shortcoming of evolutionary approaches for knowledge discovery tasks is
that they do not guarantee an optimal solution in finite time. They also do not
guarantee constant optimization runtimes and the differences between the best and
worst case scenarios are usually larger than for most traditional optimization methods,
making EAs a suboptimal choice for real-time systems [105].

Computational complexity can, as with all other KDD methods, also be an issue.
However with the increase of processing power as well as the possibility to easily
parallelize evolutionary methods, especially in combination with cloud services and
the island model [105], the issue should be, at most, of a temporary nature.

7 Future Work

A specific area of future research, according to [103], should be the application of
genetic programming for data mining tasks. There have been attempts to create generic
rule induction algorithms using GP [106], [107], but they are still comparatively under-
discovered and under-used within the domain of knowledge discovery.

Biology has traditionally been a source of inspiration for evolutionary algorithms. In
most organisms, evolution proceeds in small steps by random mutations and in large
steps by horizontal events (recombination, reassortments, gene transfer and
hybridizations). Horizontal events combine the genetic information from two or more
organisms to generate a new one that incorporate alleles from parental strains. Whilst
mutations allow efficient local searches in the fitness landscape, horizontal events
combine information from fit individuals exploring larger regions of search space.
Humans and eukaryotes in general recombine during meiosis, retroviruses during
retrotranscription, each presenting different ways of combining genetic information.
Segmented viruses, viruses with more than one chromosome as influenza, combine
genetic information through reassortments, a process where a new individual is created
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by exchange of chromosomes between two or more parental strains. This is the very
effective process behind influenza pandemics that could allow viruses to jump from
one host to another and rapidly propagate in the new population. Such mechanisms, and
others, are found in nature and represent different strategies to go beyond mutations
with distinct advantages. Each of these evolutionary strategies can be used to address
different problems — but it needs much further research, testing and experimenting.
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Abstract. Computational geometry and topology are areas which have
much potential for the analysis of arbitrarily high-dimensional data sets.
In order to apply geometric or topological methods one must first gener-
ate a representative point cloud data set from the original data source,
or at least a metric or distance function, which defines a distance be-
tween the elements of a given data set. Consequently, the first question
is: How to get point cloud data sets? Or more precise: What is the opti-
mal way of generating such data sets? The solution to these questions is
not trivial. If a natural image is taken as an example, we are concerned
more with the content, with the shape of the relevant data represented
by this image than its mere matrix of pixels. Once a point cloud has been
generated from a data source, it can be used as input for the applica-
tion of graph theory and computational topology. In this paper we first
describe the case for natural point clouds, i.e. where the data already
are represented by points; we then provide some fundamentals of medi-
cal images, particularly dermoscopy, confocal laser scanning microscopy,
and total-body photography; we describe the use of graph theoretic con-
cepts for image analysis, give some medical background on skin cancer
and concentrate on the challenges when dealing with lesion images. We
discuss some relevant algorithms, including the watershed algorithm, re-
gion splitting (graph cuts), region merging (minimum spanning tree) and
finally describe some open problems and future challenges.
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1 Introduction and Motivation

Today we are challenged with complex, high-dimensional, heterogenous, and
weakly-structured biomedical data sets and unstructured information from var-
ious sources [1]. Within such data, relevant structural or temporal patterns
(“knowledge”) are often hidden, difficult to extract, and therefore not imme-
diately accessible to the biomedical expert. Consequently, a major challenge is
to interactively discover such patterns within large data sets. Computational
geometry and algebraic topology may be of great help here [2], however, to ap-
ply these methods we need point cloud data sets, or at least distances between
data entities. Point cloud data (PCD) sets can be seen as primitive manifold
representation for use in algebraic topology [3]. For a rough guide to topology
see [4].

A good example of a direct source for point clouds are 3D acquisition devices
such as laser scanners, a recent low-cost commercial product being the Kinect
device (see section 3). Medical images in nuclear medicine are also usually rep-
resented in 3D, where a point cloud is a set of points in the space, with each
node of the point cloud characterized by its position and intensity (see section
3 and 5). In dimensions higher than three, point clouds (feature vectors) can be
found in the representation of high-dimensional manifolds, where it is usual to
work directly with this type of data [5].

Some data sets are naturally available as point clouds, for example protein
structures or protein interaction networks, where techniques from graph theory
can be directly applied [6].

Despite the fact that naturally occurring point clouds do exist, a concerted
effort must focus on how to get representative point cloud data sets from raw
data. Before continuing, and for clarification purposes, some key terms are de-
fined in the next section. This is followed by discussing natural point clouds in
section 3 as well as the case of text documents in section 4, before examining
the case of medical images, and in particular dermatological images, in section
5. We first introduce some dermatological image sources, describe shortly some
problems facing the processing of such images, and present some related work,
as well as relevant algorithms. Finally, we discuss open problems and provide an
outline to future research routes in sections 6 and 7, respectively.

2 Glossary and Key Terms

Point clouds: are finite sets equipped with a family of proximity (or similarity
measure) functions sim,: S9T1 — [0, 1], which measure how “close” or “similar”
(¢ + 1)-tuples of elements of S are (a value of 0 means totally different objects,
while 1 corresponds to essentially equivalent items).

Space: a set of points a; € S which satisfy some geometric postulate.
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Topology: the study of shapes and spaces, especially the study of properties
of geometric figures that are not changed by continuous deformations such as
stretching (but might be by cutting or merging) [7], [8].

Topological Space: A pair (X,T) with X denoting a non-empty set and 7" a
collection of subsets of X such that § € T, X € T and arbitrary unions and
finite intersections of elements of T" are also € T'.

Algebraic Topology: the mathematical field which studies topological spaces by
means of algebraic invariants [9].

Topological Manifold: A topological space which is locally homeomorphic (has a
continuous function with an inverse function) to a real n-dimensional space (e.g.
Euclidean space) [10].

Distance: Given a non-empty set S, a function d : S x S — R such that for
all z,y,2 € 5 (i) d(z,y) >0, (i) d(z,y) =0 <= z =y, (ili) d(z,y) = d(y, ),
and (iv) d(z, z) < d(z,y) + d(y, 2).

Metric space: A pair (S,d) of a set and a distance on it. Every metric space
is automatically also a topological space.

Computational geometry: A field concerned with algorithms that can be de-
fined in terms of geometry (line segments, polyhedra, etc.) [11].

Supervised Learning: Method within Machine Learning that uses labeled train-
ing data to develop an accurate prediction algorithm. Let {(z1,%1), ..., (Tn,yn)}
be n training samples with x;...x, being the predictor variables and y;...y, the
labels, we want a function g : X — Y such that a cost function (usually the
difference between predicted values g(z) and y) is minimized.

Unsupervised Learning: Method in machine learning which is used to group sim-
ilar objects together, e.g. points within geometric groups or objects of similar
properties (color, frequency). No labeled training data is used.

Optimization: is the selection of cluster a best element (with regard to some
criteria) from some set of available alternatives.

Classification: Identification to which set of categories (sub-populations) a new
observation belongs, on the basis of a training set of data containing observations
(or instances) whose category membership is known.

Clustering: Grouping a set of objects in such a way that objects in the same
group (cluster) are more similar to each other than to those in other groups
(clusters).
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Feature: A measurable property of an object (e.g. the age of a person).

Feature Vector: A collection of numerical features interpreted as the dimensional
components of a (Euclidean) vector.

Vector space model: Approach whose goal is to make objects comparable by
establishing a similarity measure between pairs of feature vectors (Euclidean
distance, cosine similarity etc.). The space spanned by all possible feature vec-
tors is called the feature space.

Voronoi region: Given a set of points in a metric space py, ...p,, a Voronoi dia-
gram erects regions around a point p; such that all points ¢ within its region are
closer to p; than to any other point p; [12].

Delaunay triangulation: Given a set of points in a plane P = py, ...p,, a Delau-
nay triangulation separates the set into triangles with p’s € P as their corners,
such that no circumcircle of any triangle contains any other point in its interior.

Minimum Spanning Tree: Given a graph G = (V, E,w) with V being the set
of vertices, F being the set of edges and w being the sets of edge weights, a
Minimum Spanning tree is the connected acyclic subgraph defined by the sub-
set B’ C E reaching all vertices v € V with the minimal sum of edge weights
possible.

3 The Case for Natural Point Clouds

A prototypical example of natural point clouds are the data produced by 3D
acquisition devices (Figure 1, Left), such as laser scanners [13]. Methods for
the extraction of surfaces from such devices can roughly be divided into two
categories: those that segment a point cloud based on criteria such as proximity
of points and/or similarity of locally estimated surface normals, and those that
directly estimate surface parameters by clustering and locating maxima within a
parameter space; the latter is more robust, but can only be used for simple shapes
such as planes and cylinders that can be described by only a few parameters
[14]. A recent low-cost example is the Kinect (Figure 1, Center) device [15]. This
sensor is particularly interesting as such devices will continue to gain popularity
as their prices drop while at the same time becoming smaller and more powerful
and the open source community will promote its use [16]. Such sensors have
the potential to be used for diverse mapping applications; however, the random
error of depth measurement increases with increasing distance to the sensor, and
ranges from a few millimeters up to about four centimeters at the maximum
range of the Kinect device [17]. Some recent examples demonstrate the potential
of this sensor for various applications, where high precision is not an issue, e.g.
in rehabilitation exercises monitoring [18] or in health games [19].

It seems reasonable to assume the presence of 3D-scanners within mobile
devices in the not-so-distant future, which in combination with faster, more
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powerful algorithms and advances in software engineering could potentially
transform each smartphone into a mobile medical laboratory and mobile well-
ness center [20]. Although applications in this area will likely not be an adequate
substitution for the work of trained professionals, it would help reduce data pre-
processing time and could make some hospital visits for purely diagnostic pur-
poses a thing of the past, consequently help to tame the worldwide exploding
health costs.

Medical images, e.g. in nuclear medicine, are usually also represented in 3D,
following the same principle (Figure 1), where a point cloud is a set of points
in R3, whose vertices are characterized by their position and intensity. The den-
sity of the point cloud determines the resolution, and the reconstructed volume,
which in general could be of any resolution, size, shape, and topology, is repre-
sented by a set of non-overlapping tetrahedra defined by the points. The intensity
at any point within the volume is defined by linearly interpolating inside a tetra-
hedron from the values at the four nodes that define such a tetrahedron, see [21]
for more details and see [22] for some basic principles.

Some data sets are "naturally” available as point clouds, which is convenient
as n-dimensional point clouds can easily be mapped into graph data structures by
defining some similarity functions to pairs of nodes (e.g. the Euclidean distance,
however a multitude of methods are available) and assigning that similarity
to edges between them. Examples of this include protein structures or protein
interaction networks (Figure 1, Right), where techniques from graph theory can
be applied [6].

Fig. 1. Left: A 3D scan of Bernd Malle taken in 1998 by a stationary device worth
around EUR 100,000. Center: 3D scan taken in 2013 by a Microsoft Kinect device
worth EUR 200 (Source: http://www.kscan3d.com/). Right: Protein-protein interac-
tion network (Source: http://www.pnas.org/).

4 The Case of Text Documents

Based on the vector space model, which is a standard tool in text mining [23],
a collection of text documents (aka corpus) can be mapped into a set of points
(vectors) in R™. Each word can also be mapped into vectors, resulting in a very
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high dimensional vector space. These vectors are the so-called term vectors, with
each vector representing a single word. If there, for example, are n keywords
extracted from all the documents then each document is mapped to a point
(term vector) in R™ with coordinates corresponding to the weights. In this way
the whole corpus can be transformed into a point cloud set. Usually, instead
of the Euclidean metric, using a specialized similarity (proximity) measure is
more convenient. The cosine similarity measure is one example which is now a
standard tool in text mining, see for example [24]. Namely, the cosine of the angle
between two vectors (points in the cloud) reflects how “similar” the underlying
weighted combinations of keywords are. By following this approach, methods
from computational topology may be applied [25], which offers a lot of interesting
research perspectives.

5 The Case of Medical Images

5.1 Some Fundamentals of Digital Images

Dermoscopy. The dermoscopy, aka epiluminescence microscopy (ELM), is a
non-invasive diagnostic technique and tool used by dermatologists for the anal-
ysis of pigmented skin lesions (PSLs) and hair, that links clinical dermatology
and dermatopathology by enabling the visualization of morphological features
otherwise not visible to the naked eye [26]. Digital dermoscopy images can be
stored and later compared to images obtained during the patient’s next visit for
melanoma and non-melanoma skin cancer diagnosis. The use of digital dermo-
scopes permitted the documentation of any examinations in the medical record
[27] [28].

Skin and pathology appearance varies with light source, polarization, oil, pres-
sure, and sometimes temperature of the room, so it is important that the ex-
amination and documentation be performed in a standardized manner. To do
s0, some of the most modern spectrometers use an adjustable light source which
adjusts according to the room light to try to mimic the “daylight” spectrum
from a standardized light source.

Although images produced by polarised light dermoscopes are slightly differ-
ent from those produced by a traditional skin contact glass dermoscope, they
have certain advantages, such as vascular patterns not being potentially missed
through compression of the skin by a glass contact plate. Dermoscopy only eval-
uates the down level of papillary dermis, leaving pathologies in the reticular
dermis unseen. Amelanotic melanoma is missed with this method and high pig-
mented lesions can also hide structures relevant for the diagnosis. A negative
surface exam is no guarantee that there is no pathology. In case of doubt a
biopsy and experienced clinical judgment is required [29].

Confocal Laser Scanning Microscopy. Reflectance confocal microscopy
(RCM) allows non-invasive imaging of the epidermis and superficial dermis. Like
dermoscopy, RCM acquires images in the horizontal plane (en face), allowing
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assessment of the tissue pathology and underlying dermoscopic structures of
interest at a cellular-level resolution [30].

The confocal image uses a low-power laser and special optics to magnify living
cells at approximately 1,000 times zoom. Confocal images are created by the
natural refractive difference within and between cells. Melanin is highly refractive
and results in brighter images. The confocal microscope captures the images in
three dimensions within the top layers of the skin. Imaging each lesion takes
between 5 and 10 minutes. A tissue ring is attached with medical adhesive to
hold the skin stable and the laser tracks through the lesion in three dimensions to
create vertical and horizontal maps of the cell fields. There is no pain or scarring
in this non-invasive procedure [29].

The application of a wide array of new synthetic and naturally occurring
fluorochromes in confocal microscopy has made it possible to identify cells and
sub-microscopic cellular components with a high degree of specificity amid non-
fluorescing material. In fact the confocal microscope is often capable of revealing
the presence of a single molecule. Confocal microscopy offers several advantages
over conventional widefield optical microscopy, including the ability to control
depth of field, elimination or reduction of background information away from
the focal plane (which leads to image degradation), and the capability to collect
serial optical sections from thick specimens, making possible multi-dimensional
views of living cells and tissues that include image information in the x, y, and
z dimensions as a function of time and presented in multiple colours (using two
or more fluorophores). The temporal data can be collected either from time-
lapse experiments conducted over extended periods or through real time image
acquisition in smaller frames for shorter periods of time. A concise overview on
biological image analysis can be found here [31].

Total-Body Photography. Total body photography (TBP) is a diagnostic
technique where a series of high resolution digital photographs are taken from
head to toe of the patients skin for active skin cancer surveillance [32]. A photo-
graphic baseline of the body is important when attempting to detect new lesions
or changes in existing lesions in patients with many nevi and create a pigment
lesion mapping of the entire body. Changes in moles can be in the form of size,
shape and colour change and it can also be useful for other conditions as psoriasis
or eczema.

The main advantages of total body photography are that it reduces unneces-
sary biopsies, and melanomas are often caught at a much earlier stage. A recent
approach is Gigapixel Photography (GP), which was used to capture high-res
panoramas of landscapes; recent developments in GP hardware have led to the
production of consumer devices (see e.g. www.GigaPan.com). GP has a one bil-
lion pixel resolution capacity, which is 1000 times higher than TBP, and therefore
has a lot of potential for dermatology use [33].
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5.2 Point Cloud Data Sets
To sum up at this point, let us define in accordance with [34]:

— Multivariate dataset is a data set that has many dependent variables and
they might be correlated to each other to varying degrees. Usually this type
of dataset is associated with discrete data models.

— Multidimensional dataset is a data set that has many independent vari-
ables clearly identified, and one or more dependent variables associated to
them. Usually this type of dataset is associated with continuous data models.

In other words, every data item (or object) in a computer is represented (and
therefore stored) as a set of features. Instead of the term features we may use the
term dimensions, because an object with n features can also be represented as
a multidimensional point in an n-dimensional space. Dimensionality reduction
is the process of mapping an n-dimensional point, into a lower k-dimensional
space, which basically is the main challenge in visualization .

The number of dimensions can sometimes be small, e.g. simple 1D data such
as temperature measured at different times, to 3D applications such as medical
imaging, where data is captured within a volume. Standard techniques like con-
touring in 2D, and isosurfacing and volume rendering in 3D, have emerged over
the years to handle these types of data. There is no dimension reduction issue
in these applications, since the data and display dimensions essentially match.

One fundamental problem in analysing images via graph theoretical methods
is when first translating them into a point cloud. While pixels in images naturally
have some coordinates in 2D, their colour value as well as relation to pixels
around them is not encoded within those coordinates. Thus, some transformation
of the 2D image into a higher-dimensional space has to occur as a first step.
This, however, entails many problems such as inadvertently modelling artefacts
or ‘inventing’ information that is not contained in the image. The following gives
an example of a simple 2D to 3D transform of a melanoma image (Figure 2).

5.3 Two Examples of Creating Point Clouds

The functional behaviour of a genome can be studied by determining which genes
are induced and which genes are repressed in a cell during a defined snapshot.
The behaviour can change in different development phases of the cell (from a
stem cell to a specialized cell), in response to a changing environment (triggering
of the gene expression by factor proteins with hormonal function) or in response
to a drug treatment. The microarray technology makes it possible to explore
gene expression patterns of entire genomes (a recent work from cancer research
can be found in [35]. Technically, a microarray is usually a small glass slide
(approximately 2.0 cm x 2.0 cm) covered with a great number (20,000 or more)
of precisely placed spots. Each spot contains a different single stranded DNA
sequence fragment: the gene probe. A microarray experiment is done as follows:
From reference and test tissue samples, mRNA is isolated and converted into
c¢DNA. The ¢cDNAs are labelled green (reference) and red (test). The cDNA
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Fig. 2. Simple 2D-3D transform using the mesh function built into MATLAB

samples are mixed together and incubated with the probe on the microarray.
The location and intensities of the fluorescent dyes are recorded with a scanner.
Using the ratios of the dyes, a red spot indicates induced gene activity within
the test probe; a green spot shows repressed gene activity in the test probe and
a yellow spot indicates that there is no change in the gene activity level in the
two probes. The amount of data resulting from microarray experiments is very
big and too complex to be interpreted manually by a human observer. Machine
learning algorithms extract from a vast amount of data the information that is
needed to make the data interpretable. The gene expression pattern of the gene
yn along P experiments is described by a vector:

Yn = (-Tnlvxn27"'7xnk7"'7an>

where x,; is the expression value of the gene during the experiment number k.
The genes can be geometrically interpreted as a point cloud in a P-dimensional
space (Figure 3).

In the diagnosis of CLSM views of skin lesions, architectural structures at
different scales play a crucial role. The images of benign common nevi show
pronounced architectural structures, such as arrangements of nevi cells around
basal structures and tumour cell nests (Figure 4).

The images of malign melanoma show melanoma cells and connective tissue
with few or no architectural structures. Features based on the wavelet transform
have been shown to be particularly suitable for the automatic analysis of CLSM
images because they enable an exploration of images at different scales. The
multi resolution analysis takes scale information into consideration and succes-
sively decomposes the original image into approximations (smooth parts) and
details. That means, through the wavelet transformation, the two-dimensional
image array is split up into several frequency bands (containing various num-
bers of wavelet coefficients), which represent information at different scales. At
each scale the original image is approximated with more or fewer details. The
frequency bands, representing information at a large scale, are labelled with
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X

X

Fig. 3. Every gene is represented by a point in a P-dimensional space, which is built
by the P experiments (for example: P different kinds of tissue). The position of the
point is determined by the expression values on each axis of the coordinate system.

Nevus cells
grouped around
the dermal
papilla

Tumour cell
i nests

Fig. 4. Nevi cell arrangement and tumour cell nests
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low indices and the frequency bands representing successively decreasing scales
are labelled with higher indices. Then the architectural structure information in
the CLSM images is accumulated along the energy bands (from course to fine).
Therefore the wavelet transformation allows the analysis of a given texture by
its frequency components. In wavelet texture analysis, the features are mostly
derived from statistical properties of the resulting wavelet coefficients inside the
frequency bands. Then the tissue textures, in the CLSM images, are represented
by feature vectors, as for example:

Xp = (FgTD(i));izo,...,N

Whereby N is the number of frequency bands. The index n refers to the n-
th image. Fé&pp(7) represents a statistical property of the wavelet coefficients in
the i-th frequency band. From an ensemble of images results a point cloud of
different feature vectors in the feature space.

Data Set Example: A relatively recent development is the creation of the UCI
Knowledge Discovery in Databases Archive availableathttp://kdd.ics.uci.edu
This contains a range of large and complex datasets as a challenge to the data min-
ing research community to scale up its algorithms as the size of stored datasets,
especially commercial ones, inexorably rises [36].

5.4 Graphs in Image Analysis

The idea of using graph theoretic concepts for image processing and analysis goes
back to the early 1970’s. Since then, many powerful image processing methods
have been formulated on pixel adjacency graphs. These are graphs whose vertex
set is the set of image elements (pixels), and whose edge set is determined by an
adjacency relation among the image elements.

More recently, image analysis techniques focus on using graph-based methods
for segmentation, filtering, clustering and classification. Also, graphs are used to
represent the topological relations of image parts.

Definition 1 (Graph). A graph G = (V,E) is given by a finite set V of
elements called vertices, a finite set F of elements called edges, and a relation of
incidence, which associates with each edge e an unordered pair (vy,v2) € V x V.
The vertices v; and vy are called the end vertices of e.

Definition 2 (Planar Graph, Embedded Graph). A graph is said to be
planar if it can be drawn in a plane so that its edges intersect only at its end
vertices. A graph already drawn in a surface S is referred to as embedded in
S [37].
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5.5 Medical Background

Skin Cancer is still the most common and most increasing form of human can-
cer worldwide. Skin cancer can be classified into melanoma and non-melanoma
and although melanomas are much less common than non-melanomas, they ac-
count for the majority of skin cancer mortality. Detection of malignant melanoma,
in its early stages considerably reduces morbidity and mortality and may save
hundreds of millions of Euros that otherwise would be spent on the treatment
of advanced diseases. If cutaneous malign melanoma can be detected in its early
stages and removed, there is a very high likelihood that the patient will survive.

However, melanomas are very complex and a result of accumulated alterations
in genetic and molecular pathways among melanocytic cells, generating distinct
subsets of melanomas with different biological and clinical behavior. Melanocytes
can proliferate to form nevi (common moles), initially in the basal epidermis [38].
A melanoma can also occasionally simply look like a naevus.

Image analysis techniques for measuring these features have indeed been devel-
oped. The measurement of image features for the diagnosis of melanoma requires
that lesions first be detected and localized in an image. It is essential that lesion
boundaries are determined accurately so that measurements, such as maximum
diameter, asymmetry, irregularity of the boundary, and color characteristics, can
be accurately computed. For delineating lesion boundaries, various image seg-
mentation methods have been developed. These methods use color and texture
information in an image to find the lesion boundaries [39].

5.6 Challenges
Basic difficulties when dealing with such lesions include:

1. Morphology is not enough
Melanomas can sometimes appear like naevi. This suggests relying on follow-
ups and to perhaps prefer sensitivity to specificity.

2. Detail Level
Medical doctors are understandably fond of details, whereas preprocessing
often needs to blur images together with noise.

3. Diversity
Especially in dermoscpy there is a great variety of established criteria to
describe melanocytic and non melanocytic lesions [40].

4. Segmentation
Segmentation is one of the main hurdles in lesion analysis, as a good segmen-
tation of different skin lesions is crucial for total body imaging. It is also seen
as a problem by dermatologists themselves [41]: There has been research on
interoperator and intraoperator differences in segmentation by hand of one
and the same lesion.

5. Noise
Having said that, it is a requirement to split the lesion from the background.
This is even more problematic with people of darker complexion. A further
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1

Fig.5. A naevus (left) and a melanoma (right)[42]

problem is hair: the pragmatic solution is to physically remove any hair using
a razor. But it is much better to eliminate it (or to “ignore” it) at the image
level, for example through the use of the Hough transform [43].
The Hough transform is a method for detecting curves by exploiting the
duality between points on a curve and the parameters of that curve, hence
it is well-suited for the detection of arbitrary shapes, and therefore ideal for
removing hair. The method is robust to partial deformation in shape and
very tolerant to noise and can detect multiple occurrences of a shape in the
same region, however, it requires a lot of memory and computational power
[44].
The most optimal segmentations we obtained were through the Mumford-
Shah functional, but it requires much processing time [45]. It is therefore
better to rely on a cleverly engineered mixture of morphological operations
and thresholding. A big issue here is in interactivity, because exactly here
the expert end user could come into play, by making her/him either simply
to accept or reject a segmentation or even initialize it or modify it (see below
Interaction with the user).
. Diagnostic Criteria
Dermatologists trust the following criteria:

— A: Asymmetry

— B: Boundary (border irregularity)

— C: Colour (variegation and uneven distribution)

— D: Diameter (greater than 6 mm)
E: Elevation (Alternatively: Evolution)

Moreover in patients with many nevi or other skin lesions this simplified
algorithm is not sufficient to diagnose such lesions correctly. Experience,
comparison of multiple lesions, and follow-up information is crucial to come
to a correct diagnosis. At this point one may ask how to make this proce-
dure at least partially automatic, and persistent homology is certainly one
approach, as we shall see.
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7. Interaction with the User
Interaction in time is an important issue. Although it is unreasonable to
expect “real time” outputs, a procedure in the order of minutes is a far too
long time for a medical doctor and also for a patient. A processing time
of approximately 2 minutes, which is usual considering the aforementioned
criteria, requires that something be put on the screen, showing that the
computer has not frozen and that something is actually happening.
Moreover the output must be understandable. Therefore, a trade-off be-
tween richness and simplicity of information is required. One possibility is
to have two (hidden) classifiers, one “pessimistic” algorithm (tuned to high
sensitivity) and one “optimistic” algorithm (high specificity). This, however,
can result in three possible outputs: High risk (both classifiers agreeing on
melanoma), medium risk (disagreeing), and low risk (both agreeing on nae-
vus). This approach is certainly not satisfactory for the present purposes.

8. Representation
On the strictly technical side, one can simply represent the images as graphs
with pixels as vertices, and 4-neighbours as adjacent vertices. Of course,
much more elaborate methods have been developed, which shall be discussed
further in the following sections.

5.7 Related Work

De Mauro, Diligenti, Gori & Maggini [46] in 2003 presented a very relevant piece
of work: they proposed an approach based on neural networks by which the re-
trieval criterion is derived on the basis of learning from examples. De Mauro
et al. used a graph-based image representation that denoted the relationships
among regions in the image and on recursive neural networks which can pro-
cess directed ordered acyclic graphs. This graph-based representation combines
structural and sub-symbolic features of the image, while recursive neural net-
works can discover the optimal representation for searching the image database.
Their work was presented for the first time at the GBR 2001 conference in Ischia
and the authors subsequently expanded it for a journal contribution.

Bianchini (2003) [47] reported on the computationally difficult task of recog-
nizing a particular face in a complex image or in a video sequence, which humans
can simply accomplish using contextual information. The face recognition prob-
lem is usually solved having assumed that the face was previously localized,
often via heuristics based on prototypes of the whole face or significant details.
In their paper, they propose a novel approach to the solution of the face lo-
calization problem using recursive neural networks. In particular, the proposed
approach assumes a graph-based representation of images that combines
structural and subsymbolic visual features. Such graphs are then processed by
recursive neural networks, in order to establish the eventual presence and the
position of the faces inside the image.

Chen & Freedman (2011) [48] reported on an alternative method in the pre-
processing stage: In cortex surface segmentation, the extracted surface is required
to have a particular topology, namely, a two-sphere. The authors presented a
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novel method for removing topology noise of a curve or surface within the level
set framework, and thus produce a cortal surface with the correct topology.
They defined a new energy term which quantifies topology noise and showed
how to minimize this term by computing its functional derivative with respect
to the level set function. This method differs from existing methods in that it
is inherently continuous and not digital; and in the way that our energy di-
rectly relates to the topology of the underlying curve or surface, versus existing
knot-based measures which are related in a more indirect fashion.

5.8 Relevant Algorithms

The Watershed Algorithm is a popular tool for segmenting objects whose con-
tours appear as crest lines on a gradient image as it is the case with melanomas. It
associates to a topographic surface a partition into catchment basins, defined as at-
traction zones of a drop of water falling on the relief and following a line of steepest
descent [49].

Each regional minimum corresponds to such a catchment basin. Points from
where several distinct minima may be reached are problematic as it is not clear
to which catchment basin they should be assigned. Such points belong to water-
shed zones, which may be thick. Watershed zones are empty if for each point,
there exists a unique steepest path towards a unique minimum. Unfortunately,
the classical watershed algorithm accepts too many steep trajectories, as they
use neighborhoods which are too small for estimating their steepness. In order
to produce a unique partition despite this, they must make arbitrary choices
that are out of the control of the user. Finally, their shortsightedness results in
imprecise localizations of the contours.

We propose an algorithm without myopia, which considers the total length
of a trajectory for estimating its steepness; more precisely, a lexicographic or-
der relation of infinite depth is defined for comparing non ascending paths and
choosing the steepest. For the sake of generality, we consider topographic surfaces
defined on node weighted graphs. This allows us to easily adapt the algorithms
to images defined on any type of grid in any number of dimensions. The graphs
are pruned in order to eliminate all downwards trajectories which are not the
steepest. An iterative algorithm with simple neighborhood operations performs
the pruning and constructs the catchment basins. The algorithm is then adapted
to gray tone images. The neighborhood relations of each pixel are determined by
the grid structure and are fixed; the directions of the lowest neighbors of each
pixel are encoded as a binary number. In that way, the graph may be recorded
as an image. A pair of adaptive erosions and dilations prune the graph and ex-
tend the catchment basins. As a result, one obtains a precise detection of the
catchment basin and a graph of the steepest trajectories [50].

Note: Stable image features, such as SIFT or MSER features, can also be
taken to be the nodes of the graph.

The watershed segmentation is a regionbased technique making use of
image morphology; a classic description can be found in [51]. It requires the



72 A. Holzinger et al.

selection of markers (“seed” points) interior to each object of the image, including
the background as a separate object.

The markers are chosen by a human expert who takes into account
the application-specific knowledge of the objects. Once the objects are
marked, they can be grown using a morphological watershed transformation
(Figure 6) [52].

Labels superimposed on Original Image

\Voronal Diagram Delaunay Triangulation

Fig. 6. Result of applying a watershed transform to an image of relatively distin-
guished regions. The resulting segmentation (and thus vertices for the output graph)
corresponds well to the overall shape of the image and represents regions of about equal
size.

5.9 Region Splitting (Graph Cuts)

Understanding the original image as a graph consisting of one large, connected
component, the goal of region splitting is to obtain a graph G(V,E) with a
number of vertices (|V]) significantly smaller than the number of input pixels
(V| << m). In order to achieve this we have to group certain areas consisting of
varying amounts of pixels together. This can be done via a partition of the image,
with a partition being defined as a subgraph (G'(V, E’)) of the original graph
with the set of vertices being the same as in the original and the set of edges
being a strict subset of the original set (E’ C E) (one must remove edges in order
to separate formerly connected components). This separation occurs recursively
until a cutting threshold is obtained for all remaining connected components,
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which are then interpreted as regions or superpixels (-voxels) represented by some
additionally extracted information, stored as a feature vector for the individual
partition.

5.10 Region Merging (Minimum Spanning Tree)

This is essentially the opposite from the method just mentioned, in that the
input image is considered as a set of pixels, each constituting its own region.
The goal is to merge regions based on a (dis-)similarity measure. Felzenswalb
(2004) [53] proposed an algorithm which in effect defines one numerical figure
representing the internal similarity of a region, and a second figure representing
the dissimilarity between two adjacent regions. In short, the approach works like
this:

Int(C) =

MO = e )
is the internal region similarity figure, given by the maximum edge weight of the
regions MST (Minimum Spanning Tree).

Dif(C1,C2) = min w(v;, v;
(€1,62) v, €010, €02, (v:,v;)EE (vi, v3)
denotes any two regions’ dissimilarity figure, given by the minimum edge weight
connecting them.
Finally,

true if Dif(C1,C2) > MInt(C1, C2)
false  otherwise

D(C1,C2) = {

determines if two regions should be merged, based on the relation of their inter-
region dissimilarity and minimum respective internal similarities.

As per the region splitting approach, once no further regions can be merged,
the final image partition is obtained.

6 Open Problems

6.1 Medical Problems

One of the greatest problems in skin cancer screening is to select the right lesion
for further investigation. An adult person has anywhere between 20 and one
hundred different lesions. The segmentation and recognition of suspicious lesions,
which need further investigation by dermoscopy or RCM or another procedure,
is of utmost importance.

Furthermore the differentiation of physiologic changes from malignant changes
in a lesion is a great challenge for the dermatologist. The same is true for the
validation of benign and malignant criteria in one lesion. The question is, does
a small part of the lesion showing criteria of malignancy justify an excision or
not?



74 A. Holzinger et al.

6.2 Graphs from Images

In implementing and testing different techniques for graph extraction out of
medical image data several areas of consideration have arisen.

Is a Graph a Good Representation of an Image? This is logical as every
image consists of pixels that share some form of collocation with one another,
may it be geometrical neighborhoods or distances in some feature space. Sec-
ondly, image representation through graphs is already used by several segmenta-
tion algorithms, as the above sections have sufficiently discussed. The difference
between our approach and the aforementioned methods is that the former are
treating the raw structure of the image as the input graph to their algorithm,
whose output then is a general segmentation. This work however intends to pro-
duce a graph representation of the image as its output for further use, while it
may or may not use a graph based algorithm to compute it.

Why Compute another Graph? One could argue that every image in pixel
form (there are other representations like wavelets used in JPG) already contains
an implicit graph. While this is certainly true, an image of several megapixels
would translate to a graph containing millions of vertices (n) and (given a k-
neighborhood for each pixel) m = k * n edges. This input size is clearly too
large for any algorithm of polynomial runtime complexity, especially if it is in-
tended to be used on standard desktop computers or even mobile devices. It is
thus imperative to reduce the number of vertices by first applying some form of
segmentation or clustering.

Can a Reliable Graph Be Extracted from One Image Alone? Another
interesting question is how well a (2D) image represents a surface topography
at all. Usually the only pieces of information contained in an image are the
coordinates of its pixels plus their corresponding color values. The latter (after a
transform to an intensity value) is typically interpreted as the height of its pixel,
thereby transforming the image to a topographic map. This information however
might be imprecise due to light conditions at the time of photography, hardware
inaccuracies, angle of the recording device etc., leading to artifacts and thus
misrepresentation. The only solution to this problem would be to take several
images in a sequence over time, from different angles, or applying a different
image taking technology (3D or radar scanning) altogether.

Based on this, a topological analysis of a graph extracted and merged from
several images (sources) might reveal information not contained in a single image,
while avoiding the incorporation of the same artifacts or inaccuracies that a single
input source might contain.

Is Image Segmentation the Pertinent Approach in Our Case. In tradi-
tional applications the goal of segmenting an image is mostly object recognition
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or detection, either as an unsupervised grouping of areas belonging together or
by matching a template representation to an area within the image, often con-
sidering different scales, angles or other deviations. The output segmentation of
this class of tasks consists of a small set of image regions, representing either
the locations of potential object matches or regions logically belonging together.
This approach however does not yield enough differentiated regions in order to
constitute a usable graph (a graph of 5 vertices cannot topologically analyzed
in any useful way). Thus the major traditional goal of image segmentation is
incompatible with the goal of this work.

Nevertheless, segmentation does use techniques that could be adapted to gen-
erate hundreds or even thousands of smaller regions representing the different
topological elements within an image — this is usually referred to as overseg-
mentation, yet it has already been used to generate finer grained partitions
[54]. Depending on the algorithm, this can be accomplished by setting some re-
gion merging criteria to a higher threshold or adapting the rules for erecting
watersheds.

Supervised or Unsupervised Learning? Because the final goal of most
image processing techniques in medicine is to differentiate between healthy and
pathological tissue, they belong to the group of problems known as classification
problems, and are therefore supervised learning problems. However, the methods
described above presuppose no anterior knowledge about the input images (or
parts thereof) in order to group regions of pixels or features together, so the
segmentation is done in an unsupervised fashion. This is certainly not the only
possibility, as templates of individual features could be provided to the algorithm.
Then again, the method would lose its generality, as different templates would
be needed for different types of images. A possible solution to this problem is
discussed later.

What Information to Put into a Feature Vector? Once a satisfying seg-
mentation is obtained, some representative information has to be extracted from
the individual regions in order to be stored as the feature vector of the resulting
graph node. A whole phalanx of region properties can be chosen, and some will
make more sense than others for a particular purpose. Aside from basic geo-
metric information (centroid coordinates, length, or length-to-width ratio) [55]
describes common features like histogram-based (mean grey values or grey level
entropy distribution), pixel-co-occurrence related (angular moment, correlation,
sum variance) as well as frequency-based (such as the wavelet) properties.

7 Future Challenges

Computational Efficiency. In comparison to extracting point cloud data from
text documents, multimedia content such as images or video streams contain a
very large amount of data (that might not necessarily contain much information).
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As a simple example, in order to represent a 5 megapixel image as an adjacency
graph, 25 billion entries would be necessary, while a more efficient representation
as an adjacency list would still hold (depending on the neighborhood-definition)
on the order of several dozen million list entries. This calls for efficient segmen-
tation and clustering algorithms, as even quadratic runtime complexity would
result in unacceptable computing times for interactive data mining in a real-
world working environment. Possible solutions comprise downsizing images and
the exclusive use of algorithms with near-linear (O(n xlog(n)) being acceptable)
runtime behaviour, as several graph-based algorithms like MST fortunately ex-
hibit. Moreover, depending on the features selected to extract per output node,
additional computation will be needed. While this may result in computing times
acceptable for professionals depending on that particular information, it might
not be to others, which calls for the inclusion of the professional end user into
the data mining process.

User Interaction Pipeline. Although most algorithms discussed can produce
results in a purely unsupervised fashion, in order to achieve excellent and relevant
results, we propose designing an interactive data mining work flow. For exam-
ple, a trained medical professional could identify regions-of-interest in an image
which are then utilized by our algorithms to extract templates (feature vectors
of those regions) for further use in future classification tasks. While most algo-
rithms proposed today focus on very narrow fields of application (colon images,
melanoma samples etc.), this would add to our software the flexibility to include
per-user parameters into its machine learning process, solving the problem of
what feature vectors to extract, thus significantly widening the applicability of
our work.

Visualizing n-Dimensional Point Clouds as Topological Landscapes.
A very promising research route has been opened by [56], [57], [58]: they utilize
a landscape metaphor to images, which presents clusters and their nesting as
hills whose height, width, and shape reflect cluster coherence, size, and stabil-
ity. A second local analysis phase utilizes this global structural knowledge to
select individual clusters, or point sets, for further, localized data analysis. The
big advantage is that the focus on structural entities significantly reduces visual
clutter in established geometric visualizations and permits a more efficient data
analysis. This analysis complements the global topological perspective and en-
ables the end user to study subspaces or geometric properties, such as shape.
This is a very promising research route to follow.

8 Conclusion

Much further promising research routes are open for further exploration in the
discovery of knowledge from natural images, however, the first question is how
to preprocess the raw data as to get relevant data which is applicable for the use
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of methods from geometry and topology. As this paper only describes methods
to extract point cloud data from different weakly structured sources, once a
point cloud (or graph) is extracted, it will have to be topologically analysed
in order to produce workable results. The quality of those results will not only
depend on the quality of the algorithms themselves, but to a large degree also
on the quality of the input graphs they receive. In order to determine how well
suited our graphs are for further computation, we will have to conduct those
experiments, adapting our methods and parameters as needed.
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Abstract. High quality, labeled data is essential for successfully applying ma-
chine learning methods to real-world problems. However, in many cases, the
amount of labeled data is insufficient and labeling that data is expensive or time
consuming. Co-training algorithms, which use unlabeled data in order to im-
prove classification, have proven to be effective in such cases. Generally, co-
training algorithms work by using two classifiers trained on two different views
of the data to label large amounts of unlabeled data, and hence they help minim-
ize the human effort required to label new data. In this paper we propose simple
and effective strategies for improving the basic co-training framework. The
proposed strategies improve two aspects of the co-training algorithm: the man-
ner in which the features set is partitioned and the method of selecting addition-
al instances. An experimental study over 25 datasets, proves that the proposed
strategies are especially effective for imbalanced datasets. In addition, in order
to better understand the inner workings of the co-training process, we provide
an in-depth analysis of the effects of classifier error rates and performance im-
balance between the two "views" of the data. We believe this analysis offers in-
sights that could be used for future research.

Keywords: Co-training, semi-supervised learning, imbalanced datasets.

1 Introduction

High quality and labeled data is essential for successfully applying machine leaning
methods to real-world problems. Obtaining a sufficient amount of labeled data is usual-
ly difficult, expensive or time consuming. The small number of training items may
lead to the creation of inaccurate classifiers, a problem that is usually aggravated in
imbalanced datasets.

Co-training [1] is a semi-supervised learning method designed to tackle these types
of scenarios. In addition to a small labeled training set, the co-training algorithm as-
sumes that a large "pool" of unlabeled training set is available. The algorithm begins
by partitioning the dataset's features into two disjoint sets and creating a classifier from
each. Then, iteratively, each classifier selects a few unlabeled instances from the pool
for which it has the highest level of certainty in classification. These instances (a few
for each class) are added to the labeled training set with the labels the classifier be-
lieves they should be assigned (the pool is replenished after each iteration). Thus, the
two classifiers "train" each other by feeding to the other classifier samples, which it

A. Holzinger, 1. Jurisica (Eds.): Knowledge Discovery and Data Mining, LNCS 8401, pp. 81-100, 2014.
© Springer-Verlag Berlin Heidelberg 2014
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may not have chosen on its own. This process continues until some stopping criterion
is met, e.g., until a predefined number of iteration is reached or all the unlabeled data
are used.

This method has been proven to be effective in the classification of text when addi-
tional information is available. For example, in the study by Blum and Mitchel [1] that
originally introduced the co-training algorithm, it was used to classify web pages by
using the term frequencies of the text as one set and the traits of hyperlinks in the other.

In our view, there are two aspects in which the current co-training framework can be
improved:

a) Flawed feature set partitioning — in the literature one can find a large variety of
techniques used for the purpose of features partitioning — from simple techniques
such as Mutual Information and Information Gain [2] to advanced methods such
as Hill Climbing [3] and genetic algorithms [4]. However, we believe that what-
ever method is used, a fundamental problem remains. The small number of
the labeled training instances makes it very difficult to optimally partition the
features.

b) Partially random instance selection — while it is true that the co-training algo-
rithm only selects instances with which has the highest confidence in the current
iteration, it is unclear what should be done if a large number of instances have the
same confidence level (our experiments show that this number may be as large as
hundreds of instances). To the best of our knowledge, only one previous work
addressed this problem [5] by using probability calculations in order to increase
diversity.

In this paper we propose methods for dealing with these two problems. For the
problem of feature set partitioning we present two possible strategies — one that utiliz-
es the unlabeled instances in order to improve the feature set partitioning process and
another that utilizes the additional instances that are added during the training of the
algorithm in order to iteratively repartition the features set.

For the problem of instance selection, we propose two strategies: the first strategy
ranks the unlabeled instances based on their similarity to the labeled training instances
(we present the experimental results of two variations of this strategies). The second
strategy attempts to select the instances by integrating input from both classifiers (we
present two variations of this method as well, one that puts emphasis on error reduction
and one that focuses on diversity).

In addition, in an attempt to better understand the effect of our proposed strategies
and the co-training process in general, we analyzed the co-training's performance on
the iteration level; i.e., in each labeling step. We present some interesting insights re-
garding the inner workings of the co-training algorithm. In particular, we show that the
process of adding new instances has a much higher error rate than expected and we
analyze the differences in performance on balanced and imbalanced datasets. To the
best of our knowledge, no such analysis has been presented in the past and we believe
that it could offer promising directions for future research.

The remainder of this paper is organized as follows. Section 2 introduces related
work on co-training and feature set partitioning. In Section 3 we present our proposed
methods and in Section 4 we present the evaluation results. In Section 5 we present
an in-depth analysis of the co-training algorithm. Lastly, Section 6 presents our
conclusions and directions for future research.
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2 Glossary and Key Terms

In this section we define the main terms used in this paper, in order to avoid a conflict
in terminology and to ensure a common understanding.

e [nstance: A single object of the world from which a model will be learned, or on
which a model will be used. An instance is made up of features and a class value.

e Feature: a value (numeric or otherwise) describing one facet of an instance.

e Class value: a value (numeric or otherwise) describing the class (i.e. group or
affiliation) to which an instance belongs.

e Classifier: A structured model that maps unlabeled instances to finite set of
classes.

e Feature selection: a process by which the most useful features are chosen from the
overall feature set. There exist many criteria for "usefulness", and we elaborate on
this subject later on.

e Feature set partitioning: the act of splitting the feature set into two (or more) dis-
joint subsets. This process is an integral part of the co-training process, as we
explain in the following section.

3 Related Work

The original co-training algorithm consists of the following steps: two independent
views of the data are used to train two classifiers. The classifiers are trained on a pool
of labeled training instances L and are used to classify a set of unlabeled training in-
stances U. Then, iteratively, each classifier selects a few instances of which it is most
certain (for each of the target classes) and adds them to the labeled set. Finally, the
pool of unlabeled instances is replenished. The process is repeated iteratively
until some decision criterion is met. The two classifiers are then used to classify the
test set 7.

The intuition behind this method is that the two classifiers which offer two different
views of the data can improve the performance of the other. By feeding the other clas-
sifier instances it may not be certain how to classify, the overall performance improves.

Conceptually, the co-training algorithm consists of two parts — feature set partition-
ing and iterative instance selection. Both of these parts are crucial to the algorithm's
success — without a feature set partitioning that generates two different views of the
data, the algorithm will produce little (if any) valuable information, and with a poor
selection of additional instances the algorithm's performance may deteriorate. We will
now review each part in detail.

3.1 Feature Partitioning

The co-training algorithm relies on two basic assumptions in order to operate: (a) the
dataset's features can be partitioned into (at least) two sets, each containing a sufficient
amount of information in order to produce an adequate classifier; (b) the data in the
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different sets is uncorrelated, so that two different and independent views of the data
exist. The fulfillment of these requirements (although it was demonstrated that they
could be somewhat relaxed in [6, 7]) needs to be accomplished through the partitioning
of the features set.

In some domains the division into two feature sets is clear. For example, in the web
page classification problem presented in [1], the features set was divided into two sets:
textual and non-textual features. In many other domains, however, finding a satisfying
partition is not easy. This difficulty of creating independent feature sets may have a
detrimental effect on the performance of the co-training algorithm, as shown in [6].

Previous work in the area of feature set partitioning in co-training can be divided in-
to groups — those that use simple strategies in order to partition the feature set (or just
do it randomly), and those that use more advanced methods.

The methods that use a simple strategy usually operate in the following manner: ite-
ratively, for each set, a value function is used in order to rank all the remaining fea-
tures. There is a large variety of functions that can be used for this purpose: the entropy
based methods (Information Gain, Gain Ratio and Mutual Information [8]) are very
common, but one can also use Signal-to-Noise (initially used in electrical engineering
to determine how degraded a signal has become) [9] and Relief [10]. Advanced
methods include Hill climbing [11], Oblivious Trees [12] and genetic algorithms [4].

In this paper we propose two strategies that can be combined with the methods re-
viewed above in order to improve the partitioning of the feature set. This is possible
because our proposed strategies are not focused on finding the best features split but on
how to better utilize the available information. One strategy uses the unlabeled data in
order to generate a larger set from which more accurate results can be drawn, while the
other strategies takes advantage of the information made available with the addition of
more instances to the labeled train set.

3.2 Instance Selection

The selection of additional instances is an essential part of the co-training algorithm;
the additional knowledge that is generated from their addition to the labeled train set is
the reason for the co-training algorithm's success (or failure). The selection of instances
which are either identical to instances already included in the labeled train set or
completely different may actually do more harm than good.

In the area of co-training, a wide variety of methods have been used in order to im-
prove the selection process. Pierce et al. [13], for example, used a statistical estimation
of class and diversity in order to choose the instances that will be labeled while [7]
used confidence intervals in order to prevent the degradation of the classifiers through-
out the co-training process. Another interesting approach includes the use of human
experts in order to correct mistaken labels for new instances [13].

In this paper we propose and evaluate a set of simple strategies for better instance
selection in co-training. Unlike methods that rely on confidence intervals (which may
be sensitive to the distribution of the data or the imbalance of the labeled training set)
or other statistical measures, our proposed methods are not data-dependent and can be
easily implemented.
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Fig. 1 presents the basic (original) co-training algorithm that we use as our baseline.
The input to the algorithm is a labeled set or instance (L), an unlabeled set of instances
(U), a test set (7), a classification algorithm (/), a splitting criterion (S) that is used
during the partitioning process of the feature set and the number of iterations of the co-
training. The output of the algorithm is an extended training set (ET) consisted of the
initial labeled set (L) and a portion of the unlabeled set that was labeled and selected by
the co-training procedure.

Input:
L — labeled set
U — unlabeled set
T — test set
1 — classification algorithm
S — feature set partitioning splitting criterion
n —number of iterations
Output:
ET — extended training set
h — classifier

Apply_ Co_Training

LLET< L
2: X & FeatureSetPartitioning(L , S)
3: For (i =1; i<n; i++)
4:  hy € TrainClassifier(l , m,(ET))
5:  hy € TrainClassifier(I , mo(ET))
//1abel all unlabeled instances with classifier 4,
6: L, € ApplyClassifier(h; , T (U))
//abel all unlabeled instances with classifier 4,
7: L, € ApplyClassifier(h, , To(U))
//add instances with highest confidence in L,
8: ET € ET U SelectSamplesWithHighestCofidence(L,)
//add instances with highest confidence in L,
9:  ET € ET v SelectSamplesWithHighestCofidence(L,)
/Ireplenish the "pool" of unlabeled instances
10:  ReplenishUnlabeledSet(U)
11: EvaluateClassifiers(hi.h, , T)

Fig. 1. The original co-training algorithm

First, the algorithm initializes the extended training set (ET) with L (line 1). Then a
feature set partitioning procedure is applied on the labeled set L using the splitting
criterion S (line 2). The output of the feature set partitioning procedures are x; and x;,
which are two mutually exclusive sets of features that together and constitute the fea-
ture set of L. Then, the co-training algorithm iteratively adds newly labeled instances to
the extended training set (lines 3-9). First, two classifiers /; and h, are trained accord-
ing to the classification algorithm 7 (lines 3-4). The training sets of /#; and h, are the
result of applying the projection operator (m) on ET in order to select a subset of fea-
tures in ET that appear in the feature collection x; and x, respectively. Next, i, and h,
are used in order to label the instances of the unlabeled set U (lines 6-7), where L; and
L, are the instances of U labeled according to 4, and h, respectively. Finally, positive
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instances and negative instances from L, and L, having the highest confidence level are
added to the extended labeled set ET (lines 8-9). Finally, the pool of unlabeled in-
stances is replenished (line 10). This process is repeated n times. Then, once ET is
finalized, the classifiers /, and h, are combined and evaluated using test set 7 (line 11).

4 The Proposed Method

In this section we present four strategies for improving the co-training algorithm -
unlabeled, iterative, nearest neighbor and certainty-based. The first two strategies -
unlabeled and iterative are used in order to improve the feature partitioning process
while the nearest neighbor and certainty-based strategies attempt to improve the
process by which additional instances are added to the labeled training set. We now
review each method in detail.

4.1 The Unlabeled Method

Whatever criterion is used to split the feature set (Mutual Information, Information
Gain or other), a basic problem exists — the amount of available information (that is,
the number of labeled instances) is very limited. This small amount of information may
lead to suboptimal splits.

We propose using the unlabeled training set of the co-training algorithm in order to
mitigate this problem. Before the initiation of the co-training process we used the la-
beled set (L) to train a classifier and use it (temporarily) in order to label all the unla-
beled instances in the unlabeled set (U). We then used the new labeled instances in
conjunction with the original labeled training set in order to split the feature set. This
process is presented in line 1-4 in Fig. 2. We hypothesized that the larger number of
instances - even if some were mislabeled — would improve the partitioning of the fea-
ture set.

4.2  The Iterative Method

Since the number of labeled instances increases with every labeling iteration, we at-
tempt to take advantage of the additional information in order to improve our feature
set partitioning. For this reason, we implemented and tested a scenario in which the
features set partitioning process is repeated with every iteration (Presented in Fig. 3).
We hypothesized that by taking advantage of the newly added information would
results in better feature set partitions.

An important benefit of the two feature set partitioning methods presented above
(i.e., unlabeled and iterative) is the fact that they can be used in conjunction with other
feature partitioning techniques (such as those presented in Section 2). This is the case
because the focus of these methods is on obtaining additional information for the set
partitioning process rather than the partitioning process itself. It is important to note
that the unlabeled method is applied only during the first iteration while the iterative
method is used in all other subsequent iterations.
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Input:
L — labeled set
U — unlabeled set
T — test set
I — classification algorithm
S — feature set partitioning splitting criterion
n —number of iterations
Output:
ET — extended training set
h — classifier

Apply_Unlabaeled_ Co_Training

1: h € TrainClassifier(I , L)
2: L, € ApplyClassifier(h , U)
3ET€< L
4: X & FeatureSetPartitioning(LU L, , S)
5: For (i=1; i<n; i++)
hy € TrainClassifier(I , T, (ET))
hy € TrainClassifier(I , ma(ET))
L, €& ApplyClassifier(hy , ma(U))
. L, € ApplyClassifier(h, , mo(U))
0: ET € ET U SelectSamplesWithHighestConfidence(L;)
1: ET & ET U SelectSamplesWithHighestConfidence(L,)
/lreplenish the "pool” of unlabeled instances
12: ReplenishUnlabeledSet(U)
13: EvaluateClassifiers(hi.h, , T)

—SY eI

Fig. 2. The unlabeled co-training algorithm

4.3  The Nearest Neighbors Methods

This strategy (as well as the following one) is designed to improve the selection of the
newly labeled instances. Consider the following scenario: when attempting to add two
additional instances from the unlabeled instances pool, the co-training algorithm is
faced with 10 instances that received the highest certainty. At this point, the algorithm
will choose the instances randomly.

We propose using the following strategy in order to improve the instance selection
process. Instead of randomly choosing the required number of instances from the "top
candidates" (those that received the highest confidence level in the current iteration),
we use the distance metric used by the SMOTE algorithm [14], in order to calculate the
candidate items' similarities to the labeled items. We tested two variations of this me-
thod for ranking the candidate instances:

a) Selecting the candidates that are most similar to labeled instances from the

same class. By doing this, we hope to reduce the classification error.

b) Selecting the instances that have the highest overall similarity to all labeled

instances. By using the overall similarity, we attempt to detect instances that
are both similar to those which are already labeled (thus reducing the risk of
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a mistaken classification) and are also likely to contribute more to the classifi-
cation process. By calculating similarity to all labeled items, we aim to select
instances whose classification is more likely to assist in the successful
partitioning of the two classes. This idea is somewhat similar to that of using
active learning [15] with the SVM algorithm, where instances that are closest
to the separating line are chosen for labeling by a domain expert.

An overview of the proposed method is presented in Figure 4:

Input:
L — labeled set
U — unlabeled set
T — test set
I — classification algorithm
S — feature set partitioning splitting criterion
n — number of iterations
Output:
ET — extended training set
h — classifier

Apply_Unlabaeled_ Co_Training

1: h € TrainClassifier(I , L)
2: L, € ApplyClassifier(h , U)
3ET< L
4: X & FeatureSetPartitioning(LU L, , S)
5: For (i=1; i<n; i++)
hy € TrainClassifier(I , w,(ET))
hy € TrainClassifier(I , Wo(ET))
L, €& ApplyClassifier(h , ma(U))
L, & ApplyClassifier(h, , ma(U))
0: ET € ET U SelectSamplesWithHighestConfidence(L;)
1: ET € ET U SelectSamplesWithHighestConfidence(L,)
/lreplenish the "pool” of unlabeled instances
12: ReplenishUnlabeledSet(U)
13: EvaluateClassifiers(hi.hy , T)

S

Fig. 3. The iterative co-training algorithm

4.4  The Certainty Based Method

This method is implemented in the following manner: during every training iteration
and for each of the classes of the dataset, each of the two classifiers produces a set of
instances for which it has the highest confidence. The final selection of instances from
that set, though, will be done by the other classifier. The algorithm of the proposed
method is presented in Figure 5.

We present two variations of this method — highest certainty and highest uncertainty:

a) In the highest certainty method, the other classifier chooses the instances it is
most certain of to have the predicted label (that is, the maximum agreement with
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the first classifier). The goal of this method is to reduce the error rate of the co-
training algorithm by looking for maximum agreement. At the same time, new
information is still obtained during the co-training process, because the initial
selection of instances is done solely by the first classifier.

In the highest uncertainty method, the opposite approach is implemented. In this me-
thod, which was inspired by a common idea in active learning [15], the "candidate"
instances to be chosen by the other classifier to be added to the labeled training set
are those that the other classifier is least certain ofj i.e., the class probability it assigned
to the instance is closest to the value that represents no knowledge about the "true la-
bel" of the instance (we use the threshold of 0.5 since these are binary classification
problem). By doing so, we attempt to maximize the benefit of the second classifier by
providing information on the instances it seems least capable of classifying.

Input:
L — labeled set
U — unlabeled set
T — test set
I - classification algorithm
S — feature set partitioning splitting criterion
n — number of iterations
Output:
ET — extended training set
h — classifier

Apply_NN_Co_Training

LLET< L
2: X € FeatureSetPartitioning(L , S)
3: For (i=1; i<n; i++)
hy € TrainClassifier(I , T, (ET))
hy € TrainClassifier(I , ma(ET))
/Nabel all unlabeled instances with classifier 4,
6: L, € ApplyClassifier(h; , ma(U))
/Mfrom L, choose instances with highest similarity
7. L,_final € SelectInstancesUsingSmote(L,, ET)
/Nabel all unlabeled instances with classifier 4,
8: L, € ApplyClassifier(h, , To(U))
// from L, choose instances with highest similarity
9:  L,_final € SelectInstancesUsingSmote(L,, ET)
//add instances with highest confidence in L,
8: ET € ET U SelectSamplesWithHighestCofidence(L,_final)
//add instances with highest confidence in L,
9:  ET € ET U SelectSamplesWithHighestCofidence(L,_final)
//replenish the "pool" of unlabeled instances
10:  ReplenishUnlabeledSet(U)
11: EvaluateClassifiers(hi.h, , T)

A

Fig. 4. The nearest neighbors co-training algorithm
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Input:
L — labeled set
U - classification algorithm
T — test set
I1— classification algorithm
S — feature set partitioning splitting criterion
n —number of iterations
Output:
ET — extended training set
h — classifier

Apply_Certainty_Based_Co_Training
1.ET< L
2: X & FeatureSetPartitioning(L , S)
3: For (i=1; i<n; i++)
hy € TrainClassifier(I , . (ET))
hy € TrainClassifier(I , mo(ET))
L, € ApplyClassifier(h; , w,(U))
L, € ApplyClassifier(h; , ma(U))
// select instances for L; based on their certainty in L,
8:  L,_final € SelectinstancesUsingOtherSetCertainty(Li, L)
// select instances for L, based on their certainty in L,
9:  L,_final € SelectinstancesUsingOtherSetCertainty(Ly, L)
//add the chosen instances
10: ET € ET U SelectSamplesWithHighestCofidence(L,_final)
11: ET € ET v SelectSamplesWithHighestCofidence(L,_final)
/lreplenish the "pool" of unlabeled instances
12: ReplenishUnlabeledSet(U)
13: EvaluateClassifiers(hi.hy , T)

A AN

Fig. 5. The certainty-based co-training algorithm

5 Evaluation

5.1 Experiment Setup

The proposed strategies were tested on 17 two-class datasets (binary problems) and 8
multi-class datasets, which were converted to a two-class problem (with the majority
class being in one group and all other classes in another) — 25 datasets overall. All
datasets are well known and available online (from the UCI repositoryl). We chose
datasets which bore a large variety in size, number of attributes, number of numeric
attributes and imbalance (the properties of the various datasets are presented in
Table 1) in order to evaluate the proposed methods on a variety of cases. The original
co-training algorithm [1] (hereinafter called "standard" co-training algorithm) is used
as the baseline algorithm.

This evaluation is organized as follows. We begin by comparing the performance
of our proposed strategies on all the datasets presented in Table 1, analyzing their
strengths and weaknesses and proposing a strategy for their application. Then, in Sec-
tion 5, we analyze the results and test hypotheses regarding the "inner workings" of the
co-training algorithm.

"http://archive.ics.uci.edu/ml/
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Table 1. Datasets Used in the Evaluation Process

Nul.nber of Nun}ber of Numben: of Percentage Imbalance
item attributes numeric | of numeric

ladult 32561 14 6 043 3.15
[pank 45211 16 7 0.44 7.54
cancer 569 30 30 1.00 1.68
cardiography 2126 22 22 1.00 3.51
contraceptive 1473 9 6 0.67 3.42
credit 690 15 6 0.40 1.25
|diabetes 768 8 8 1.00 1.87
Eerman credit 1000 20 7 0.35 233

eart 270 13 6 0.46 1.25
[horse 368 22 7 0.32 1.70
lhouse votes 435 16 0 0.00 1.59
ionosphere 351 34 34 1.00 1.79
letter 20000 16 16 1.00 23.60
Imagic 19020 10 10 1.00 1.84
[nursery 12960 8 0 0.00 2.00
Egge block 5473 10 10 1.00 8.70

ima 768 8 8 1.00 1.87
lsegment 2310 19 19 1.00 6.00
lsonar 208 60 60 1.00 1.14
lsoy bean 683 35 0 0.00 6.42
lspam 4601 57 57 1.00 1.54
tic tac toe 958 9 0 0.00 1.89
vehicle 846 18 18 1.00 2.88
iwaveform 5000 40 40 1.00 1.95

east 1004 8 8 1.00 9.14

For the purpose of assessing the performance of the proposed strategies, we chose to
use the AUC (area under the ROC curve) measure. The proposed methods were im-
plemented using the open source machine learning platform Weka [17] and all experi-
ments were run on it>. The experiments were conducted using the following settings:

1. Two algorithms were used to evaluate the proposed method: a) Naive Bayes,
which was used in the original co-training paper [1] (and is the most commonly
used classifier in papers in this field); b) the C4.5 algorithm, which is one of the
most commonly used decision trees algorithms.

2. For each dataset 20 experiments were conducted.

3. Each dataset was split into three disjoint sets — labeled (training set), unlabeled
(training set) and test.

a. We used two labeled training set sizes in order to evaluate the performance of
the model — both 2% and 5% of the overall number of instances (in order to as-
sess the proposed methods' performance with different levels of available in-
formation). The instances were chosen randomly.

b. We required that at least one instance from each class be present in the labeled set.

c. All remaining instances were split between the unlabeled and test sets — 75% to
the former, 25% to the latter.

2 We plan to make the source code of our prototype co-training implementation available on
the website of the authors.
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4. Each co-training experiment consisted of 30 iterations. During each iteration each
classifier adds two instances of each class to the labeled instances "pool". This
means that for each experiment, a total of 120 instances were added.

5. For each experiment, the initial labeled training set was used by both the proposed
method and by the standard co-training algorithms (the benchmark).

5.2  Comparing the Performance of the Proposed Methods

Evaluation results of the proposed methods are presented in Table 2. We chose to show
not only the average performance of the proposed methods over all the datasets, but to
also divide them into two groups based on their level of imbalance, as we found this
division to be informative. Datasets whose class ratio was 2:1 or lower were defined as
"balanced" while datasets with a higher ratio were defined as "imbalanced". As can be
seen in Table 2, the proposed methods produce very different results for each group.

From the results we were able to conclude the following:

a) The feature partitioning methods — unlabeled and iterative — are the ones that
show the most significant improvement for imbalanced datasets. These results
support our hypothesis that high imbalance in the dataset makes feature selection
and partitioning more difficult.

b) Both the highest-certainty and highest-uncertainty methods show statistically sig-
nificant improvement in many cases. This is interesting, since the sample selection
strategy of the two methods is completely opposite (certainty vs. diversity). This
leads us to conclude that in many cases of co-training, a consistent selection strat-
egy — even if it is not optimal - is better than no strategy at all.

¢) The nearest neighbors methods (especially the overall similarity version) show
improvement in the largest number of scenarios. In addition, this type of algo-
rithms is the only one that achieved improvement in the majority of the scenarios
involving the balanced datasets.

d) The proposed methods seem to show larger improvement for imbalanced datasets.
This fact is very interesting, since imbalanced datasets are considered to be a more
difficult problem, especially when the number of labeled training instances is
small. We believe this issue warrants additional research which will be addressed
in future work.

Based on the analysis presented above, we were able to propose a strategy for the
implementation of the proposed methods: for datasets whose imbalance is equal to or
smaller than 2, we recommend using the nearest neighbors overall similarity method
and for datasets with higher imbalance we recommend that the iterative method be
used. For other datasets, we recommend using the iterative method. If applied on the
datasets presented here, this strategy would yield an overall improvement of 7% on the
25 datasets used in our experiments (proven to be statistically significant using a paired
t-test with p<0.05).
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Table 2. The Relative Performance of the Proposed Methods to the "Original" Cotraining
Algorithm. for Each Algorithm We Show the Results for the Balanced Datasets (Ratio of 2:1 or
Lower), Imbalanced Datasets and Overall Average Performance. Results are Shown for
Experiments Where the Size of the Labeled Training Set is 2% and 5%. Fields Marked with an
Asteriks are Fields Where the improvement has been Proven to be Statistically Significant with
P<0.05.

Algorithm q q NN NN Same
& Imbalanc Unlabele Tterativ nghe.st nghes.t Overall Class
Training e Level d e Cer;amt Unce;'tamt Similarit Similarit
Set Size y y

Naive low

Bayes - imbalance -2.9% -2.1% -1.8% -0.1% -0.1% 2.1%*

2% high

Labeled imbalance 5.2%* 7.8%* -1.2% 1.2% 5.1%* -0.1%

Learning

Set Size average 0.6% 2.3%* -1.5% 0.1% 1.8% 1.1%

Naive low

Bayes - imbalance 1.3% 0.9% 1.9% 3.5%* 42%* 2.7%*

5% high

Labeled imbalance 1.1% 5.8%* -1.1% 2.7%* 6.9%* 1.7%

Learning

Set Size average 1.2% 3% 0.5% 3.1% 54%* 2.3%*
low

C45-2% | jbalance | -5.6% 7.1% 21%* -12% 3.1%* -6.8%

Labeled high

somng | imbalance | 5.2%* 6%+ 2.8%* 7.1%* 0.6% 5%
average -0.1% -1.4% 2.5%* 2.5%* 2% -6.3%
low

e imbalance |  4.5% -5% 0.8% 2.3%* 4.9% 2.2%

5%Labele high

dLearning | ; ;) 105%* | 74%* | 69%* 1.5% 3.3% 5.3%*

Set Size 1mbalance .5% 470 770 D/0 J70 J70
average 2.1%* 0.4% 3.6%* -0.7% -1.2% 1.1%

6 Analysis of Labeling Accuracy

The performance of the iterative strategy (as shown in the previous section) as well as
an interest in a better understanding of the inner workings of the co-training algorithm
led us to the conduct additional analysis. We defined a set of questions that we be-
lieved could help us better understand the co-training process and tried to answer them
by analyzing our experiment logs. The purpose of this analysis is two-fold: a) to identi-
fy factors and patterns that affect the performance of the co-training algorithm (for
better or for worse); b) to propose future research directions.

Since analyzing all the proposed strategies would be difficult to follow, we decided
to analyze three algorithms: the standard co-training algorithm, the iterative method
(which performed best on imbalanced sets) and the most-similar similarity method
(which fared best on balanced datasets). The analysis was conducted for the Naive
Bayes method which is both the most commonly used algorithm for co-training and the
algorithm whose overall performance (in terms of absolute AUC) was better than that
of the C4.5 algorithm. Following are five questions that we attempt to address.

1) What percentage of the instances added during the co-training learning phase
are assigned with the wrong label?
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Table 3 presents the percentage of instances that were added during the learning
phase to the co-training algorithms with wrong labels. It is clear that the co-training
algorithm, which supposedly labels only "safe" instances, has a high error rate (41% on
average). It is also clear that despite its superior performance in imbalanced datasets,
the iterative method does not display a lower error rate — an interesting fact in itself,
which warrants future research. The nearest neighbors method, on the other hand,
shows a significantly lower error rate (but still around 30% of all added instances).

The vastly superior performance of the nearest neighbors method led us to hypo-
thesize that most of the misclassifications were reported in outliers, namely instances
that have one or more abnormal values that may "derail" a classifier. Because of the
small training set, co-training algorithms are not well suited to deal with this kind of
challenge.

This analysis, however, suggests an interesting possible direction for future re-
search: it has been shown that identifying the abnormal attribute values and addressing
them can lead to substantial improvement in performance, especially when small train-
ing sets are used [18]. It may pay off to pursue a similar approach in the context of
co-training.

Table 3. Percentage of Mistakenly Labeled Instances Added During the Learning Phase to the
Co-Training Algorithms

Original Iterative P;m:f::;l
2% 5% 2% 5% 2% 5%
Balanced
datasets 41.06% | 37.42% | 42.08% | 39.53% | 27.76% | 31.28%
average
Imbalanced
datasets 2.08% | 3826% | 41.85% | 39.17% | 3077% | 36.03%
average
Ll 4151% | 37.79% | 41.98% | 3937% | 29.00% | 3337%
average

2) How would the co-training algorithm perform if no wrong instances were
added?

After reviewing these results, we decided to assess what would the performance of
the co-training algorithm be had no mistakes been made during the instance selections.
The purpose of this analysis was not to prove that a smaller number of errors lead to
better results, but to determine the algorithm's "upper bound" for improvement. By
doing so, we were attempting to assess the possible benefits of investing time and
effort in error reduction in the co-training process.

We ran a set of experiments in which an "oracle" prevented the algorithm from
wrongly labeling instances such that instead of the rejected instance, the next instance
with the highest degree of certainty was chosen. The results are presented in Table 4
and contain a comparison both to the "standard" co-training algorithm and to the base-
line method (obtained by using two classifiers on the original labeled training set).

The results show (not surprisingly) that avoiding mistakes in the selection of in-
stances can significantly improve the co-training algorithm's performance. The conclu-
sion we draw from this analysis is that future work should focus not only on better
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instance selection but also on error reduction, which appears to have gotten lesser
attention in comparison.

3) Is there a correlation between the percentages of these misclassified added in-
stances and the performance of various co-training algorithms?

Table 4. Comparing the Performance of the Original Co-Training Algorithm and the Co-
Training Algorithm with an "Oracle" (no Mistakenly Labeled Instances Added)

AUC (original) AUC (oracle) Oracle / Original

sonar 0.312 0.785 2.514
credit 0.729 0.873 1.197
heart 0.810 0.915 1.129
spam 0.726 0.900 1.240
house votes 0.945 0.958 1.013
cancer 0.937 0.953 1.017
horse 0.666 0.849 1.275
ionosphere 0.603 0.726 1.204
imagic 0.495 0.529 1.068
diabetes 0.662 0.750 1.133
pima 0.627 0.757 1.207
tic tac toe 0.587 0.668 1.138
waveform 0.517 0.615 1.190
nursery 0.682 0.964 1.412
[german credit 0.582 0.693 1.191
vehicle 0.436 0.560 1.283
adult 0.779 0.868 1.115
contraceptive 0.640 0.707 1.105
cardiography 0.630 0.759 1.205
segment 0.897 0.941 1.048
soy_bean 0.645 0.707 1.095
bank 0.589 0.633 1.076
[page_block 0.824 0.858 1.041
yeast 0.864 0.926 1.072
letter 0.489 0.482 0.984

1.198

In Table 5 we compare the performance (in AUC) of the two analyzed methods to
the "standard" co-training. The comparison is based on the relative error rate in the
labeling of new instances — datasets in which the proposed methods (iterative and NN
overall similarity) had a lower error rate are in one group and datasets in which the
error rate was higher are in another. It is clear that there is a strong correlation between
a lower error rate during the co-training process and the performance of the algorithm.

4)  Are mistakes that are made during the early iterations of the co-training algo-
rithm more detrimental to the co-training algorithm's performance?

In order to answer this question, for each dataset (and for each method) we calcu-
% of errors in the first 5 trainin iteration

lated the following value , which indicates

% of errors in all training iterations
whether more errors were made in the first 5 iterations than in later ones. Then, for
each dataset we divided the values obtained for the two novel methods (iterative
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Table 5. The Relative Performance of the Iterative and "NN Overall Similarity" Methods
Compared to the "Standard" Cotraining Algorithm, Grouped by the Relative Percentage of
Mistaken Instances Labeling During the Training Process

Iterative NN Overall Similarity
2% 5% 2% 5%
Labeled Labeled Labeled Labeled
Learning Learning Learning | Learning
Set Set Set Set
Smaller error compared 7.85% 5.8% 51% 6.9%
to standard" co-training ) ) ) )
Larger error compared to 2.1% 0.9% 0.7% 42%
"standard" co-training ’ i i i

and NN overall similarity) by the value obtained for the "standard" co-training. Our
goal in so doing was to check whether there is a correlation between reduced error
rates in the first co-training iterations and improved classification performance.

The results of the evaluation are presented in Table 6. We show the average relative
improvement for datasets on which the relative error rate for the first iterations was
below and above 1. The results of the analysis clearly show that a low error rate in
these iterations is critical for the performance of the co-training algorithm.

We believe this conclusion regarding the importance of the initial iterations could
be used to develop new methods for the prediction and improvement of co-training
results. By paying closer attention to the early iterations it might be possible to reduce
the required number of training iterations, improve classification accuracy and even
evaluate early on the benefits of using co-training for a certain dataset.

5) Does a significant difference between the performances of the two classifiers
correlate with the performance of the co-training algorithm?

In order to answer this question, we divided (for each dataset) the error rates of the
two classifiers that make up the co-training algorithm. The lower error rate was divided
by the higher one. Then, as we did before, we divided the values obtained for the two
novel methods by the value obtained for the "original" co-training method. Those val-
ues were then paired with the relative improvement of the novel methods (over the
standard co-training algorithm) in search of correlation.

The results are presented in Table 7. It is clear from the results (3 out of 4 cases)
that "balanced" co-training method — those whose classifiers have a similar error rate
— outperforms "imbalanced" ones.

We believe that this conclusion regarding the performance of the classifier could be
used to develop additional methods for the improvement of the co-training process.
One option that comes to mind is the use of sampling (with or without the involvement
of human experts) in order to evaluate the relative performance of the classifiers.
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Table 6. The Relative Performance of the Proposed Methods Compared to the "Standard" Co-
Training Algorithm, Grouped by the Relative Error Rate of Labeled Instances Added in the

First Five Iterations Compared to the Overall Error Rate

Iterative NN Overall Similarity
2% Labeled | 5% Labeled | 2% Labeled | 5% Labeled
Learning Learning Learning Learning

Set Set Set Set
Relative error
rate in first 5 1.8% 7.4% 1.25% 12%
iterations < 1
relative error
rate in first 5 -1.1% 0.6% -1.2% 3%
iterations >= 1

Table 7. The Relative Performance of the Proposed Methods Compared to the "Standard" Co-
Training Algorithm, Based the Relative Error Ratio of the Two Classifiers to the Original,
Iterative and Most Similar Methods

Iterative NN Overall Similarity

2% Labeled 5% Labeled 2% Labeled 5% Labeled

Learning Set | Learning Set | Learning Set [ Learning Set
ratio <1 3.4% 2.6% 3.6% 14%
ratio >=1 0.9% 3.3% -4.9% -2.3%

7 Open Problems

The purpose of this section is to define the problems and challenges whose solutions —
we believe — will enable us to advance the field of co-training in a significant manner.
The analysis presented in the previous section has led us to define the following prob-
lems as the ones that are — in our view — most pressing:

a) Reducing the error rate in the labeling process — as shown in our analysis,
this is possibly the greatest problem currently inflicting the field of co-
training. Despite its importance, the large majority of papers seem to ignore
it by simply assuming that all the labeled instances are correct. As shown by
our analysis, this assumption is not only false but possibly detrimental, espe-
cially if a high error rate is incurred in the initial iterations.

b) Intelligently selecting the instances to be labeled — another issue that we
believe that has been underrepresented in existing works is the matter of se-
lecting the best instances to be labeled. We believe that other than choosing
the instances that are "safest" or "most informative" [15] there are also oth-
er issues to be considered: the imbalance of the data, maintaining a training
set that is characteristic of the overall dataset, etc. These issues are currently
not addressed by any existing work, to the best of our knowledge.
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c) Preventing '"concept drift" — it is quite possible for the co-training algo-
rithm to become adept at classifying a subset of the data while becoming in-
ept at classifying other subsets. This may be due to pure chance (because of
the partially random selection of new instances) or because some subsets are
easier to classify than others. To the best of our knowledge, no solution is
proposed to this problem.

8 Future Outlook

Because of its semi-supervised nature, co-training may be very suitable for scenarios

in which the cost of obtaining additional labeled instances is high or time consuming

— medicine and biology, for example. The capabilities presented by Big Data and its

already proven applications to the abovementioned fields open the way for some very

interesting research directions, which may also be able to address at least some of
the problems raised in the previous section:

a) Co-training and ensemble — instead of using the two classifiers presented
by the "original" co-training method, it is possible to generate a much larger
number of classifiers and use them in an ensemble [16]. The proposed en-
semble could be applied both "horizontally" - multiple pairs tagging different
instances - and "vertically" - using only a single pair of classifiers while reus-
ing the classification models from previous iterations.

b) Adaptation to multi-class problems — co-training is almost always applied
to binary classification problems. Even when faced with multi-class problems,
they are often represented as a set of binary problems by iteratively grouping
together all classes but one. The computational power presented by Big Data
platforms can enable more advanced models. Two options come to mind:

e Represent all possible problem combination simultaneously — generate
all "leave one out" combinations and train them simultaneously. When
choosing the new items to label, the different classifiers can "consult"
with each other.

e Train each representation separately, and combine the results once the
training has been completed — the combination can be done by voting,
averaging or more advanced methods such as regression or principal
component analysis (PCA).

c) Advances feature partitioning methods — as shown in this paper, existing
feature partitioning methods still leave much to be desired. By taking advan-
tage of the computational power of new platforms, multiple feature partitions
can be simulated and test simultaneously, making finding the optimal fea-
tures split easier.

9 Conclusions

In this paper we propose strategies for improving the co-training algorithm, which
were evaluated and showed an overall improvement of 7% in the AUC measure when
compared to the original/standard co-training algorithm.
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The contribution of this paper is three-fold. First, we propose novel strategies for

both "parts" of the co-training algorithm - feature set partitioning and instance selec-
tion. Second, we analyze the performance of the proposed methods and show how
they can be optimally combined. Finally, we analyze the co-training process itself and
present findings that may form the base for future research — particularly the impor-
tance of the early iterations for the success of the co-training process, and the advan-
tages of both classifiers having a similar error rate.
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Abstract. In this paper, a research study to discover hidden knowledge in the
reports of the public release of the Food and Drug Administration (FDA)’s
Adverse Event Reporting System (FAERS) for erythromycin is presented.
Erythromycin is an antibiotic used to treat certain infections caused by bacteria.
Bacterial infections can cause significant morbidity, mortality, and the costs of
treatment are known to be detrimental to health institutions around the world.
Since erythromycin is of great interest in medical research, the relationships
between patient demographics, adverse event outcomes, and the adverse events
of this drug were analyzed. The FDA’s FAERS database was used to create a
dataset for cluster analysis in order to gain some statistical insights. The reports
contained within the dataset consist of 3792 (44.1%) female and 4798 (55.8%)
male patients. The mean age of each patient is 41.759. The most frequent
adverse event reported is oligohtdramnios and the most frequent adverse event
outcome is OT(Other). Cluster analysis was used for the analysis of the dataset
using the DBSCAN algorithm, and according to the results, a number of
clusters and associations were obtained, which are reported here. It is believed
medical researchers and pharmaceutical companies can utilize these results and
test these relationships within their clinical studies.

Keywords: Open medical data, knowledge discovery, biomedical data mining,
bacteria, drug adverse event, erythromycin, cluster analysis, clustering
algorithms.

1 Introduction

Modern technology has increased the power of data by facilitating linking and
sharing. Politics has embraced transparency and the citizens’ rights to data access; the
top down culture is being challenged. Many governments around the world now
release large quantities of data into the public domain, often free of charge and
without administrative overhead.

A. Holzinger, 1. Jurisica (Eds.): Knowledge Discovery and Data Mining, LNCS 8401, pp. 101-116, 2014.
© Springer-Verlag Berlin Heidelberg 2014
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This allows citizen-centered service delivery and design and improves
accountability of public services, leading to better public service outcomes [1].
Therefore, open data has been of increasingly great interest to several scientific
communities and is a big opportunity for biomedical research [2], [3], [4].

The US Food and Drug Administration (FDA) Adverse Event Reporting System
(FAERS) is such a public database and contains information on adverse events and
medication error reports submitted to the FDA [5]. The database is designed to
support the FDA’s post marketing safety surveillance program for drug and
therapeutic biologic products [6], [7], [8]. Adverse events and medication errors are
coded using terms from the Medical Dictionary for Regulatory Activities (MedDRA)
terminology [9]. Reports can be submitted by health care professionals and the public
through the “MedWatch” program. Since the original system was started in 1969,
reporting has been markedly increasing. To date, the FAERS is the largest repository
of spontaneously reported adverse events in the world with more than 4 million
reports [10], [11].

The FDA releases the data to the public, and public access offers the possibility to
external researchers and/or pharmacovigilance experts to explore this data source for
conducting pharmacoepidemiological studies and/or pharmacovigilance analyses [5].

This study was carried out to describe the safety profile of erythromycin. This is of
great importance as erythromycin is one of the main medications for bacterial
diseases. Bacterial diseases are of particular interest due to the high morbidity,
mortality, and costs of disease management [12]. Previous work has investigated the
adverse events of erythromycin. Manchia et al. presented a case of a young man who
had symptoms of psychotic mania after the administration of erythromycin and
acetaminophen with codeine on 2 separate occasions [13]. Varughese et al. reported
antibiotic-associated diarrhea (AAD) associated with the use of an antibiotic such as
erythromycin [14].

Bearing the importance of any new insights into erythromycin in mind, the data
from the FDA’s FAERS was used to discover associations between patient
information such as demographics (e.g., age and gender), the route of the drug,
indication for use, the adverse event outcomes (death, hospitalization, disability, etc.),
and the adverse events of erythromycin were explored. A number of statistically
significant relations in the event reports were detected. The automated acquisition,
integration, and management of disease-specific knowledge from disparate and
heterogeneous sources are of high interest in the data mining community [15].

In the project which this paper describes, data mining experts and clinicians
worked closely together to achieve these results.

2 Glossary and Key Terms

Bacteria: are living organisms that have only one cell. Under a microscope, they look
like spheres, rods, or spirals. They are so small that a line of 1,000 could fit across a
pencil eraser. Most bacteria do no harm - less than 1 percent of bacteria species cause
any illnesses in humans. Many are helpful. Some bacteria help to digest food, destroy
disease-causing cells, and give the body needed vitamins [42].
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Cluster analysis: is the process of grouping data into classes or clusters so that
objects within a cluster have high similarity in comparison to other objects in that
cluster, but are very dissimilar to objects in other clusters [36].

DBSCAN: a density-based clustering algorithm. A density-based cluster is a set of
density-connected objects that is maximal with respect to density-reachability. Every
object not contained in any cluster is considered to be noise [36].

Drug adverse event: An appreciably harmful or unpleasant reaction, resulting from
an intervention related to the use of a medicinal product, which predicts hazard from
future administration and warrants prevention or specific treatment, or alteration of
the dosage regimen, or withdrawal of the product [43].

FDA FAERS (Food and Drug Administration Adverse Event Reporting System): is
a public database that contains information on adverse event and medication error
reports submitted to the FDA [5].

Open data: Data that can be freely used, reused and redistributed by anyone —
subject only, at most, to the requirement to attribute and share alike [44].

Pharmacovigilance: is the science relating to prevention of adverse effects with
drugs.

3 Related Work

Several studies have been carried out regarding data mining on drug adverse event
relations in the biomedical domain. Kadoyama et al. mined the FDA’s FAERS for
side-effect profiles of tigecycline. They used standardized, official pharmacovigilance
tools using of a number of measures such as proportional ratio, the reporting odds
ratio, the information component given by a Bayesian confidence propagation neural
network, and the empirical Bayes geometric mean. They found some adverse events
with relatively high frequency including nausea, vomiting, and hepatic failure [16].

Malla et al. investigated trabectedin related muscular and other adverse effects in
the FDA FAERS database. Adverse event reports submitted to the database from
2007 to September 2011 were retrospectively reviewed and the entire safety profile of
trabectedin was explored. They detected that rhabdomyolysis is a life-threatening
adverse toxicity of trabectedin [17].

Raschi et al. searched macrolides and torsadogenic risk and analyzed cases of drug
induced Torsade de Pointes (TdP) submitted to the publicly available FDA FAERS
database. They collected patient demographic, drug, and reaction and outcome
information for the 2004-2011 period and performed statistical analyses by using the
statistical package SPSS. They concluded that in clinical practice azithromycin carries
a level of risk similar to other macrolides; the notable proportion of fatal cases and the
occurrence of TdP-related events in middle-aged patients strengthen the view that
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caution is needed before considering azithromycin as a safer therapeutic option
among macrolides. Appropriate prescription of all macrolides is therefore vital and
should be based on the underlying disease, patient’s risk factors, concomitant drugs,
and local pattern of drug resistance [18].

Harpaz et al. have performed a number of studies on data mining for adverse drug
events (ADEs). They provide an overview of recent methodological innovations and
data sources used to support ADE discovery and analysis [19]. Multi-item ADE
associations are associations relating multiple drugs to possibly multiple adverse
events. The current standard in pharmacovigilance is bivariate association analysis,
where each single ADE combination is studied separately. The importance and
difficulty in the detection of multi-item ADE associations was noted in several
prominent pharmacovigilance studies. The application of a well-established data
mining method known as association rule mining was applied to the FDA’s
spontaneous adverse event reporting system (FAERS). Several potentially novel
ADEs were identified [20]. Harpaz et al. also present a new pharmacovigilance data
mining technique based on the biclustering paradigm, which is designed to identify
drug groups that share a common set of adverse events in the FDA’s spontaneous
reporting system. A taxonomy of biclusters was developed, revealing that a
significant number of verified adverse drug event (ADE) biclusters were identified.
Statistical tests indicate that it is extremely unlikely that the discovered bicluster
structures as well as their content arose by chance. Some of the biclusters classified as
indeterminate provide support for previously unrecognized and potentially novel
ADEs [21].

Vilar et al. developed a new methodology that combines existing data mining
algorithms with chemical information through the analysis of molecular fingerprints.
This was done to enhance initial ADE signals generated from FAERS to provide a
decision support mechanism to facilitate the identification of novel adverse events.
Their method achieved a significant improvement in precision for identifying known
ADEs, and a more than twofold signal enhancement when applied to the
rhabdomyolysis ADE. The simplicity of the method assists in highlighting the
etiology of the ADE by identifying structurally similar drugs [22].

The creation and updating of medical knowledge is challenging. Therefore, it is
important to automatically create and update executable drug-related knowledge bases
so that they can be used for automated applications. Wang et al. suggest that the drug
indication knowledge generated by integrating complementary databases was
comparable to the manually curated gold standard. Knowledge automatically acquired
from these disparate sources could be applied to many clinical applications, such as
pharmacovigilance and document summarization [23].

4 Methods

4.1 Data Sources

Input data for our study was taken from the public release of the FDA’s FAERS
database, which covers the period from the third quarter of 2005 through to the
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second quarter of 2012. The data structure of FAERS consists of 7 datasets: patient
demographic and administrative information (DEMO), drug/biologic information
(DRUG), adverse events (REAC), patient outcomes (OUTC), report sources (RPSR),
drug therapy start and end dates (THER), and indications for use/diagnosis (INDI).
The adverse events in REAC are coded using preferred terms (PTs) from the Medical
Dictionary for Regulatory Activities (MedDRA) terminology. All ASCII data files
are linked using an ISR, a unique number for identifying an AER. Three of seven
files are linked using DRUG_SEQ, a unique number for identifying a drug for an ISR
[24], [25].

Table 1. Characteristics of dataset

Attribute Type

Numeric
Minimum: 6
Age Maximum: 91
Mean: 41.759
StdDev: 23.409
Nominal
Male,
Gender Female,
NS
Nominal
Oral,
Transplacental,
Route Ophthalmic,
Intravenous,
Topical,
Parenteral,
Disc, Nos
Nominal

Indication for use 48 distinct values (MedDRA terms)

Nominal

HO-Hospitalization,
OT-Other,
Adverse event outcome DE-Death,

DS-Disability,
LT-Life threatening,
RI- Required Intervention to Prevent
Permanent Impairment/Damage,
CA- Congenital Anomaly

Nominal

Adverse event 220 distinct values (MedDRA terms)

The data in this study was created from the public release of the FDA’s FAERS
database by collecting data from the DEMO, DRUG, REAC, OUTC and INDI
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datasets [17]. The data, in ASCII format, were combined and stored in a database
using Microsoft SQL Server 2012. Erythromycin related records were then selected to
create a dataset for cluster analysis. In total, 8592 patients involved in adverse event
reports for erythromycin were collected from the FDA database [25].

The dataset contains patient demographics such as age, gender, route, indication
for use, adverse event outcome, and adverse event (Table 1). The attributes of the
dataset were directly collected from the database. The dataset consists of 8592
instances.

4.2  Cluster Analysis by DBSCAN Algorithm

Cluster analysis is one area of unsupervised machine learning of particular interest for
data mining and knowledge discovery. Clustering techniques have been applied to
medical problems for some time and there are many different algorithms available, all
with very different performances and use cases [26], [27], [28], [29].

Cluster analysis provides the means for the organization of a collection of patterns
into clusters based on the similarity between these patterns, where each pattern is
represented as a vector in multidimensional space [30], [31].

In clustering schemes, data entities are usually represented as vectors of feature-
value pairs. Features represent certain attributes of the entities that are known to be
useful for the clustering task. In numeric clustering methods, a distance measure is
used to find the dissimilarity between the instances [32]. The Euclidean distance is
one of the common similarity measures and is defined as the square root of the
squared discrepancies between two entities summed over all variables (i.e., features)
measured. For any two entities A and B and k=2 features, say, X; and Xj, d, is the
length of the hypotenuse of a right triangle. The square of the distance between the
points representing A and B is obtained as follows:

& = Xa-Xp1)” + Kaz - Xpo)* [1]

The square root of this expression is the distance between the two entities
[33], [34].

In this study, we used the DBSCAN algorithm to analyze adverse events reports.
DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a density-
based clustering algorithm. A density-based cluster is a set of density-connected
objects that is maximal with respect to density-reachability. Any object not contained
in a cluster is considered to be noise. The DBSCAN algorithm grows regions with
sufficiently high density into clusters and discovers clusters of arbitrary shape in
spatial databases, even those that contain noise. It defines a cluster as a maximal set of
density-connected points. The basic principles of density-based clustering involve a
number of definitions, as shown in the following:

e  The neighborhood within a radius e-neighborhood of the object.
e If the e-neighborhood of an object contains at least a minimum number,
MinPts, of objects, then the object is called a core object.
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e Given a set of objects, D, we say that an object p is the directly density-
reachable from object g if p is within the e-neighborhood of ¢, and ¢ is a core
object.

e An object p is density-reachable from object ¢ with respect to € and MinPts
in a set of objects, if there is a chain of objects py,...,p,, p;/=q and p,=p such
as p;,; is directly density-reachable from p; with respect to € and MinPts, for

le i sl

Density reachability is the transitive closure of direct density reachability, and this
relationship is asymmetric. Only core objects are mutually density reachable. Density
connectivity, however, is a symmetric relation.

DBSCAN searches for clusters by checking the e-neighborhood of each point in
the database. If the e-neighborhood of a point p contains more than MinPts, a new
cluster with p as a core object is created. DBSCAN then iteratively collects directly
density-reachable objects from these core objects, which may involve the merger of
some density-reachable clusters. The process terminates when no new point can be
added to any cluster [37]. If a spatial index is used, the computational complexity of
DBSCAN is O(nlogn), where n is the number of database objects. Otherwise, it is O
( n’ ). The algorithm is therefore sensitive to the user-defined parameters [38].

The DBSCAN algorithm was used to perform cluster analysis on the dataset. Table
1 show the attributes used in the dataset. Weka 3.6.8 was used for the analysis. Weka
is a collection of machine learning algorithms for data mining tasks and is open
source software. The software contains tools for data pre-processing, classification,
regression, clustering, association rules, and visualization [38]. The application of the
DBSCAN algorithm on the dataset generated 336 clusters (Fig. 3). Some of these are
shown in Table 6. The results of the application of the DBSCAN algorithm when run
in Weka is as follows:

Clustered data objects: 8592

Number of attributes: 6

Epsilon(eg): 0.9; minPoints (MinPts) : 6
Number of generated clusters: 336
Elapsed time: 34.97

5 Experimental Results and Discussion

We investigated the DrugBank database to get detailed information regarding
erythromycin, which is shown in Table 2. The DrugBank database is a bioinformatics
and cheminformatics resource that combines detailed drug data (i.e. chemical,
pharmacological, and pharmaceutical data) with comprehensive drug target
information (i.e. sequence, structure, and pathway data) [39]. In the database, each
drug has a DrugCard that provides extensive information on the drug’s properties.

The majority of the adverse event reports in the dataset are for males (55.8%)
(Table 3) with an average age of 41.759 years (Table 1) [14]. The most frequent
indication for erythromycin use was for ill-defined disorders, followed by rosacea,
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rhinitis allergic, and diabetes mellitus (Table 4). Oral use occurs with the highest
frequency (Table 5).

The ten most frequent adverse events associated with erythromycin are shown in Fig
1. Oligohtdramnios is at the top of the list, followed by intra-uterine death, gestational
diabetes, and C-reactive protein increase. Fig. 2 shows the graphical representation of the
top ten co-occurrences of adverse event outcomes with erythromycin. According to Fig.
2, the most observed outcome is OT(Other) (47%), followed by HO(Hospitalization)
(25.4%), DE(Death) (16%), LT(Life-Threatening) (5%), DS(Disability) (3%),
RI(Required Intervention to Prevent Permanent Impairment/Damage) (1%),
CA(Congenital Anomaly) (0.8%), and Unknown(0.01%) in this order.

Table 2. Erythromycin in the DrugBank database

Drugbank ID DB00199

Drug name Erythromycin

Some synonyms Erythromycin oxime, EM, Erythrocin Stearate
Some brand names Ak-mycin, Akne-Mycin, Benzamycin, Dotycin
Categories Anti-Bacterial Agents, Macrolides

ATC Codes D10AF02, JO1FAO1, SO1AA17

Table 3. The number of reports by gender

Gender The number of reports
Female 3792 (44.1%)
Male 4798(55.8%)
NS(Not Specified) 2(0.2%)

Table 4. Top ten indications for use

No Indication for use The number of co-
occurrences (N)
1 I1l-defined disorder 2948(39%)
2 Rosacea 1887(25%)
3 Rhinitis allergic 579(7.7%)
4 Diabetes mellitus 528(7%)
5 Drug use for unknown indication 500(6%)
6 Lower respiratory tract infection 420(5%)
7 Infection 205(2%)
8 Prophylaxis 144(1.9%)
9 Enterobacter infection 126(1.6%)
10 Acne 101(1.3%)
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Table 5. Route of drug administration

Route The number of reports
Oral 7875(91%)
Transplacental 279(3%)
Ophthalmic 270(3%)
Intravenous 96(1%)
Topical 42(0.4%)
Parenteral 18(0.2%)
Disc, Nos 12(0.1%)

Top ten adverse events with
erythromycin
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Fig. 3. Visual clusters of the DBSCAN algorithm on the erythromycin dataset

Table 6. Some clusters obtained by the DBSCAN algorithm

Attributes Clusterl Cluster2 Cluster3 Cluster4

Age 41.758 52 20 83

Gender Male Male Female Male

Route Oral Oral Topical Intravenous

Indication foruse ~ Rosacea Lower Acne Pneumonia
Respiratory Primary
Tract Atypical
Infection

Adverse event Other Life Hospitalization  Life

outcome threatening threatening

Adverse event Intra- Cardiac Rash Pruritic Weight

Uterine Failure Decreased

Death
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Erythromycin has some well-known adverse events such as vomiting, diarrhea, and
mild skin rash [40]. According to our results, some events such as intra-uterine death,
cardiac failure, rash pruritic, and weight decrease, are also seen in the clusters
obtained by the DBSCAN algorithm. For example, intra-uterine death has a
relationship with middle aged and male patients who are diagnosed with rosacea
disease (cluster 1). In addition, young female patients form a cluster and the rash
pruritic adverse event is seen with acne disease in the same cluster (cluster 3).
Clinicians and researchers can search our results and perform clinical studies to find
new hypotheses for the evaluation of drug safety of erythromycin.

The FDA’s FAERS database is an important resource, but it has some limitations.
For example, the database has many missing attribute values such as age and adverse
events. We therefore omitted some records containing missing values. In addition,
we faced some data quality and compatibility problems with the datasets created
during different time periods. We therefore merged the datasets that covered the third
quarter of 2005 through to the second quarter of 2012. Apart from the FDA’s FAERS
database, medical records that are created in hospital information systems are also an
important resource for determining drug adverse events and their outcomes. Wang X
et al analyzed narrative discharge summaries collected from the Clinical Information
System at New York Presbyterian Hospital (NYPH). They applied MedLEE, a natural
language processing system, to the collection in order to identify medication events
and entities which could be potential adverse drug events. Co-occurrence statistics
with adjusted volume tests were used to detect associations between the two types of
entities, to calculate the strengths of the associations, and to determine their cutoff
thresholds. Seven drugs/drug classes (ibuprofen, morphine, warfarin, bupropion,
paroxetine, rosiglitazone, and angiotensin-converting-enzyme inhibitors) with known
ADEs were selected to evaluate the system [41]. Medical records can therefore be
used to reveal any serious risks involving a drug in the future [25].

6 Conclusion

Pharmacovigilance aims to search for previously unknown patterns and automatically
detect important signals, such as drug-associated adverse events, from large databases
[17]. The FDA’s FAERS is a large resource for pharmacovigilance and can be used to
detect hidden relationships between drugs and adverse events. In this study, the
adverse event profile for erythromycin was analyzed and a research study based on
patient demographics, route for drug administration, indication for use, adverse events,
and adverse event outcome relationships in the FAERS reports was carried out.
Erythromycin is commonly used for the treatment of bacterial diseases and bacterial
diseases are one of the most serious causes for health problems in the world. Therefore,
the prevention and treatment of these diseases is an important research issue in the
medical domain.

We analyzed FAERS reports through the use of computational methods, and
subsequently applied the DBSCAN algorithm to the dataset in order to discover
clusters. The clusters highlighted that patient demographics can have some
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relationships with certain adverse events and event outcomes of erythromycin use.
Medical researchers must be made aware of these results and the information obtained
in this study could lead to new research studies for the evaluation of erythromycin
drug safety.

7 Open Problems

The FDA FAERS database offers a rich opportunity to discover novel post-market
drug adverse events. However, the exploration of the FDA Adverse Event
Reporting System’s data by a wider scientific community is limited due to several
factors.

Problem 1. FAERS data must be intensively preprocessed to be converted into
analyzable and unified format [45]. While preprocessing is common for the effective
machine learning analysis of any data, for complex medical datasets this can often
require domain-specific medical expertise. This is especially true during, for example,
the feature selection phase of data preprocessing. Open datasets, without proper
preprocessing, can also be extremely large. Running times for quadratic machine
learning algorithms can grow quickly, and when working with medical data that have
been made available with no particular research question in mind, proper data
preprocessing is especially important to reduce their size.

Problem 2. The data has some data quality issues. For example, the data has many
missing attribute values such as age and adverse events. Missing data and noise are
two hindrances to using machine learning methods on open data. Open data sets,
while free and publicly available, mean no possibility of retroactive refinement by the
authors. They must be taken as is, and cannot normally be expanded, refined, or
corrected. In the case of medical data, open data is almost always de-identified,
which—depending on the research question—can result in too much missing data to
make it useful or usable. However, missing values and noise are a reality of any data
analysis or collection process. Machine learning techniques and algorithms that are
especially designed for data that contain missing values is an active area of research,
and specific solutions have been developed in the past.

Problem 3. There are few existing methods and tools to access the data and improve
hypothesis generation with respect to potential drug adverse event associations. Those
that exist are usually based on limited techniques such as proportional reporting ratios
and reporting adds ratios. A generalized method or piece of software for the analysis
of adverse event data is not yet available. Whether such a generalized approach would
even be feasible, considering for example the level of dataset fragmentation, is fertile
ground for future research. With the numbers of datasets that are being made
available constantly increasing, novel approaches to properly and more easily analyze
this data are sure to increase alongside it.
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8 Future Outlook

The FDA FAERS database is used to analyze the safety profiles of several drugs. A
number of commercial tools, such as query engines, are now available to analyze the
FDA FAERS. These tools provide free-text search query abilities that allow for the
primary safety profile of drugs to be viewed. Other tools calculate the probability of
an adverse event being associated with a drug. They also allows searching the FDA
FAERS database by providing interpretable graphics for the adverse events reported
over time, stratified by relevant category, ages, and gender, thus allowing for
clinicians to quickly check drug safety information. This would be of benefit for the
entire drug safety assessment [46]. However, these tools offer limited statistical
techniques and data mining algorithms. Therefore, the automatic preprocessing of
data, temporal analysis, and interactive data mining [47], [48] of drug adverse events
through the use of state of the art data mining techniques is sorely needed. By
increasing access to, and through the analysis of such drug-safety data new insights
into ADEs will be discovered, but only when novel approaches in searching, mining,
and analysis are discovered and implemented.

Acknowledgements. We would like to thank Ozgur Ilyas Ekmekci for help and Dr.
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Abstract. With the advance of new data acquisition and generation
technologies, the biomedical domain is becoming increasingly data-driven.
Thus, understanding the information in large and complex data sets has
been in the focus of several research fields such as statistics, data mining,
machine learning, and visualization. While the first three fields predomi-
nantly rely on computational power, visualization relies mainly on human
perceptual and cognitive capabilities for extracting information. Data vi-
sualization, similar to Human—Computer Interaction, attempts an appro-
priate interaction between human and data to interactively exploit data
sets. Specifically within the analysis of complex data sets, visualization
researchers have integrated computational methods to enhance the in-
teractive processes. In this state-of-the-art report, we investigate how
such an integration is carried out. We study the related literature with
respect to the underlying analytical tasks and methods of integration. In
addition, we focus on how such methods are applied to the biomedical
domain and present a concise overview within our taxonomy. Finally, we
discuss some open problems and future challenges.

Keywords: Visualization, Visual Analytics, Heterogenous Data, Com-
plex Data, Future Challenges, Open Problems.

1 Introduction and Motivation

Our society is becoming increasingly information-driven due to new technologies
that provide data at an immense speed and scale. Even scientific practices are
going under significant changes to adapt to this tremendous availability of data
and data analysis is an important part in answering scientific questions. One
of the fields where data analysis is especially important is biomedicine. In this
domain, data sets are often structured in terms of both the scales they relate to,

A.Holzinger, I. Jurisica (Eds.): Knowledge Discovery and Data Mining, LNCS 8401, pp. 117-140, 2014.
(© Springer-Verlag Berlin Heidelberg 2014



118 C. Turkay et al.

e.g., from molecular interactions to how biological systems in the human body,
and the inherent characteristics they carry, e.g., images from different medical
devices. Such structures are both a challenge and a opportunity for scientists
and significant efforts are put in several domains to understand these data. In
this paper, we focus on how visualization, in particular those that incorporate
computational analysis, approaches and enhances the analysis of structured in-
formation sources. We start with a section that discusses our goals and move on
to more specific discussions on understanding information in data.

1.1 Goals

The best way of beginning such a paper, would be to start with the definition
of Visualization and discuss the goal of visualization: A classical goal of visu-
alization is, in an interactive, visual representation of abstract data, to amplify
the acquisition or use of knowledge [1] and to enable humans to gain insight
into complex data sets, either for the purpose of data exploration and analysis,
or for data presentation [2], [3] (see section Glossary and Key Terms for more
discussions). Visualization is a form of computing that provides new scientific
insight through visual methods and therefore of enormous importance within
the entire knowledge discovery process [4].

The goal of this paper is to provide a concise introduction into the visual-
ization of large and heterogeneous data sets, in particular from the biomedical
domain. For this purpose we provide a glossary to foster a common understand-
ing, give a short nutshell-like overview about the current state-of-the-art and
finally focus on open problems and future challenges. We base our taxonomy
on a 2D structure on the different analytical tasks and on how computational
methods can be integrated in visualizations. All the relevant works are then
grouped under these categories. In addition to studies that do not have a spe-
cific application domain, we categorize visualization methods that specifically
aimed at solving biomedical problems. Such subsets of work are presented under
each category.

The goal of this dual focus strategy is to identify areas where visualization
methods have shown to be successful but have not yet been applied to problems
in the biomedical domain.

1.2 Understanding Information in Data

Understanding the relevant information in large and complex data sets has been
in the focus of several research fields for quite a time; studies in statistics [5],
data mining [6], machine learning [7], and in visualization have devised meth-
ods to help analysts in extracting valuable information from a large variety of
challenging data sets. While the first three fields predominantly rely on com-
putational power, visualization relies mainly on the perceptual and cognitive
capabilities of the human for extracting information. Although these research
activities have followed separate paths, there have been significant studies to
bring together the strengths from these fields [8-10]. Tukey [11] led the way
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in integrating visualization and statistics with his work on exploratory data
analysis. Earlier research on integrating statistics [12] and data mining [8] with
information visualization have taken Tukey’s ideas further.

This vision of integrating the best of both worlds has been a highly praised
goal in visualization research [13-15] and parallels the emergence of visual an-
alytics as a field on its own, which brings together research from visualization,
data mining, data management, and human computer interaction [14]. In vi-
sual analytics research, the integration of automated and interactive methods
is considered to be the main mechanism to foster the construction of knowl-
edge in data analysis. In that respect, Keim [16] describes the details of a visual
analysis process, where the data, the visualization, hypotheses, and interactive
methods are integrated to extract relevant information. In their sense-making
loop, based on the model introduced by van Wijk [17], the analytical process is
carried out iteratively where the computational results are investigated through
interactive visualizations. Such a loop aims to provide a better understanding of
the data that will ultimately help the analyst to build new hypotheses. However,
previously presented approaches still lack considering certain research issues to
support a truly cross-disciplinary, seamless and holistic approach for the process
chain of data > information > knowledge. Research needs to deal with data inte-
gration, fusion, preprocessing and data mapping as well as issues of privacy and
data protection. These issues are being addressed in the HCI-KDD approach
by Holzinger [18], [19] and is supported by the international expert network
HCI-KDD (see hcidall.at).

1.3 TUnderstanding Information in Biomedical Data

Interactive visual methods have been utilized within a wide spectrum of domains.
In biomedicine, visualization is specifically required to support data analysts in
tackling with problems inherent in this domain [19-21]. These can be summarized
in three specific and general challenges:

Challenge 1: Due to the trend towards a data-centric medicine, data analysts
have to deal with increasingly growing volumes and a diversity of highly com-
plex, multi-dimensional and often weakly-structured and noisy data sets and
increasing amounts of unstructured information.

Challenge 2: Due to the increasing trend towards precision medicine (P4 medicine:
Predictive, Preventive, Participatory, Personalized (Hood and Friend, 2011)),

biomedical data analysts have to deal with results from various sources in differ-

ent structural dimensions, ranging from the microscopic world (systems biology,

see below), and in particular from the ” Omics-world” (data from genomics, pro-

teomics, metabolomics, lipidomics, transcriptomics, epigenetics, microbiomics,

fluxomics, phenomics, etc.) to the macroscopic world (e.g., disease spreading

data of populations in public health informatics).
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Challenge 3: The growing need for integrative solutions for interactive visual-
ization of the data mentioned in challenge 1 and 2. Note that, although there
are many sophisticated results and paradigms from the visualization community,
integrated solutions, e.g. within business hospital information systems, are rare
today.

An example from the biological domain can emphasize the aforementioned
challenges: Biologists deal with data of different scale and resolution, ranging
from tissues at the molecular and cellular scale (”the microscopic”) up to or-
gan scale ("the macroscopic”), as well as data from a diversity of databases of
genomes and expression profiles, protein-protein interaction and pathways [22].
As understood by systems biology, the biological parts do not act alone, but in
a strongly interwoven fashion, therefore biologists need to bridge and map dif-
ferent data types and analyze interactions [23]. Biomedicine has reached a point
where the task of analyzing data is replacing the task of generating data [24]. At
this point, visual analysis methods that support knowledge discovery in complex
data become extremely important.

2 Glossary and Key Terms

In this section, we try to capture visualization and data analysis related terms
that are only referenced explicitly within this paper. We do not cover the whole
spectrum of visualization and analysis terms.

Visualization: is a visual representation of data sets intended to help people
carry out some task more effectively according to Tamara Munzner [25]. Ward
describes visualization as the graphical presentation of information, with the
goal of providing the viewer with a qualitative understanding of the information
contents [3].

Space: A set of points a € S which satisfy some geometric postulate.

Topological Visualization: a prominent trend in current visualization research,
driven by the data deluge. A topological abstraction provides a common math-
ematical language to identify structures and contexts [26], [27].

Visual Analytics: is an integrated approach combining visualization, human fac-
tors and data analysis to achieve a deep understanding of the data [13,14].

Interactive Visual Analysis (IVA): is a set of methods that have overlaps with
visual analytics. It combines the computational power of computers with the
perceptive and cognitive capabilities of humans to extract knowledge from large
and complex data sets. These techniques involve looking at data sets through
different, linked views and iteratively selecting and examining features the user
finds interesting.
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Heterogeneous Data: composed of data objects carrying different characteristics
and coming from different sources. The heterogeneity can manifest itself in sev-
eral forms such as different scales of measure, i.e., being categorical, discrete
or continuous, or challenging to relate representations, e.g., genomic activity
through gene expression vs. molecular pathways; a recent example of such data
sets is described by Emmert-Streib et al. [28].

Classification: Methods that identify which subpopulation a new observation
belongs on the basis of a training set of observations with known categories.

Factor Analysis and Dimension Reduction: is a statistical method that aims
to describe the information in the data by preserving most of the variety. This
process often leads to derived, unobserved variables called the factors [5]. Sim-
ilarly, there exist dimension reduction methods, such as Principal Component
Analysis (PCA) and Multi-Dimensional Scaling (MDS) that project higher di-
mensional data onto lower dimensional spaces by preserving the variance in the
data [5].

Decision Tree: is a predictive statical model that enhances classification tasks [29].
It is often represented visually as a tree to support decision making tasks (see
Figure 4).

Regression Analysis: is a statistical method that aims to estimate the relations
between data variables. In other words, it tries to model how dependent certain
factors are on others in the data [30].

3 State of the Art

There are a number of surveys that characterize how the integration of auto-
mated methods and interactive visualizations are accomplished. Crouser and
Chang [31] characterize the human computer collaboration by identifying what
contributions are made to the process by the two sides. In their survey, sev-
eral papers are grouped according to these types of contributions. According
to the authors, humans contribute to the analytical processes mainly by visual
perception, visuospatial thinking, creativity and domain knowledge. On the other
side, the computer contributes by data manipulation, collection and storing, and
bias-free analysis routines. Bertini and Lalanne [15] categorize methods involving
data mining and visualization into three: computationally enhanced visualization,
visually enhanced mining, and integrated visualization and mining. Their cate-
gorization depends on whether it is the visualization or the automated method
that plays the major role in the analysis.

In this state of the art analysis, we categorize the related literature in two
perspectives. Our first perspective relates to the analytical task that is being
carried out. After an investigation of literature from the computational data
analysis domain [5,32,33], we identify a general categorization of the most com-
mon data analysis tasks as follows: summarizing information, finding groups €
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classification, and investigating relations € prediction. We discuss these tasks
briefly under each subsection in the following. Our second perspective relates
to how the integration of computational tools in visual analysis is achieved. We
identify three different categories to characterize the level of integration of com-
putational tools in visualization, namely, visualization as a presentation medium,
semi-interactive use of computational methods and the tight integration of in-
teractive visual and computational tools. These levels are discussed in detail in
Section 3.1.

In the following, we firstly organize the literature under the three analytical
task categories and then group the related works further in sub-categories re-
lating to the levels of integration. Before we move on to the literature review,
we describe the three levels of integration introduced above. Even though we
describe each analysis task separately, the categorization into the three common
analysis tasks can be seen as a series of steps within a single analysis flow. Start-
ing with summarizing information, proceeding with finding groups and last but
not least finding relations and trends. One aspect that we do not cover explicitly
is the consideration of outliers. Outlier analysis focuses on finding elements that
do not follow the common properties of the data and needs to be part of a com-
prehensive data analysis process [34]. In this paper, we consider outlier analysis
as an inherent part of summarizing information although there are works that
are targeted at treating outliers explicitly [35].

Table 1 groups the investigated literature under the categories listed here.
One important point to make with respect to the allocations to sub-groups in
this table is that the borders within the categories are not always clear and
there is rather a smooth transition between the categories. There are methods
that try to address more than one analytical question. For such works, we try
to identify the core questions tackled to place them in the right locations in this
table. Similar smooth transitions also existent for the levels of integration, and
our decision criteria is discussed in the following section.

3.1 Levels of Integration

On the first level of integration of computational tools within visual data anal-
ysis, visualization is used as a presentation medium to communicate the results
of computational tools. These visualizations are either static representations, or
only allow limited interaction possibilities such as zooming, panning, or making
selections to highlight interesting parts of the data. A typical example for this
category is the use of graphical plotting capabilities of statistical analysis soft-
ware such as R [36]. In this system, users often refer to static visualizations to
observe the results from computational procedures, such as clustering or fitting
a regression line.

The second level of integration involves the use of the computational tool
as a separate entity within the analysis where the tool’s inner working is not
transparent to the user. In this setting, the user interacts with the computational
mechanism either through modifying parameters or altering the data domain
being analyzed. The results are then presented to the user through different
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Table 1. Analytical Tasks vs. Levels of Integration. This 2D structure is used to
categorize the reviewed literature in this paper.

Visualization as Semi-interactive Tight
presentation Methods Integration
Summarizing [37], [24] [38], [39], [40], [41], [51], [52], [53], [54],
Information [42], [43], [44], [45], [55], [56]
[46], [47], [48], [49]
[50]
Groups [57] [58], [59] [60], [61], [62], [63], [75], [76], [77],
& Classification [64], [65], [66], [67], [78], [79], [80]
(68], [69], [70], [71],
[72], [73], [74]
Dependence [81], [82], [46] [83], [84], [85], [86], [90], [91], [92]
& Prediction [87], [88], [89]

visual encodings that are often accompanied by interaction. One potential benefit
here is that if problems are just too large so that a comprehensive computational
approach is totally unfeasible, for ex., exhaustively searching a high-dimensional
parameter space, then some directed steering by the intelligent expert user can
help.

The third level constitutes mechanisms where a tight integration of inter-
active methods and computational tools is achieved. In these approaches, the
automated methods are used seamlessly within interactive visual analysis. So-
phisticated interaction mechanisms make the automated tools an integral part of
the visualization. Methods in this category also interfere with the inner working
of the algorithms and the results of automated tools are communicated imme-
diately to the user.

When the second and the third levels are considered, we observe that catego-
rizing a paper is not straightforward since the boundaries between these levels
are smooth rather than discrete. In that respect, our classification criteria for
level three is whether the integration allows for flexibility and done in a seamless
way. If the integration is done at a manner where the automated method exists
explicitly as a black-box that allows interaction to a certain level, we categorize
the method under level two.

3.2 Summarizing Information

Data sets are becoming large and complex both in terms of the number of items
and the number of modalities, i.e., data measured/collected from several sources,
they contain. In order to tackle with the related visualization challenges, methods
that are based on the summarization of underlying information are widely used
in both automated and interactive visual data analysis [93]. Methods in this
category involve the integration of descriptive statistics, dimension reduction,
and factor analysis methods in general.
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Visualization as Presentation

For this category, we focus only on visualization tools in the biomedical context
where there are many examples for visualization as presentation. As databases
have become an integral part of dissemination and mining in biomedicine, the
consolidation of such experiments data already brought up comprehensive tools
for managing and sharing data. To name one, the Cell Centered Database [37]
is a public image repository for managing and sharing (3D) imaging data. Next
to image databases there is also a wide variety of different visualization tools,
including interaction networks, pathway visualizations, multivariate omics data
visualizations and multiple sequence alignments that have been reviewed recently
by others [23,24,94]. In this context, visualization is most commonly used for
exploration (hypothesis generation). Common visualization methods in addition
to network visualization include scatter plots, profile plots/parallel coordinates
and heatmaps with dendograms, while many tools provide combinations of those
as linked views. Comprehensive summaries of visualization tools exist for cer-
tain areas. Nielsen et al. [24] present a review on tools for visualizing genomes,
in particular tools for visualizing sequencing data, genome browsers and com-
parative genomics. Gehlenborg et al. [23] present a table of visualization tools in
the area of systems biology, categorized by the different focusses of omics data.
While most tools still lack in usability and integration, some of the listed tools
already provide sophisticated interactive possibilities like annotating, comparing
and showing confidence measures and prediction results next to view manipu-
lations such as navigating, zooming and filtering. There is also a trend towards
implementing web-based solutions to facilitate collaboration.

Semi-interactive Methods

Perer and Shneiderman [45] discuss the importance of combining computa-
tional analysis methods, in particular statistics, with visualization to improve
exploratory data analysis. Janicke et al. [38] utilize a two-dimensional projec-
tion method (see Figure 1) where the analysis is performed on a projected 2D
space called the attribute cloud. The resulting point cloud is then used as the
medium for interaction where the user is able to brush and link the selections to
other views of the data. Johansson and Johansson [39] enable the user to inter-
actively reduce the dimensionality of a data set with the help of quality metrics.
The visually guided variable ordering and filtering reduces the complexity of the
data in a transparent manner where the user has a control over the whole pro-
cess. The authors later use this methodology in the analysis of high-dimensional
data sets involving microbial populations [40]. Fuchs et al. [41] integrate meth-
ods from machine learning with interactive visual analysis to assist the user in
knowledge discovery. Performing the high-dimensional data analysis on derived
attributes is a strategy utilized in a number of studies. Kehrer et al. [49] in-
tegrate statistical moments and aggregates to interactively analyze collections
of multivariate data sets. In the VAR display by Yang et al. [48], the authors
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Fig. 1. Data can be visually analyzed on interactively created 2D spaces. (Image by
Jéanicke et al. [38]).

represent the dimensions as glyphs on a 2D projection of the dimensions. A mul-
tidimensional scaling operation is performed on the glyphs where the distances
between the dimensions are optimally preserved in the projection.

In Biomedicine there are only a few visualization tools that are being used to
construct integrated web applications for interactive data analysis. Next to the
UCSC Genome Browser [46], the IGV [47] is another common genome browser
that integrates many different and large data sets and supports a wide variety
of data types to be explored interactively. A few similar tools that are tightly
integrated with public databases for systems biology are listed by Gehlenborg
et al. [23].

In MulteeSum, Meyer et al. [50] used visual summaries to investigate the
relations between linked multiple data sets relating to gene expression data.
Artemis [43] supports the annotation and visual inspection, comparison and anal-
ysis of high-throughput sequencing experimental data sets. The String-DB [44] is
a commonly used public comprehensive database for protein-protein interaction
that supports visual data analysis by providing interactive network visualiza-
tions.

Otasek et al. [95] present a work on Visual Data Mining (VDM), which is sup-
ported by interactive and scalable network visualization and analysis. Otasek et
al. emphasize that knowledge discovery within complex data sets involves many
workflows, including accurately representing many formats of source data, merg-
ing heterogeneous and distributed data sources, complex database searching,
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Fig. 2. A selection of data transformations are chained together interactively to achieve
dimension reduction. (Image by Ingram et al. [54]).

integrating results from multiple computational and mathematical analyses, and
effectively visualizing properties and results.

Mueller et al. report in a recent work [96] on the successful application of data
Glyphs in a disease analyser for the analysis of big medical data sets with auto-
matic validation of the data mapping, selection of subgroups within histograms
and a visual comparison of the value distributions.

Tight Integration

Nam and Mueller [51] provides the user with an interface where a high-dimensional
projection method can be steered according to user input. In MDSteer [52], an em-
bedding is guided with user interaction leading to an adapted multidimensional
scaling of multivariate data sets. Such a mechanism enables the analyst to steer the
computational resources accordingly to areas where more precision is needed. In-
gram et al. [54] present a system called DimStiller, where a selection of data trans-
formations are chained together interactively to achieve dimension reduction (see
Figure 2). Endert et al. [53] introduce observation level interactions to assist com-
putational analysis tools to deliver more reliable results. The authors describe such
operations as enabling the direct manipulation for visual analytics [55]. Turkay et
al. introduce the dual-analysis approach [56] to support analysis processes where
computational methods such as dimension reduction [92] are used.
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3.3 Finding Groups and Classification

One of the most common analytical tasks in data analysis is to determine the
different groups and classifications [5]. Analysts often employ cluster analysis
methods that divide data into clusters where data items are assigned to groups
that are similar with respect to certain criteria [97]. One aspect of cluster analysis
is that it is an unsupervised method, i.e., the number of groups or their labels are
not known a priori. However, when the analyst has information on class labels
beforehand, often referred to as the training set, classification algorithms can be
utilized instead. Below, we list interactive visualization methods where cluster
analysis tools and/or classification algorithms are utilized.

Visualization as Presentation

Parallel Sets by Kosara et al. [58] is a successful example where the overlaps
between groups is presented with a limited amount of interaction. In the soft-
ware visualization domain, Telea and Auber [59] represent the changes in code
structures using a flow layout where they identify steady code blocks and when
splits occur in the code of a software. Demvsar et al. [57] present a visualization
approach for exploratory data analysis of multidimensional data sets and show
it’s utility for classification on several biomedical data sets.

Semi-interactive Methods

May and Kohlhammer [64] present a conceptual framework that improves the
classification of data using decision trees in an interactive manner. The authors
later proposed a technique called SmartStripes [65] where they investigate the
relations between different subsets of features and entities. Interactive systems
have also been used to help create decision trees [98] (see Figure 4). Guo et al. [70]
enable the interactive exploration of multivariate model parameters. They visu-
alize the model space together with the data to reveal the trends in the data.
Kandogan [71] discusses how clusters can be found and annotated through an
image-based technique. Rinzivillo et al. [72] use a visual technique called progres-
sive clustering where the clustering is done using different distance functions in
consecutive steps. Schreck et al. [73] propose a framework to interactively moni-
tor and control Kohonen maps to cluster trajectory data. The authors state the
importance of integrating the expert within the clustering process in achieving
good results. gCluto [74] is an interactive clustering and visualization system
where the authors incorporate a wide range of clustering algorithms.

In Hierarchical Clustering Explorer [69], Seo and Shneiderman describe the
use of an interactive dendogram coupled with a colored heatmap to represent
clustering information within a coordinated multiple view system. Other ex-
amples include works accomplished within the Caleydo software for pathway
analysis and associated experimental data by Lex et al. [60-62]. In a recent
work (see Figure 3), the integrated use of statistical computations is shown to
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Fig. 3. Results of statistical test computations are communicated through visual en-
codings to support the identification of discriminative elements in subgroups. (Image
by Turkay et al. [63]).

be useful to characterize the groupings in the data [63]. Gehlenborg et al. [23]
identified that scatter plots, profile plots and heat maps are the most common
visualization techniques used in interactive visualization tools for tasks like gene
expression analysis. Younesy et al. [66] presents a framework where users have
the ability to steer clustering algorithms and visually compare the results. Dy-
namically evolving clusters, in the domain of molecular dynamics, are analyzed
through interactive visual tools by Grottel et al. [67]. The authors describe flow
groups and a schematic view that display cluster evolution over time. Mayday is
one framework example where a visual analytics framework supports clustering
of gene expression data sets [68].

Tight Integration

Turkay et al. presents an interactive system that addresses both the genera-
tion and evaluation stages in a clustering process [79]. Another example is the
iVisClassifier by Choo et al. [80] where the authors improve classifitcation per-
formance through interactive visualizations. Ahmed and Weaver [75] discuss how
the clustering process can be embedded within an highly interactive system. Ex-
amples in biomedical domain are rare in this category. One example is by Rubel
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Fig. 4. Interactive systems have been used to help create and evaluate decision trees
(Image by van den Elzen and van Wijk [98])

et al. [76], who present a framework for clustering and visually exploring (3D)
expression data. In the domain of molecular dynamics simulation, there are some
examples of tight integrations of interactive visualizations, clustering algorithms,
and statistics to support the validity of the resulting structures [77], [78].

3.4 Investigating Dependence

An often performed task in data analysis is the investigation of relations within
different features in a data set [99]. This task is important to build cause and
effect relations, understanding the level of dependence between features, and pre-
dicting the possible outcomes based on available information. In this category,
we list interactive methods that incorporate computational tools to facilitate
such tasks. Often employed mechanisms are: regression, correlation, and predic-
tive analysis approaches. In the biomedical domain, Secrier et al. [100] present a
list of tools that deal with the issue of time, however, they note that it is yet an
open challenge in comparative genomics to find tools for analyzing time series
data that can handle both the visualization of changes as well as showing trends
and predictions for insightful inferences and correlations.



130 C. Turkay et al.

LT atamctare qc.“upw.aa. o 9 Uncerainty (CBomPlox
'T‘Md ’Y’Ag V esc .L%y 'TMd ub ’Y’Aq ub L(V ub d%yrs ub ’Y’Md ‘com TAE com »LCV ‘com l«"Y
fno
Fil Edit Window Help b
(CremeSingiePot V) (Deiete scenarios ) ( Ciear Gomst yrsesc <aarges03 | [3

Sider view Density Function

Temporal CV of escapement (%)

[T

% of yrs escapement below target

Plot type _Bar chants ) cmupnyuau %) sort scer iu ertainty |_Shaded distributior
1Mﬂ Vesc  L%yrs TMn ub TAg ub  LCVsub L%y nnnnnnnnnn Lc com w

ot

Fig.5. Visualization helps analysts in making predictions and investigating uncer-
tainties in relations within simulation parameters (Image by Booshehrian et al. [86])

3.5 Visualization as Presentation

In this category, we focus mainly on works from biomedical domain. Krzywinski
et al. [81] presents a tool for comparative genomics by visualizing variation in
genome structure. Karr et al. [82] present a promising topic, namely computing
comprehensive whole-cell model and presenting model predictions for cellular
and molecular properties.

Nielsen et al. [24] reviews tools for the visual comparison of genomes. The list
of referenced tools includes Circos [81], a visualization presentation method for
visualizing synteny (genetic linkage) in a circular layout. One example referenced
is the already mentioned UCSC genome browser [46] that also provides simple
phylogenetic tree graphs. The list also includes tools that integrate computa-
tional methods and support the visual analysis of comparative genomics more
interactively, which are discussed in the next level of integration.

3.6 Semi Interactive Visualization

Visualization has shown to be effective in validating predictive models through
interactive means [84]. Miihlbacher and Piringer [85] (see Figure 6) discuss how
the process of building regression models can benefit from integrating domain
knowledge. In the framework called Vismon, visualization has helped analysts to
make predictions and investigate the uncertainties that are existent in relations
within simulation parameters [86] (see Figure 5). Interaction methods facilitate
the investigation of multivariate relations in multi-variate data sets [88]. Yang
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Fig. 6. The process of building regression models can benefit from integrating domain
knowledge through interactive visualizations. (Image by Miihlbacher and Piringer [85]).

et al. [89] analyze the relations between the dimensions of a data set to create a
hierarchy that they later use to create lower-dimensional spaces.

Within biomedical applications, Meyer et al. [83] present a synteny browser
called MizBee, that provides circular views for the interactive exploration and
analysis of conserved synteny relationships at multiple scales. In a later paper,
they investigate the dependencies within signals coming from related data sets
and present a comparative framework [87].

3.7 Tight Integration

Berger et al. [90] introduce an interactive approach that enables the investigation
of the parameter space with respect to multiple target values. Malik et al. [91]
describe a framework for interactive auto-correlation. This is an example where
the correlation analysis is tightly coupled with the interactive elements in the
visualization solution. Correlation analysis have been integrated as an internal
mechanism to investigate how well lower-dimensioal projections relate to the
data that they represent [92].

4 Open Problems

Nearly 10 years ago, Chaomei Chen (2005) [101] raised a list of top 10 un-
solved information visualization problems, interestingly on top are usability is-
sues, which are particularly relevant for the biomedical domain, and still unsolved
today, as a recent study has shown [102]. This is mostly due to the fact that
usability engineering methods are still considered as nice add-on and not yet an
integrated part in the software development process [103]. Here we list a number
of open problems in relation to the literature we cover in this report.
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Problem 1. A topic that needs further attention is to address the uncertainty
within the analysis process. The explorative nature of interactive visual analysis
creates a vast amount of analysis possibilities and often leads to several plausible
results. It is thus of great importance to reduce this space of possibilities and
inform the user about the certainty of the results.

Problem 2. Although we have seen several works that involve a tight integration
between computational methods and visualization, examples of seamless inte-
grations are rare. With this term, we refer to interaction mechanisms where the
support from appropriate sophisticated computational tools are provided to the
user without the analyst noticing the complexities of the underlying mechanisms.
One example to clarify this term could be: applying regression analysis locally
on a selection within a 2D scatterplot and presenting the result immediately
with a regression line.

Problem 3. One aspect that needs to be investigated further in the integra-
tion of interactive and automated methods is the issue of usability. Most of the
solutions introduced here require significant literacy in statistics and skills in us-
ing different computational methods — which can lead to a demanding learning
curve.

Problem 4. We have seen that most of the visual analysis methods are focussed
at particular data types. However, given the current state of data collection
and data recording facilities, there are often several data sets related to a phe-
nomenon. There is the need for advanced mechanisms that can harness these
various sources of information and help experts to run analysis that stretches
over several data sets. This issue relates to the goal of developing an integrated
visualization environment spanning several biological dimensions, from micro
to macro towards an integrated approach. The recent survey by Kehrer and
Hauser [104], which illustrates the many different axes along which data com-
plexity evolves and how visualization can address these complexities, is a starting
point to identify suitable approaches.

Problem 5. One observation we make is that the visualization methods often use
the support from a single, specific computational mechanism. However, in order
to achieve a comprehensive data analysis session, one needs to address all of the
analysis tasks we present in our discussions above from summarizing informa-
tion up to finding cause and effect [22,100]. Especially, when works relating to
biomedical applications are considered, we notice that studies that involve the
tight integration of computational tools are rare. Given the successful application
of such methods in other domains, it is expected that biomedical applications
can also benefit significantly from these approaches.

5 Future Outlook

As stated within the open problems above, there is a certain need for mecha-
nisms to improve the interpretability and usability of interactive visual analysis
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techniques. Possible methods could be to employ smart labeling and annotation,
creating templates that analysts can follow for easier progress, and computation-
ally guided interaction mechanisms where automated methods are integrated
seamlessly. Such methods need to utilize computational tools as underlying sup-
port mechanism for users, one aspect that needs attention in this respect is to
maintain the interactivity of the systems. Appropriate computation and sam-
pling mechanisms needs to be developed to achieve such systems.

In order to address the uncertainties in visual data analysis, mechanisms that
communicate the reliability of the observations made through interactive visu-
alizations need to be developed, e.g., what happens to the observation if the
selection is moved slightly along the x-axis of a scatter plot? If such questions
are addressed, interactive and visual methods could easily place themselves in
the everyday routine of analysts that require precise results.

The ability to define features interactively and refine feature definitions based
on insights gained during visual exploration and analysis provides an extremely
powerful and versatile tool for knowledge discovery. Future challenges lie in the
integration of alternate feature detection methods and their utilization in intel-
ligent brushes. Furthermore, integrating IVA and simulations, thus supporting
computational steering, offers a wide range of new possibilities for knowledge
discovery [105].

An interesting direction for future research relates to improving the usability
of analysis processes. Current usability studies often focus on specific parts of
a technique. However in order to evaluate the effectiveness of the whole anal-
ysis process, there is the need to perform comprehensive investigations on the
interpretability of each step of the analysis and study the effects of using compu-
tational tools interactively. Such studies can be carried out in forms of controlled
experiments where the analysts are given well-determined tasks and are asked to
employ particular types of analysis routes. These routes can then be evaluated
and compared against non-interactive processes where possible.

A challenging future research avenue for effective HCI is to find answers to
the question “What is interesting?” as Interest is an essentially human con-
struct [106], a perspective on relationships between data that is influenced by
context, tasks, personal preferences, previous knowledge (=expectations) and
past experience [107]. For a correct semantic interpretation, a computer would
need to understand the contert in which a visualization is presented; however,
comprehension of a complex context is still beyond computation. In order for a
data mining system to be generically useful, it must therefore have some way
in which one can indicate what is interesting, and for that to be dynamic and
changeable [108].

A recent research route in HCI is Attention Routing, which is a novel idea in-
troduced by Polo Chau [109] and goes back to models of attentional mechanisms
for forming position-invariant and scale-invariant representations of objects in
the visual world [110]. Attention routing is a promising approach to overcome
one very critical problem in visual analytics, particularly of large and heteroge-
neous data sets: to help users locate good starting points for their analysis. Based
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on anomaly detection [111], attention routing methods channel the end-users to
interesting data subsets which do not conform to standard behaviour. This is a
very promising and important research direction for Knowledge Discovery and
Data Mining [18].

Top end research routes encompassing uncountable research challenges are in
the application of computational topology [26], [112], [113] approaches for data
visualization. Topology-based methods for visualization and visual analysis of
data are becoming increasingly popular, having their major advantages in the
capability to provide a concise description of the overall structure of a scientific
data set, because subtle features can easily be missed when using traditional
visualization methods (e.g. volume rendering or isocontouring), unless correct
transfer functions and isovalues are chosen. By visualizing a topology directly,
one can guarantee that no feature is missed and most of all solid mathemati-
cal principles can be applied to simplify a topological structure. The topology
of functions is also often used for feature detection and segmentation (e.g., in
surface segmentation based on curvature) [114].

In this state-of-the-art report, we investigated the literature on how visual-
ization and computation support each other to help analysts in understanding
complex, heterogeneous data sets. We also focused on to what degree these meth-
ods have been applied to biomedical domain. When the three different levels of
integration are considered, we have observed that there are not yet many works
falling under the third integration level. We have seen that existing applications
in this category have significant potential to address the challenges discussed ear-
lier in the paper. However, there exist several open problems, which can motivate
the visualization and knowledge discovery community to carry out research on
achieving a tight integration of computational power and capabilities of human
experts.
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Abstract. Large amounts of data are collected by public administrations and
healthcare organizations, the integration of the data scattered in several informa