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ABSTRACT

The present study aims at an evaluation of the problem of interpolation in
square grid Digital Terrain Models (DIMs). Automation of photogrammetry,
and the special advantages of measuring and interpolating in a square grid
DIM justify the expectation that sampling of the terrain surface along a
regular point pattern is very promising.

Performance of a DIM depends on the terrain itself, on the measuring
pattern and point density in digitizing the terrain surface, and on the
method of interpolating a new point from the measurements. The study of the
interrelations among these various factors is based on a numerical
experiment, in comparing a range of 6 terrain models, different interpolation
procedures and spacing of the square grid varying from 10 m up to 450 m.
This extremely large range of sampling densities is motivated by the
expectation, that DIMs be also applied in small scale automatic photo-
grammetry.

The report consists of a description of the different interpolation
algorithms investigated, then of the treatment of the preparation of the
numerical experiment and finally of the analysis of the obtained results.
Comparison of the different interpolation algorithms leads to the
conclusion, that "linear prediction', "moving averages" and "patehwise
polynomial interpolation” provide the highest accuracy. Consideration of
cost shows, however, that the method with "moving averages' is comparatively
rather expensive, so that the other two remain as the most effective inter-

polation methods. It thereby was clearly demonstrated, that weighting of
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the observed point is of crucial importance. It was found, that the
average improvement of accuracy in the numerical experiment by using e.g.
linear prediction, rather than linear interpolation, amounts to 20 - 30%,
with a maximum of approx. 50%.

In a comparison of using the 2x2, dxd, or 6x6 surrounding reference
points for interpolation of a new point, it was concluded, that no gain
might be expected by using more than the 4x4 refevence points. On the

other hand, use of 4xd4 points tends to be slightly superior to the use of

j only the 4 closest reference points.

It finally could be shown, that a linear relation exists between accuracy
of interpolation and sampling density. The glope of the linear regression
equation is correlated with the terrain type. An attempt was made to

identify a simple indicator for the terrain type, namely the "mormalized

standard deviation of terrain relief’.

RESUME

La présente étude est orientde vers l'évaluation des résultats de
l'interpolation dans un modéle numérique de terrain observé selon un
quadrillage. L'automatisation de la photogrammétrie et les avantages qui
proviennent de la mesure et de 1'interpolation selon un réseau carré
permettent de penser que la numérisation de la surface du terrain selon
un tel maillage fourniva des résultats satisfaisants.

L'exécution d'un semis de potnts dépend du terrain lui-méme, de la forme
et de la densité des mailles et de la méthode d'interpolation d'un point
nouveau d partir des points mesurés. I 'étude des relations qui existent
parmi les divers facteurs se base sur une expérience numérique, couvrant
un chotx de six modéles de terrain, et utilisant différentes méthodes
d'interpolation selon un maillage qui varie de 10 4 450 m.

Ce large choix des densités d'échantillomage est dicté par la supposition
que les modéles numeriques de tervain peuvent été également utilisés dans
la photogrammétrie automatique & petite échelle.

L'étude consiste en une description des différents algorithmes d'inter-
polation étudiés, de la préparation de 1'empérience numérique et
finalement d'une analyse des résultats obtenus.

Une comparaison des différentes méthodes d'interpolation conduit a la
conclusion que la "prédiction linéaire", la "moyenne flottante” et

"l'interpolation polynomiale & maille' sont les plus précises.
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La comparaison des cofits marque que la méthode de la "moyenne flottante'
est relativement plus chére. Il a aussi été claivement démontré que le
choix des poids, dont on affecte les points observés, est trés important.
On a également troupd que l'amélioration de la précision, concernant les
cas étudids, est approwimativement de 20 & 30% (avec un maximum de 50%)
pour la méthode de la "prédiction linéaire", comparativement aveec la
simple interpolation linédaire.

La comparaison dans 1'utilisation de points de référence proches pour
L'interpolation (2x2, 4x4, 6x6) & montré L'inutilitd d'aller qu-deld de
4xd points. D'autre part il appard?t que l'on obtient une précision
légérement supdrieure avec 4xd points qu'avec 2x2 points.

Pinalement la conclusion est que la relation entre L'erreur d'interpolation
et la densité des points mesurés est lindairve. La pente de 1'équation de
régression est fortement correlée avec le type de terrain. On a essayé
d'identifier un indicateur simple c&ractérisant le type de terrain sous

la forme d'une "erreur moyenne normalisée du relief du terrain'.

1. INTRODUCTION

The concept of Digital Terrain Models (DTM) started about 1955. It was created
at the Massachusetts Institute of Technology in an attempt to automize some
phases of highway design [33/1] . From there it has found limited application
for the specific problems of automatic computation of profiles, cross sections,

and earth work for alternative highway routes and other civil engineering projects.

A DTM consists of two components namely:
a set of representative points of the surface of the terrain, stored in the memory
of a computer, and algorithms to interpolate any new point of given planimetric

location or to estimate other data [ 20 7.

1.1 Objectives

This present study is the evaluation of interpolation in square grid DTMs and
aims at answering the following, largely interrelated, questions.
- What density of measurements is required to obtain a specified
accuracy of terrain representation ?
. What is the relation between terrain types and the performance of
a specified DTM ?
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- How do the various methods of interpolation compare ?
- What is the optimum number of points to be used for interpolation
of a new point?
- How should the given points be weighted in the interpolation ?
- How does the accuracy of interpolation vary as a functlon of the
position of the new point within the pattern of the given points ?
Apart from these questions on accuracy, the computation efforls to interpolate

single points and lines (contours, profiles) should be studied,

1.2 Past Efforts

Most of what has been published so far on DTMs was based on their application
to civil (highway) engineering thus limiting them to large scale work with its

high density digitizing of the terrain surface [ 1 ], [ 2].

In view of recent developments such as correlators, digitally controlled
orthophoto production, automated contouring etc. , and the trend towards
increasing automation of photogrammetry and cartography, application of the
DTM to other than large scale work becomes a realistic possibility [ 22 ],

[ 35 ] . Therefore an analysis of the metric performance of digital terrain
representation should be extended to smaller scales and consequently to lower

density digitizing of the terrain surface.

In this report, considerable attention will be paid to the comparison of
interpolation methods. Among the problems of applying DTM, interpolation

is certainly an aspect of minor importance. This is especially so in highway
engineering applications, At the session of Commission 1V, on "Photo-
grammetry and Highway Engineering", during the ISP conference at Ottawa in
1972, this even led one of the speakers to state that one should not investigate
interpolation methods ih DTMs, since the obvious one to be applied in practice
is linear interpolation, This statement seems to have been rather intuitive,
since quantitative information on Interpolation in DTMs is rarely published in
photogrammetric literature, In the preparatiomn of the present study, only five
small tables could be found, in the publications by SILAR [ 30 ], VIITA [33/371,
by NAKAMURA [ 25] , BEYER [ 6 ] and by LAUER [ 18 ] . These results
will be discussed later. To a rather limited extent these publications allow

conclusions on the above questions.
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1.3 Restriction to Square Grid DTM

DTM data can be procured along contours or profiles, on a regular grid, or

along terrain break lines and points,

It is expected, that sampling of DTMs in a regular point pattern is the most
promising application of automated photogrammetry. Compared to other
sampling methods, data procurement can be automized (electronic correlator)
fully for the the regular point DTM, with substantially higher reliability. In
addition, the organisation of data and its interpolation is greafly simplified
with this type of DTM.

For special applications, digitizing of manually procured contours or profiles
might be a powerful alternative to the regular grid DTM, if the contours (or
profiles) are required as a cartographic product anyway, and if the preparation
of slope charts, computation of earth work etc. is only an additional purpose.
Although a DTM from digitised contours has a number of drawbacks (cannot

be satisfactory automized; continuous sampling is less accurate than point by
point sampling and requires subsequent data compression, since part of the
sampled data is superfluous; interpolation is awkward) there is the advantage
of varying sampling density (mainly in the direction of the contour, to a lesser
extent across this direction), if the terrain is irregular ("autoreductive' [ 32 ] .
This was the reason for using this method in [ 21] , and led DELIGNY

[ 33/5 1 and SILAR [ 30 ] to the suggestion that for civil engineering
purposes, sampling along contours should be adhered to in irregular

terrain.

This suggestion, however, seemed not to take into account that a similar, or
even superior, adjustment of density is possible also in DTMs sampled in a
square grid. A very effective method is the one of "progressive sampling" as
proposed by MAKAROVI& [ 24 ]. A less effective, but also simple method
is to measure a square grid DTM in separate rectangular blocks of a size
suitable for simplification of subsequent data handling, whereby a number of
blocks might add up to a photogrammetric model [15] . An obvious
possibility for adjusting the sampling density is now to select it anew for each
block.

Consequently this eliminates the principal arguments for sampling along
contours, except if they themselves are required for cartographic purposes,

and if plotting has to be done manually.
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Consideration of "terrain break lines' or points in addition to the given DTM
might in many cases be desirable. The problem of how these additional
measurements should be incorporated into data processing exists in DTMs
observed along contours, profiles, or on regular grids. This problem has not
yet been systematically studied, Although a number of solutions do exist [ 31] ,
[ 34 ], [ 40 ], the cost/benefit ratio for the inclusion of terrain break
lines is not yet established. It is therefore suggested to leave this problem for

a separate investigation,

1.4 Scope and Organisation of Study

The performance of a DTM depends on the terrain itself, on the measuring
pattern and point density in digitizing the terrain surface, and on the method

of inferpolating a new point from the measurements [ 25 ]. This is illustrated

in figure 1.
Sampling density |=— ———————=1 Method
—. —— e of
Measuring pattern -‘ : Interpolation

Type of terrain

} ,

| Accuracy of terrain representation

Figure 1.
Factors influencing the performance of a

Digital Terrain Model

The method under study is a numerical experimentation. According to figure 1
an experiment to evaluate the performance of the DTM should encompass a
range of terrain types, a number of measuring patterns and point densities,

and interpolation procedures.

A number of interpolation algorithms have been programmed and tested in this
study. Since some of them might not be generally known, they will be described
in a separate chapter.

Next the preparation of the experiment will be treated, namely description of
the measurements and of the six photogrammetric models on which the

experiment was based.
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Then, the results of the study are described and analyzed. The above list of
questions will not be followed, but an attempt will be made to define an optimum
interpolation method. Accuracy models will be given for the relation between

terrain type, grid spacing, and interpolation error,

In the experiment, the highest accuracy was obtained when the surrounding 16
given points were used for the interpolation of a new point, applying a carefully
selected linear prediction model or a patchwise or sliding polynomial
interpolation. Overall optimization might, However, result in the use of a
Simple interpolation method, at the expense of accuracy, but with a reduction
in computation time. This is, however, ultimately the task of overall
optimization within the planning of an actual project, The intention of this paper
can only be to provide information for this overall optimization and not the

optimization itself,

2, INTERPOLATION METHODS
2.1 General

The problem of interpolation from discrete observations can be described as
follows:

On a number of points Pi in n-dimensional space, called "reference space'!,
vectors of dimension m are defined.

Interpolation consists of finding the unknown vectors to any number of other

points Pk’ using the known vector in points Pi‘

As an interpolation problem, a DTM is simple.
The dimension n of the reference space is 2, since it consists of the XY
coordinate plane. The dimension m of the vector to be found is 1, since the

entities to be interpolated are the one-dimensional heights Z.

Interpolation and the related subject of transformation of inconsistent
coordinates, are again in the limelight due to the recent re-definition of a
number of traditional photogrammetric problems as interpolation problems
and the breakthrough of the theory of stochastic processes in geodesy and
photogrammetry. Examples are numerous in photogrammetric literature, and
concern film deformation, lens distortion, model-, strip- and block
deformations, etc. (ARTHUR [ §1,SCHUT [27] , BEYER [ 67,
KRAUS and MIKHAIL [ 16 ] , VLCEK [ 37 ], BOSMANetal. [ 9 1).
Interpolation has also been studied intensively in other applied sciences such

as geology (see [ 41 ] ).
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An attempt to classify the large number of possible interpolation procedures,
to discuss them, and to make a choice for use in a particular problem is
certainly difficult. This Is why decisions on an interpolation procedure had
and still have to be made on the basis of intuition, logical considerations, and
experience. For the particular case of interpolation in a square grid DTM,
an optimum procedure can, however, be defined, as will be shown in the

discussion of the numerical results.

Interpolation of a one-dimensional random function which is defined on a 2
dimensional reference space is a problem of "surface-fitting"., Three basically
different approaches are possible, namely:

- interpolation by a single, global function;

- interpolation by piecewise, locally defined functions;

= pointwise interpolation.

In the first case, that of interpolation by a single function, all reference points
are used simultaneously to define a single function Z = f (x, y). For application
to a DTM, this is usually inappropriate. Either the terrain is too irregular,

so that the function cannot conform to it, or the number of unknowns to be
determined is so large that the solution for the coefficients of the function is
impossible or instable. This is so even in the case of relatively small areas.
An effective single interpolation function is HARDY's "multiquadric", defined

as a sum of second order surfaces [ 11 .0 12 7:

. 2 2 1

Z =2 ¢ [&-X"+(x.-"+c]® . ... ... .. (1)
: i i i i
i=1

where the index i denotes the n reference points,

Although HARDY showed in various studies that this function is very flexible,

especially if digitizing is done along terrain break lines, its application to

DTMs would generally be very laborious: the computation of the unknown C

from n measured reference points would require inversion of a n.n matrix.

Interpolation by piecewise functions involves dividing the whole area of the
DTM into smaller patches and representing each patch by one chosen function,
In this way, the problem of determining simultaneously a large number of
unknowns can be overcome, although another problem is thereby created; viz.
that along the boundaries of patches, '"cracks" or discontinuities might

oceur [ 25 ]
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To avoid these, constraints can be introduced by forcing the individual functions
in the patches to coincide along boundary lines, so that joint functions will
result. This idea was used in [ 9] and [ 19 ] . If these joining conditions
have to be introduced explicitly into the computation of the unknown function
parameter, then again the problem of the simultaneous determination of a large
number of unknowns follows, just as was the case for interpolation with a

single function,

Fig. 2. Approximation of a terrain surface by

plane triangles - linear Interpolation LI

Therefore,” functions have to be found for the individual patches so that the
explicit consideration of the Jjoining conditions is not hecessary. A very simple
example is the piecewise linear function or polyhedron (fig. 2). The reference
points are used to define triangular plane pieces. In this case function valueé
along the boundaries are automatically identical. More complex possibilities,
using higher order polynomials also exist, LINKW)ETZ reports in [ 20 ] about
a socalled '"Mesh-surface" of Prof. COONS of MIT. Another example is the
method by JANCAITIS and JUNKINS [ 13 ] . The main advantage of this
approach is that the interpolation of a larger number of points per mesh does
not cost very much more effort than the interpolation of a single point. In
addition, efforts for contouring, profiling, etc. » simplify with this method as
compared to pointwise interpolation,

Pointwise interpolation avoids problems of computer storage, since each new
point is interpolated Independently, using only the surrounding subset of
reference points. The coefficients of the interpolation function will vary from

point to point. This increases flexibility although more computation is involved,

*) The MIT mesh-~surface is also described in [ 42 ] |
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Most of the existing operational DTMs are based on pointwise interpolation. The
procedure is as follows: those measured points are selected in the DTM which
fall inside a "critical circle (or square)'' around the new point. These points
are then applied to compute a weighted mean, low order polynomial or other
function. The time- consuming process of defining the points inside the critical
circle or square, is greatly simplified if the measurements are made in a

regular point grid,

The piecewise linear interpolation, as illustrated is fig. 2, can also be defined

“as pointwise interpolation with three points, if a square or similar grid was
measured. Similarly there are also cases where point- and patchwise inter-
polation is identical for square grid sampling. This will be discussed in the

following section.

2.2 Description of Interpolation Methods Investigated

Due to its flexibility and local definition pointwise interpolation should provide
results at least as accurate or even better than piecewise or single functions.
This, and the numerical simplicity, is the reason that basically oﬁly pointwise

interpolation is considered in the present study.

In the square grid DTM, pointwise and patchwise interpolation is identical, if
the size of the patch in which a function is defined, is equal to the size of the
meshes in the measurements. The results obtained for the pointwise methods

are therefore also applicable to the specific case of patchwise interpolation.

Tor the case of more than the 4 closest reference points, four effective point/

patchwise interpolation algorithms have been selected for detailed study, namely:

weighted mean,
moving averages,
linear prediction,

minimum sized polynomial patches.

For the cases of 4 reference points, one obtains interpolation in a grid mesh by

using the four corner points. Five algorithms have been studied:

weighted mean,
linear prediction,
bilinear polynomial,

two versions of linear interpolation.
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This selection of interpolation methods is of course incomplete.

In theory, a large number of alternatives is available: e. g. orthogonal
polynomials, Fourier series, etc. [ 19 ] . The methods which are selected
for the present study seem, however, to be the most economic and powerful

for application to DTMs. At this point, this Is an intuitive statement.

A comparison of interpolation methods will, however, show, that carefully
applied linear prediction provides optimum results, as good as those
obtainable by interpolation with minimum sized patches and "moving averages".
Theory of random functions proves that linear prediction is the optimum
interpolation method, provided that certain conditions hold concerning the data.
The fact that all three of these methods perform equally well is an indication

that there would be no point in considering other alternatives.

2.2.1. Interpolation With Weighted Arithmetic Mecan (AM)
A new height Zp is interpolated from the n surrounding reference values by:

n n ¢ "
Zp = % WeZ /X ow=w.Z/Wou oo, (2)

i=1 L i=1 1
The underlined variables represent matrices (or vectors), Thus:
w = (Wl’ Wos eveen w )
Vector u represents the unit vector.
The weights w; should be a function of the distance di between the new point P
and reference point i. In this interpolation method the following weight function
will be used [ 37 ] :

w.=1/ dli{ ...... i TR ST O S RS B s e 3)

Obviously, a large value of k increases the effect of the closest reference

point(s) while reducing the influence of all other points.

The use of this method for application to DTMs has been advocated by
LAUER in [ 18 ] .



767

2.2.2  Interpolation with Moving Averages (MA)

The surrounding n reference points are used to define the coefficients of a
polynomial of order m. If the new point is chosen as the origin of the
coordinates, then only the absolute term of the polynomial has to be computed.
The name "Moving Averages' of order m, involving n points, is given to this
method in the theory of stochastic processes, where it is used as a smoothing
and interpolation procedure (YAGLOM [ 391] ).

The name is based on the fact that the function value of a polynomial can
always be expressed as a linear combination ("average') of the values in the

reference points,

This method can also make use of weights. The polynomial is then computed
by giving the reference points a lower weight with increasing distance from
the new polnt, just as in the method of the arithmetic mean. In the present
study, m is chosen to be 3 since higher order polynomials usually do not
improve the interpolation [30 ] . Two weight functions are considered:

firstly the one given in formula (3), and secondly the Gaussian curve:

The use of this function for moving averages was proposed by ARTHUR[ 5 ] .
This interpolation method is for example used in the Czechoslovakian

DTM [ 29 1} and in the French "semis de points” { 33/5 ] , for "external
block adjustment" by SCHUT [ 27 ] and in the contouring programme of
CALCOMP [ 3 1.

For the case of a square grid DTM, a moving average with constant weight

w = 1'is identical to patchwise polynomial interpolation. The patches are the
minimum square meshes, Inside a single mesh the coefficients of the moving
average with w = 1 do not change and so cracks may occur along the
boundaries of adjacent squares. Cracks can only be avoided if the weight w is
varied a8 a function of distance d. NAKAMURA [ 25 ], however, showed that
the order of magnitude of these cracks is negligibly small, about 10% of the
interpolation error (i.e. the difference between interpolated and measured

check point).
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2.2.3. Interpolation by Linear Prediction or Least Squares Interpolation (LP)

The correlation of heights in the terrain must be represented by a correlation
function. Any pair of heights is thus correlated according to a function of the

distance, and eventually direction between or location of the two points,

If n reference points are to be applied in the interpolation, a "trend function"
(due to numerical simplicity a polynomial t (x, y) of order m) is first defined
by the n points. The residuals only are then used for actual interpolation.

The polynomial is called "global trend", and is required to give the reference
values statistical homogeneit;). Under such conditions the Linear Prediction
method is optimal among all linear interpolation methods. Isotropy of the data
(correlation between 2 points depends only on distance, not on direction) is
unnecessary for optimum results from linear prediction, If the data are,
however, anisotropic then this must be accounted for by introducing an
anisotropic correlation function w (d, &), where ¢ represents the direction

between 2 points.

In the present application, only an isotropic correlation function w (d) is
considered, since the computation of anisotropy is practically not feasible,
the number of known points being too small. Using the given correlation
function w (d), a covariance matrix nQn can be found for the n reference points
such that:

?

1 a w(d12) W(d13) .. .W(dnn)
w
21) 1 w('d2~3) . w(d.Zn)
L= : : :
w(dnl) w(dnz) w(dn3) ver 1

where dij is the distance between the ith and jth reference point. A covariance

vector 19, can be defined between the new points and the reference points:
g9 = w(dl) s W(dz) ..... w(dn) ]
where di is the distance between the new and given point.

The interpolation formula is then:

*) Reference values are inhomogeneous if their stochastic properties
vary with the planimetric location.
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where A Z s the vector of residuals in the reference points after subtraction
of trend t.

It cannot be the purpose of the present study to given an outline of the theory
of this interpolation procedure. Therefore for further details the reader is

referred to the literature, e.g. [ 16] .

In the numerical investigation, the following correlation functions have been
chosen from the literature [10] , [ 16] , [ 38 ]

wid) = ¢/ A +a2A%) L e (6R)

2
=3
!
o)
~
3
=
o
~
=
)

The order m of the trend polynomial is taken to be 0 and 2. The case m = 0
represents the simplest trend computation. On the other hand there is no

point in increasing m beyond 2 or 3, since higher order polynomials usually

do not improve interpolation [30 ] . Linear prediction has been advocated

by KRAUS [ 35] , who is using it in a programme for automatic contouring.
In [18] , LAUER investigated the method for application to DTMs sampled
along contours, He concluded, that the benefits derived from the more complex
linear prediction do not justify the extra costs, as compared to the weighted

arithmetic mean.

It is of interest that, long hefore linear prediction entered the field of geodesy,
ARTHUR proposed in 1957, and published in 1965 an interpolation method
which is identical to linear prediction [ 4 ] :
Z_ = .k
p 9 -Xx
k' - glAz

where the elements of vector k are called "constants characteristic of the

controls AZ". The covariance function w(d) is called the "altenuation function'

and is of the shape:
wd =1-4d/ a

In a new contribution [ 5 ] , ARTHUR uses expression (4).
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2.2.4. Polynomial Interpolation with Minimum Sized Patches (PMA)

Patchwise interpolation is a well known principle in cartography and geodesy,
and is applied in the transformation of one cartographic projection into another.
In order to avoid "cracks'' between adjacent patches, a linear function must be
used without overdetermination, such as in method LI, or POL. In the case of
non-linear functions, joining conditions should possibly not be considered
simultaneously in the computation of the function parameters. GOTTHARD[ 10 ]
has shown an interesting solution for application to photogrammetric model
connection, in which a non-linear function is used, without the occurrence of

cracks in adjacent models,

A solution to a similar problem, but with another technique, is that proposed
by JANCAIRIS and JUNKINS [ 13 ] .

The idea is the following: In the corner points of a square patch, tangents t and
t in the direction of the sides of the square are computed, using a certain
number of surrounding points, As a result one obtains two tangents in each
corner point of the patch in addition to the known height, This gives 12 known

values per patch (4 corner points x § values = 12).
A polynomial with 12 coefficients can be determined by these 12 values:

2 2 2 2
= s
Zp q0+ q1X+q2Y q3XY+q4X +q5Y + q6.X .Y+q7XY +q8.X +

3 3 3
qg.Y +q10XY +q11X YA e - - - e (7)

If this polynomial is computed from the heights and tangents in the corner points,
then it will produce the same function values along the boundaries as the

polynomials in the adjacent patches.

The method described works with polynomials of 12 unknown coefficients.
Solutions are also possible with e. g. 16 unknowns. For the determination of the
4 extra polynomial coefficients, 4 extra tangents are required, for example in
diagonal direction (txy). Such a method has been developed and programmed by
K. TEMPTFLI at ITC. The increase of the number of unknowns to 16 produces
not only continuity of the functions along the bouhdaries, but also ensures that
the first derivatives in the direction normal to the boundary lines will be

continuous,
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The most accurate terrain representation is obtained, if the patches exactly
coincide with the squares of the DTM. This has, however, the disadvantage that
3.n values have to be stored in a DTM of n points (if the original data are not
kept in the memory). Enlarging the size of each patch so that it covers more

than one square of the DTM saves computer memory at the expense of accuracy.

The definite advantage of this patchwise approach is the fact that the DTM is
given as a continuous surface. Any following operation such as contouring,
profiling, etc. can be carried out very effectively, contrary to pointwise inter-

wolation, and the result will always be continuous.

In the numerical experiment, method PMA is applied in versions PMA1 and PMAZ2.
In PMA1, the tangents in the corner point of a mesh are computed by means of
weighted polynomials through the 16 points surrounding the centre of the mesh,

In PMA2, the tangents in each direction of the network (tx, ty) are computed

from the 3 closest reference points in the x- or y-direction respectively. For
PMAL and PMA2, the patch size equals the minimum square mesh. A polynomial

according to equation (7) is used.

2.2,5. Interpolation with Bilinear Polynomial (POL)

I only 4 reference points are used for interpolation, then a bilinear polynomial

of the form
Z:ao+a1x+a2y+a3xy.‘........ .......... (8)

.8 just defined by these points. In a regular square grid, no cracks will occur
along the boundaries of meshes since the function then only depends on the two
closest points, not on all four. This interpolation can be interpreted as a piece-
wise, or also as a pointwise procedure of interpolation. It has been advocated by
BENNER and SCHULT in [ 7 ] .

2.2.6. Linear Interpolation (LI)

A new point is interpolated using the 3 closest reference points in:

Z =432, +2 +(Zy-Z). X+ (2

" 1+ 2y ~Z).Y) .. e (9)

2
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In the case of a square grid, this is identical to surface fitting by plane triangles,

where 3 points define one triangle, such that

Zn=a0+a1X+azY...... ..... RN e Tee S eme (10)

This method is used in the Finnish DTM [ 33/3 ] and is also proposed by a
number of authors, such as TERNRYD [ 35 ] , and BOSMAN [ ¢ )

2.2.7. Double Linear Interpolation (DLI)

Another possibility still is, if a new point is found from two linear interpolations,

in two triangles (see fig, 3), and the arithmetic mean of the two values is taken:

Z = .5*(Zn1+Z

n nz)

Zn2= bO + bl'X i sz

3y 3y, 8y are defined by the reference points 1, 2, 3, and the coefficients
bO’ bl’ b2 by the reference points 1, 2, 4, whereby points 1 and 2 are the two

closest reference points.

21 22

2 +

Zn = B(Zn'+2Zn")

Figure 3. Double Linear Inlerpolation (DLI)

The immediate question arises why not a least squares fit of equation (11) to the
4 reference points ? The answer is that in this case, cracks could occur along
the boundaries of adjacent meshes, Method DLI was proposed by SCHATZ in

[ 26 ]. Itdiffers from POL only in the location of the reference points.
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3. PREPARATION OF NUMERICAL EXPERIMENTS

The numerical experiments described in this report are hased on measurements
carried out for a related study [ 14 ] . The selected terrain-models, and the

measurements in these models will now be described.

3.1 Terrain

Six photogrammetric models of different terrains were used as an input to the
study. The problem one immediately faces when "different types" of terrain must
ve selected, is concisely and quantitatively to describe a terrain type. The most
successful, although quantitative, method of describing a terrain type is probably
by means of a contour map. Often photogrammetrists use only the maximum
height difference in the terrain to describe it quantitatively. Geomorphologists,
on the other hand, earn their living by the development and application of

complicated systems of terrain classlfication.

An accepted and obvious quantitative terrain classification does not yet exist for
the purpose of studying the effect of terrain shape on the results of various
photogrammetric processes. But even if it did exist, then there still remains the
problem that any large area of the Earth's surface is highly inhomogeneous*).

Its properties can vary strongly from one part to another.

| Cate- - ] ot B
{ ory deseription tr t/hectare
I regular, nearly plane | tr 10
surface elements |
I regular, varyving tot.20
surface, oval shapes
11 irregular surlace t. > 20
1v artificial, man made large number
surface of artificial
‘ orlges

Table 1.

SILAR's four terrain classes [30] .
t is the humber of focal extrema and/or terrain
break lines. -

*
) Terrain (a random function) is called 'inhomogeneous', if its statistical
properties vary with the planimetric location.
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Attempts have been made to produce a terrain classification for photogrammetric

purposes, SILAR [ 30 ] arrived at four terrain classes, simply by counting
the local extrema and break lines of the terrain per unit area. The resulting
scheme is given as table 1. Another possibility is that of interpreting the
topography as a random function and describing it by means of Fourier series,
or correlation functions. Numerical experiments prove, however, that the
inhomogeneity of terrain prevents successful straightforward application of

these concepts.

Princ, Flying  Scale Photo-
Name distance height number number
¢ {(mm) (m)
Wicsentheid 158,33 700 4 500 4+-3
Wellen 152.1 (00 4 000 18- 19
Kowloon 152.0 Go0 4 000 5769 -
5770
Oberschwaben 150. 4 200 28 000 055 ~
656
South Wales 152.1 5500 37 000 1765 -
704
Surenen 152.1 3 750 25 000 4579 -

Table 2.
Summary of data on the selected six terrain models

Six photogrammetric models, three at a scale of about 1 : 4000 and another
three of about 1 : 30,000 were chosen so that conclusions could be reached on
DTMs ranging from a high density of measurements, in a square grid of about
10 m side length, to a low density in square grids of 400 m sidelength.

Table 2 summarizes the information on the six selected models.

Figure 4 shows small contour maps of parts of the six selected test models. An
attempt to élassify these terrain surfaces according to SILAR shows that the
models "Wiesentheid" and '""Oberschwaben' largely fall into terrain category I,
"Welten" and "South Wales' into category II, and '"Kowloon" and "Surenen' into

category III.
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WIESENTHEID WELTEN
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Tig. 4. Contour plots of sample areas of the 6 models used for the
numerical experiment. The 3 upper plots cover an area of 60x50 m#,
the lower plots an area of 240x200 m#=,

Finally, an attempt was also made to use normalized correlation functions of
terrain surfaces for classification.
The computational procedure as well as the physical meaning of correlation

functions are well documented in photogrammetric literature, e.g. in [ 16 ].

Table 3 summarizes the coefficents of the computed correlation functions. The

attempt to use them for classification has been unsuccessful.

H 2.2 1
Terrain cov = ¢/(1+d”" k") cov = c/eep(d/k)| &( " [
model c k c k (m) {km)
Wiesentheid .84 19 . B4 28 28 2 Terd
Wellen .80 12 .80 50 1. 06 2 5.3
Kowloon .98 14 .98 22 5,132 2 26, 6
Obersschwaben | . 86 100 . 86 300 3.97 9 L4
South Wales 99 147 .99 235 12,9 8 15,4
| Surenen .91 243 .91 430 32.0 1.0 32.0

Table 3.
Coefflcients c, k of normalized correlation functions of the slx selecled terrain
models. & is the standard deviation of terrain rellef, after trend subtraction.
B is the side length of the squared terraln model, G is the "normalized"
standard deviation: G’n = G'L/s L



*
The reason for this is, that the trend function ), the size of the area for which
ok
the function is computed, the inhomogeneity and anisotropy ), and even the
density of measurements would have to be considered for classification.

This leads to a system too complex to be useful for the present purpose,

3. 2. Measurement of DTM
3.2.1, Pattern of Reference Points for Interpolation of New Points

A number of measured points ("refereice points') must be used for the inter-
polation of a new point, which is defined by its planimetric X, Y coordinates.

As has been stated previously, the regular point grid allows for a more economic
procedure to select these reference points as compared to other measuring

modes.

A new point is always situated in a square formed by those 4 measured points
which are closest to the new point. The study considers the results by the use
of only those 4 points in the interpolation. Increasing the number of points to
more than 4 would be logical, if all those measurements which are within a
"eritical circle" around the new point are taken as reference points. The radius
of this circle should be the maximum distance across which points could still
contribute to the interpolation, Replacing the critical circle by a "critical
square'' simplifies the selection of reference points, because the necessity of
time consuming computations of distances to all, or at least very many, points
of the DTM is avoided.

In order to define the length of the side of the "critical square" not only the use
of the surrounding 2 times 2 points, but also the 4 times 4 points, the 6 times
6 points, will have to be considered, or in general, the surrounding n points
with

*) Corr. functions are computed for random functions with mean = 0. Therefore,
residuals with respect to a "trend" are the input to compute correlations.
Trend represents the mean. In the simplest case, it might be a mean

horizontal plane. For table 3, it was a 2nd order polynomial.
**) Terrain is "anisotropic™, if corr. between 2 points P1 P2 depends on the
direction of the vector P1 P2.



In the present study, only three cases, with i = 1, 2, 3, are treated, which is

sufficient to see how the interpolation depends on the number of reference points.

In order to also obtain an accuracy model describing the relation between inter-
polation and grid spacing, the test is not only carried out with the spacing of the
original measurements, but also with three, five, and nine times this grid
spacing factor ('g" = 1, 3, 5, 9). The actually tested cases are shown in
figure 5. Vertically, interpolation ls shown, with a fixed number of reference
points, e.g. 4, but with a varying spacing g between the points. The multiples
g = 1, 3, 5, and 9 of the originally measured grid spacing were chosen instead
of another (such as 1, 2, 4, 8), because it allowed for a minimum number of
measurements. For the cases with g > 1, not only the centre point, but also
eccentric points are interpolated. Horizontally, then, the number of reference

points is varied in figure 5, for a constant spacing of the grid.

3.2.2. Measurement of Experimental DT Ms

The experimental DTMs, to be measured in the selected six photogrammetric
stereomodels, should allow a test of the interpolation problems sketched in
figure 5, in the ideal case in such a way that statistically sound results are
obtained. The selection of the number of individual interpolations required to
base sound conclusions on them is governed by two factors: first, the inter-
polation results in a square grid DTM are highly correlated and secondly, the

terrain is rather inhomogeneous.

In order to reduce the effect of the correlations on the results, the sample
measurements taken should be as large as possible. On the other hand, in-
homogeneity of the terrain and limitation of resources for the study suggests
that measurements should not be made in too large an area. In this trade off

situation, an intuitive decision was taken.

A DTM of 35x35 points was measured. From these measurements, which are
shown as crosses in figure 6, a number of 400 check points could he computed
for every case shown in figure 5. These check points were also measured and
are shown as dots in figure 6. The differences between the measured and
computed values for the heights of these check points were used to draw the

conclusions.
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Fig. 5. Experimentally investigated interpolation cases, showing vertically the
variation of grid spacing g =1, 3, 5, 9 and horizontally the variation in the
number of reference points 4, 16, 36
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Figure 6.

The 400 sample values are obtainable only if the centre points alone of the

pattern in figure 5 are interpolated. However, when the eccentric points are

computed as well, according to the same figure,the pattern of figurc 5 only

allows 256 sample values to be found.

The measurements were made on the AP/C Analytical Plotter, the output being

on papertape. The spacing of the grid was chosen to be 10 m (2-4 mm at photo

scale) for large scale photography, and 40-50 m (1-2 mm at photo scale) for

small scale photography. The measuring accuracy can be estimated to be + 0. 01%

.02% of the flying height. The measurement consisted of automatic

to+ 0

XY-movement, manual Z setting and triggering of recording.
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4, RESULTS OF NUMERICAL EXPERIMENT
4,1 Introduction

Those interpolation procedures which were discussed in section 2 have been

applied. Various weights were assumed, whenever weight was an input parameter

to a method. The abbreviations used in the following sections are summarized

in table 4,

Abbrevi- - . Abbrevi- . .
ation Explanation atlon Explanation
LI Linear Interpolation LP Linear Prediction
DLI Double Linear g Grid spacing
Intcrpolation
POL Billnear Polynomial Gr 2 Variance ol terraln
Interpolation t relief
AM Weighted Arlthmetic G “"Normalized" standard
Mean n deviation of terrain
reliel
A M('w_lng e rerage 1 RMS Interpolation errors
(Weighted) )
e, In three planimetric
locations
€3
PMAL Patchwise Polynomial o /2 2 2
(Version 1) (e] * ey + ey )/3
PMA2 Patehwise Polynomial a' e/
ic
(Version 2) Ll
Tabte 4

Summary of the abbreviations used in discussion ol the results of the
numerical experiment

The interpolation referred to the centers of gravity and two eccentric points,
situated in patterns of 4, 16, and 36 reference points, in 6 terrain models, and
with four different sampling densities. The total outcome of the experiment

consists of 4212 interpolation cases.

For the highest sampling density, or minimum grid spacing, no eccentric
points could be interpolated, but only the centres of gravity of the pattern of
reference points. In this case of interpolating the centres of gravity and using
only the four surrounding reference points, most interpolation methods produce

the same result,

In each of the mentioned cases, at least 2566 sample values are obtained for the
difference v between a computed and measured terrain check point, so that the

whole experiment totals more than a million interpolations.
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Presentation of the results must necessarily be in a compressed form. In first
instance, therefore, root mean square (Ims) values are computed from the
256 sample values of eachtest case. The rms -value e; is found from all

computed vy

256
/A -2
e. = 756 X v

! k=1 K
and is an estimate of the following expectation Ei C

32=E{(vi-E{vi})2}

Here, v is the discrepancy between the measured and the interpolated heights.
Index i refers to the planimetric location of the interpolated point. The
discrepancies v, are physically and algebraically correlated. This is due to the
fact, that neighbouring check points are interpolated from partly the same
reference points. The amount of correlation depends on the type of terrain, the
method of interpolation, the pattern of reference points used for interpolation,
and the location of the interpolated points. It is a complex problem to arrive

at an estimate of this correlation, for a specific case of all those parameters
which influence it. Therefore, the statistical properties of the e-values are
not known. The values e do indicate orders of magnitude and interrelations
amongst project parameters. They do not, however, relate to statistical

confidence and standard deviation, due to the correlations among the original Vi

Because six interrelated factors which influence the accuracy of a DTM were
investigated and because each of these factors can vary over a large range of
values, a concise description and discussion of the numerical results is hardly
possible. Under the given circumstances it is considered a reasonable approach
not to present the full range of computed e-values, but to make them available
on request from [TC, The tables and figures presented in this report thus
contain values derived from the original rms e~ values. Each table is prepared

with a specific item of discussion in mind.
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For each interpolation case, check points in three planimetric locations were

interpolated, namely the center of gravity and 2 eccentric points (figure 5), It
is desirable to compress these 3 results to a single number to facilitate
conclusions. A logical approach to this is to define 2 new r. m. s. interpolation

error e as a function:

=1

2

X
¢ = %"I | ag+ ax +oayy dydx ... (13a)
X

(o]
=0 y=o

The function to be integrated is a plane through the three points given hy the
coordinates (0, 0, elz), (a, 0, eg), (a, a, eg). Index 1 refers to the centre of
gravity, indices 2 and 3 to the eccentric points. The area F over which it is to
be integrated is a triangle as shown in figure 7.

Consequently:

Integration should actually extend over

the whole triangle P1, R2, H. But this

would lead to unjustifiable extrapolation
outside the triangle P1, P2, P3. The

integration over this smaller triangle

|

produces e-values which are somewhat

i larger than those obtained from the
triangle P1, R2 H.

For planning purposes it will often be

the largest interpolation error occurring
Flg. 7. Three new polnts

Piy P, P, are interpolated in the mesh, which is of highest
in the square formed by the -
ref. points R, , R,, R, R, importance. This is the error e, in point

P1 (center of gravity). For volume
computations, and for the study of a number of influencing factors (e.g. weight
of reference points) the average e-value can be more useful.

In a number of cases during the following sections an attempt is made to
compare the results obtained from different terrain and/or sampling densities.
This comparison is facilitated, if the obtained ;- or e-values are normalized

by means of the e-value for linear interpolation LI:

' =
e e/eLI s . NN - - ] SEECEGECI: - - SEGENGECE: - - B -0 -F
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Values e' are then measures for the difference between the result after linear
interpolation and the interpolation case in question. The normalized e'-values
can be used to compute meaningful averages over different terrain and/or

sampling densities.

The following discussion of numerical results will begin with the problem of
welghting the reference points. Then, the interpolation methods are compared
and an attempt is made to define the optimum number of reference points to be
used for interpolation. The relation between grid spacing, terrain type, and
interpolation error is treated next. Finally the variation of errors as a function

of planimetric location is considered.

4.2 Optimum Choice of Weights and Other Parameters in Different
Interpolation Methods

In a number of interpolation methods, each of the given reference points may
obtain a certain weight in the interpolation, and/or other parameters may have
to be chosen. Usually this is a matter of intuition. The numerical experiment

allows for a few conclusions on the choice of weights and similar parameters.

Tables 5 - 9 have been prepared from the normalized e'-values, according to
formula (14). Consequently they represent the difference between simple linear
interpolation and the interpolation in question. The tables show only two grid
spacings. This is justified by inspection of the full range of results which

demonstrate that optimum weight is generally independent of grid spacing.

4.2,1. Arithmetric Mean

Table 5 illustrates that weighted arithmetic means from 4 reference points are

superior to linear interpolation only, if in the weight function
wid) = 1/7d5 ... s e e i e Sk e W (3)

k is larger or equal to 1. If more than 4 reference points were used in method
AM, then it would even be necessary to choose k > 2 to approach the

performance of method LI. This confirms the result obtained by LAUER in [ 18 }.
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No. of Rel, Points + 16 36

: - 1 -2 -1 - - e - = a

Weight 1 d d q 14t § gt 1ot gt gt

E  Wiesentheid 140 1.07 1.07 107 2.20 1,67 1.33 1.13 3.00 2.33 1,60 1.13
<
% Welten 2,07 119 1,00 1.26 2,61 1.80 1.30 1.28 3.07 2.26 1.50 1.30
=4

Kowloon 1.45 96 .81 .87 2,43 1.70 1.12 91 4,85 2,36 1.37 .92
& Oberschwaben | 1.11 88 .77 75 1,73 1,38 1.02 .79 1.99 1.65 1.15 80
3 8. Wales 1.05 87 .80 .83 1,78 1.0 1.05 .86 2,43 L.91 1,27 .87
gc Surenen 1.406 92 84 .97 2,71 2,05 1.45 1,06 5,04 3.73 2,27 1.16

Table 5.

The elfect of variation of welght on method AM.Shown are €-values, computed according to formula {13D)
and normalized according to formuia (14), so that they represent the dilference between method AM and LI:

L4
e = ean/ey
Method NA PLMAT PMA2
. _ 2 o _ a2 =1 -2 -4
Weight 1 d—l (]-2 d 4 c—d N 2d N 4d d d d 1
Wiesentheld 1.13 1,07 1,00 1.00 .93 93 93 94 L0 L9 1,07
Welten .87 .8H 87 87 .87 a7 89 89 89 89 .98
Kowloon .99 .77 .71 .69 .70 .08 .48 71 72 .70 T2
g Oberschw, L9878 T3 .70 .72 .69 LG9 72 2 .70 71
218 Wales .85 .76 .74 75 .75 .75 .76 77 ST7T L7
I'; Surencn 89 .68 62 L6061 59 59 61 - 63 G2 B
Table 6,

The effecl of variation of weipht on method MA (n), and of the method of computing tangents in

mcethod PMA. The values shown are computed according to formulac (13h) and (14), [rom 16

reference points, and represent the difference between the investigated method and method
LI ¢'= e/eLI

4.2.2, Moving Averages

Interpolations with DLI or POL do not provide a choice of weights. In moving
averages, however, the introduction of weights can improve the results
considerably (15 - 25%). The left part of table 6 shows the relation between the
accuracy and an increase of the power k in weight function (3) for the case of
16 reference points. This confirms that the selection of weight 1/(13 in the
Swedish DTM is correct (NORDIN [ 33/2 ] ). The right part of table 6 then
demonstrates that it is even more effective to replace weight function (3) by

4):
w{d) = l/exp(dz/kz) T L T T T R PO P SR 4)

where d is given in multiples of grid spacing. Use of this function for moving

averages has been proposed by ARTHUR [ § ] .
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The best result, also for the case of 36 reference points, which is not shown in
table 6, is obtained with k < .7. There is no point in choosing k < .5. The
results would not improve, but the equation system to compute polynomial

coefficients becomes singular. This confirms the results obtained by ARTHUR.

4.2.3. Patchwise Polynomlal

For the patchwise polynomial interpolation, 2 alternatives (PMA1, PMA2) were
studied. Table 6 shows the differences in performance between the 2 versions.
The weight given to the reference points in version PMAI1 is not critical. If the
computation is, however, simplified to the extent of alternative PMA2, patch-
wise interpolation will be somewhat less effective, The differences amount to

~ 10% on the average.

4.2,4. Linear Prediction

Two basic decisions have to be taken when applying linear prediction (LP).
These concern the trend and the correlation function. In order to study the
significance of "trend", two alternatives have been compared, namely:

a horizontal plane

a second order polynomial, each point with equal weight.
The comparison was only possible for cases with 16 and 36 reference points.
No second order polynomial is defined by 4 points. Table 7 allows such a
comparison. Clearly a horizontal plane is inappropriate. Results obtained
with this trend are inferior to linear interpolation, It is only with a higher
order trend function (polynomial of 2nd order), that the residuals sufficiently
approximate the statistical properties of homogeneity and isotropy, so that
linear prediction can fully be exploited.
As far as the correlation function is concerned, the following questions must

be answered:

(L) What should he the coefficient ¢? If ¢ < 1, then an uncorrelated
component can be "filtered", If ¢ = 1, the interpolation surface

passes through the reference points,

(ii) Which correlation function is superior:
wid = e/@+ @AY . L (6a)
w(d) = ¢/ exp (dz/kz) ............ . (Gh)
(iii) Should the correlation function be constant for a certain grid

spacing (and terrain), or should it vary for different grid spacings

and terrain models ?



Method LP(1) LP(2)

No. of Ref Points 16 36 16 36

Welten (g=30 m) .89 .85 1.24 1.33

8. Wales (g=135m) | .76 .76 1.70 1.98
Table 7.

Linear Prediction (LP), using a horizontal plane
as trend (LP(2)), and a second order polynomial .
The given values are e' - values,
obtained according to formulae (13b) and (14).

(LP(1)).

Corr. Function 1/(1 + (d/k)z) J8/(1 + (d/k)z)

k .51 2 4 .5 1 2 4
3 Wiesentheid 1.07 1.07 1.00 1.00 [1.15 1,09 1.00 1.00
%; Welten .93 .89 .89 .89 [ .95 .89 .89 .89
® | Kowloon .88 .81 .69 .66 | .90 .85 .74 .g7
g Oberschwaben .90 .8 .71 .67 .94 .89 .76 75
w | 8. Wales .81 .76 .75 .76 | .84 .18 .75 .77
T | Surenen .85 .70 .61 .58 |.88 .74 .65 .4

Table 8.

Linear Prediction (LP) with and without "filtering' (c = .8, ¢ =1). Shown are

e' - values, obtained according to formulae (13b) and (

points

14), from 16 reference

2

Corr. function 1/ + (d/k)z) 1/e (d/k)

k .5 2 5 10 [ 5 10 -
g | Wiesentheid 1.07 1.00 1.00 1.00]1.13 1.00 1.00 1.00
5 | Welten -89 .89 .89 .89 .93 .91 .89 .01
i
® | Kowloon .8 .66 .66 .66| .93 .67 .G67 .74
g Oberschwaben | .88 .68 .67 .68 .97 .67 .68 .75
2 5. Wales .79 .76 77T .76 | .83 .78 .76 .81
'Q‘D Surenen .77 .58 .59 .58 | .88 .60 .59 .67

Table 9.
Comparison of 2 correlation functions in method LP. Shown are e' - values

obtained according to formulae (13b) and (14)

, from 16 reference points
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(i) :

(ii):
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Table 8 shows the normalized e'-values obtained from LP in all terrain
models. The coefficient k of the weight function is varied horizontally.
Table 8 shows the e'-values for coefficient ¢ = 1 on the left, for ¢ = 0.8
to the right. Table 8 leads to the somewhat surprising result, that
"filtering' does not improve the accuracy. Instead, the choice of ¢ = 1
provides on the average a slightly (by a few percent) more accurate
interpolation as compared to ¢ = 0.8. A similar result was also obtained
by LAUER in [ 18 ] . The correlation function (6a) is used in table 8.
Distances d are in units on the ground, so that correlation between
neighbouring grid points reduces, if grid spacing changes from 10 to 30,

50m etc.

Table 9 compares variants (6a) and (6b) of the correlation functions, The
distance d is introduced in multiples of the grid spacing. The comparison

shows that the two variants produce practically identical results.

A difference between the two results is that the one obtained from (6b) is
more sensitive to a change of constant k than (6a). This is more obvious
in the original data not included in this report where a larger range of
k-values was considered. The fact that both functions produce the same
optimum result, but (6a) over a larger range of k, makes this variant

superior. The optimum result is obtained in most cases for 2 < k € 5.

The difference between the 2 definitions of d (in meters on the ground, or
in multiples of grid spacing) Is not obvious from a comparison of tables 8
and 9, since both contain only e'-values for a specific grid spacing.
However, from the full range of e'-values (over various grid spacings) it
can be concluded that d should be introduced in multiples of the grid
spacing. In this case, optimum results are always obtained for the same
k. If d is expressed in absolute units in the terrain, then the oplimum k
increases with increasing grid spacing. (BEYER [ 6 ] also normalized
the constant k by means of grid spacing).

A further conclusion is, that for all terrain models investigated, the
same correlation function produced the best result, The optimum
correlation function for LP is therefore variant (6a), withc =1, k = 2,

and distance d normalized by means of the grid spacing.

So far, consideration of correlatlon was only based on "trial and error', or

experimental optimization, as proposed by LAUER [ 18 ] . In theory,
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objective methods exist to compute the physical correlation of terrain heights.
Table 3 showed the result of such a computation for the whole 20x20 check points
of each terrain model.

In the actual interpolation, the correlation is required among residuals after
subtraction of a local trend within 2x2, 4x4, or 6x6 reference points.
According to KRAUS and MIKHAIL [ 15 ], an objective computation of
correlation can hardly be successful since the number of points on which it is
based is rather small. An attempt has been made, however. Figure 8 shows,
that the physical correlation found experimentally differs from the optimum

found above by 'trial and error'.
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Flg. 8. Correlation functions for LP. The solid lines

give the optimum function 1/(1 + ((I/k)z y, found by

trial and error. The broken lines are the computed

physical correlations. (d is in multiples ol the grid
spacing g = 1)

The most significant difference is the fact that such a large uncorrelated
component seems to exist in the data. An attempt to "filter" this component by
choosing ¢ < 1 in the correlation function for LP failed, as can be seen in
table 8. An explanation of this contradiction is only tentative at present and is
based on the assumption that the theoretical functions are not defined well

enough,
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01 (centre of pravity) ey {cceentric)
Method LI POL DLI AM LP LI POL DLI AM
. 1 -1
Weight u -
8 d 1+(|2/4 d Ndz/ll
£ Wiesenth. .13 17 S 14 4 L 14
= Welten .62 .61 .37 37 L3746 37
% | Kowloon 4.1 3. 08 2.19 2.08 1.9 202 2. .01
Oberschw. 2.99 2. 06 1.44 1.37 1.256 1.12 1.18
S. Wales 5.34 3. 86 2,568 2,39 2,17 2.11 2.22
g |Surenen 12.7 8.43 5.42  5.05 .54 6.24 5,39
n
@3 | Average .
E) (LI = 1007)) 1.00 .84 1. 00 .96 .91 .99 93
{a) 4 reference points
01 (centre of gravity) cy {eccentric)
Method AM MA PMA1 LP ADN MA  PMA1 LP
2 L 2 1
Weight d-4 e—4(l d—4 1+(]2/4 d»tl e—»l(l d-‘L 1Jr(|2/4
£ Wiesenth. .19 16 .16 .16 16 .13 L 14 13
. Welten .64 .64 54 .54 .81 .35 L34 L3
if
o8 | Kowloon 3.356 2.56 2.62 2.51 2.88 1,82 1,80 1.97
g Oberschw, 2.20 .79 1.82 1.75 1.11 1.21 1.14 1.13
= |S. Wales 4.10 3.45 3.45 3.47 2.20 2.15 2.04 2, 06
el
T [Surenen 9. 82 G, 1 6.25 G. 0 9.78 3,96 3,83 3,77
j=9
Average . _ _ _
(LI = 100%) .92 03 LTk 73 1.1+ .85 L8 .83
(h) 16 reference points
el(centre of gravity) e, (eccentric)
Method AM MA LP AN MA LP
1 1
2 2 T
Weight d_4 e_4d 1+(12/4 (I_J‘ e td 1+dz/~l
g |Wiesenth. .19 16 .16 L1600 .13 .13
<
| Welten . 66 a4 .02 .81 L34 e
i
¢ [Kowloon 3.44 2,55 2.49 | 2.87 1,82 1.76
g Oberschw. 2.23 1.79 1.73 1.11  1.22 1.12
@ S. Wales 4.20 3.46 3.49 2,20 2.14 2,07
T, |Surenen 1.8  6.11 6,06 | 9.82 35.95 3.76
Average N N
, 3 g T 3i h a2
(LI = 100%) .96 73 .72 1.35 .85 .
(c) 36 reference polnts

Comparison of interpolation methods. Shown are a. m. s.
in metres on the ground. In row "average",
after normalization with e

Table 10.

the average

c. - values,

e!- values,

, are given, (the values of each row are
divided by the value for LI then the average is taken per column)
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4.3. Comparison of Different Interpolation Methods

4,3.1. Accuracy

The accuracies of different interpolation methods are compared using the
optimum weight and other parameters. The comparison is illustrated in table 10,
showing the e and ey values. The last row of each of the tables allows a
comparison of the "average" performance of the different interpolation methods,
using "avrerage" e‘l and e'3—va1ues (e'1 = el/e1 LI)' taken over the 6 terrain
models at the indicated grid spacings. In addition, table 11 contains the average

of the e'-values taken over all terrain models and all computed grid spacings

Method LI DLI POL AM MA PMAT Lp
2 2
- -4 1 d
Weight 1t M d SR
ﬁﬂ 4 1 88 .89 .92 .88
85 16 97 76 76 76
o
Al T noex 17 76
7
‘T'able 11,
Average performance ol different interpolation methods. Shown are values

abtained as average of the ¢! - values (formula 14) over all investigated
terrain models and prid spacings

The following conclusions can be drawn for the tables 10 and 11:

- In general, the difference between interpolation methods is fairly small,
i.e. on an average not more than 10 - 20 %. With 16 reference points
interpolation is most accurate when using the methods of linear prediction
(LP), moving averages (MA), or patchwise interpolation (PMA1).

- No significant difference exists between linear prediction, weighted moving
averages and patchwise interpolation.

-  For the case of 4 reference points, bilinear interpolation (POL), linear
prediction (LP) and double linear interpolation (DLI) produce practically
identical results, but on an average 10 - 15% better than linear inter-
polation (LI) and 10 - 15% inferior to MA, PMA1, or LP with 16 reference
points.

= Interpolation with weighted arithmetic means (AM) is not an effective
method, AM approaches the performance of linear interpolation only with
the introduction of considerable weight differences.

= On an average, the differences between linear interpolation (LI) and other
methods do not reduce with increasing grid spacing, nor when the terrain

.type changes (table 12). This conclusion is surprising. It was expected .
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that the differences between interpolation methods become smaller with
increasing complexity (noise) of the terrain.

In the present experiment the largest improvement compared to linear
interpolation was about 50% (terrain model "Surenen", method LP, 16
reference points) This percentage was also the largest discrepancy found
by LAUER in [ 18] for the difference between methods LP and AM,

however, for sampling along contours.

Grid spacing

Terrain Gn 10 30 5 500 185 225
Wiesentheld 1.1 (.90) 1.00 1. 06

Oberschw. 4.4 (o1 G8 s
Welten 5.3 ( 96) 85 I

5. Wales 15.4 (. 85) T [
Kowloon 26,6 (.97) [dd] 07

Surencn 32.0 9 58 LR

Table 12,

Elfectiveness of linear prediction {cov = 1/(1 + (lz/l)) as compared to linear inter-

polation LI, versus grid spacing and terrain type. G _ is "normalized standard

deviation of terrain reliel”. Shown are the normalized &' - values. according to
formulae (13b) and (14)

4.3.2, Costs

The comparison of costs for the different interpolation methods is based on the
computation times. Such a comparison is subjective since it depends on the
computer configuration and the programming. In the present case, the computer
used was the PDP 11/45 of ITC. Programming was in Fortran IV, using the

standard IBM subroutines for matrix operations.

There is no single answer to the problem of interpolation costs since these
differ according to the number of points interpolated per square mesh, In this
numerical experiment, only a small number of points were interpolated, namely

3 points per mesh.

Table 13 summarizes the overhead computation time per programme run, and
the variable time per interpolation of a group of 3 new points per mesh. Excluded
are the time for compilation and linking of the programme, as well as the time

for in- and output. The data in table 13 thus only refer to the computation time.



No. of Extra/Run  Extra/Point Nu. of Extra/Run  Extra/Point

Sgihad Rel, points (sce. ) (sec.) Method Rel. points

DLI I .12 ] PAA2 1 1.20 10
POL ] 12 Lol MA LU 2,17 «21
AM (! -12 .ot MA Hii Lo Y
AN 16 12 L 05 LP- i L12 L0t
AM an 12 08 LP L1 L2 12
PMAIL i 5.2 25 Lr HIG 83,7 .23

Table 13,

Computation time for the interpolation methods under investigntion. The Indicated times exclude in-
and output, and data transport, and were obtained on the PDP [1/45 of ITC

Interpretation of this table leads to the following conclusions:

Using 4 reference points for interpolation requires the same amount of
computation time, irrespective of the method of interpolation. In the present
case, this amounted to 25 points/second, with a negligible overhead.

The fastest method of interpolation for more than 4 reference points is the
weighted arithmetic mean (AM). Increase to 16 or 36 reference points
hardly costs any extra computation time.

Simplification of the patchwise interpolation from PMAL to PMA2, thus
simplifying the computation of tangents, represents a reduction of variable
computation time by a factor 2.

Comparison of methods MA and LP shows that LP is more economic. Variable
cost is only half of that for the moving average. Fixed costs are considerably
higher for LP, especially for 36 reference points, since inversion of a 36x 36
matrix is required at the beginning. This, however, is easily compensated, if
only about 150 points are interpolated.

Computation time for method LP with 16 reference points is 4 times that of
any of the simple algorithms using 4 reference points.

Method PMAL, using 16 reference points, is 2 times more expensive than
method LP with 16 points.

The fact, that the methods under study have been used in an experimental, rather

than an operational DTM, causes no limitation to the validity of the variable cost

of a single interpolation per mesh, except for the case of moving averages MA.

There, the fact that the same pattern of new points was repeatedly interpolated

(256 times per case), has been used to determine the inverse of the normal

equation matrix only once, at the beginning of each run, so that this adds to the

fixed costs. In actual applications, however, the planimetric location for which
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a new point is to be found within the square mesh, changes from mesh to mesh.
Since also the weights change in this case, inversion of the normal equation matrix
adds considerably to the variable costs. Full inversion is, however, not required.
The new point is taken as origin of a local "moving" coordinate system, so that
only the constant term of the polynomlal has to be computed. Still, the relations
shown in table 13 will be more unfavourable for MA, if operational application is
considered. Reduction of costs, however, presumably at the expense of a loss of
accuracy, is possible by chosing the order m of the polynomial in method MA

5 be 1, rather than 3.

Interpolation of lines might require a larger number of points to be interpolated
per mesh as compared to the case of a single point per mesh. In this case, method
PMA1 can become more economic than method LP. Interpolation with PMA1, of

a new point of which the 12 polynomial coefficients are known requires only 12
multiplications and additions. In method LP, this requires 17 * 16 multiplications
and additions. For profiling, method PMA1 even allows for a very cffective

solution by simply intersecting the polynomial patch by a vertical plane.

4.4, Number of Reference Points per Interpolation

A number of interpolation algorithms for DTMs are based on only the 3 or 4
reference points closest to the new point to be interpolated. In this section an
attempt is made to establish whether and how the accuracy of interpolation

increases, if not only 3 or 4 but more reference points are used.

In section 3.2.1. it was stated, that the reference points applied in the inter-
polation should be within a "critical square" around the new point, so that the n

closest reference points fall into this square of a side length of i grid spacings:
n= 412 i=1,2 3,... (12)

In this study, only the cases i= 1, 2, 3 are considered. With formula (12), the
question treated in this section can be reformulated:

Is the hypothesis correct that optimum results of DTM interpolation are obtained
with i = 17
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c] . centre of gravity c,l ... cccentric point
Grid spacing (m) 10 15 30 135
No. of Ref. Points 4 16 36 4 16 36 1 16 kD + 16 i
Lp Wiescnth, 10,09 .09 AET S RS
- Oberschw, U1 LH3 L83 .18 1,13 1,12
1 Welten .26 26 26 I T .
S, Wales 1.50 1,28 1.27 2,22 2,06 2,07
Hi Kowloon 119 116 L7 2.0l 1.77 1.76
-+ Surencn 2,492 2,65 2,066 (.30 B.TT 0 8.TT
MA Wiesentlr (.10 0 .09 .1 13 14
(POLY Oherschw. (.91) .81 . BT (LL37T) 1,16 1.16
Welten (.26) .25 .25 (.537) {H 3+
I_ i S. Wales (1.50) 1.33 1.359 (2.39) 2.05 2.06
t
Kowloon (L19Y 1.1k 1,15 2.08) 1.78 1.81
Surencn (2.02) 2,68 2,97 (5.05) 3,77 3, 83
AN Wiesenth, 10 .10 .10 .16 16 .16
2 Oberschw, L9 L9496 .11 L1t 1,11
-4 Welten L2060 .26 .26 .80 .81 LBl
S S, Wales 1,50 1.59 1.63 219 2.20 2,20
Kowloon 1.19 1,24 1.26 2.88 2.88 2.87
Surenen 2,92 3,10 2.18 9. 67 9.78  9.82
Table Li.

Comparison of 4, 16, or 16 reference points. Valueg In metres on the ground. For the case of 4
velerence points, method MA is substituted by method POL. The corresponding values are in brackets,

Table 14 compares the €y O e3—va1ues for the case of 4, 16, a.nd( 36 reference
points (i= 1, 2, 3). This comparison Is made for grid spacings of 10 m and 45 m
for the e value (centre of gravity), and grid spacings of 30 m and 135 m for the

€q= value (eccentric point in vicinity of reference point). The information of table 14
is also contained in table 10, however, in a less convenient way for the definition

of the optimum number of reference points.

Table 14 also considers the method of interpolation itself since the optimum

value for i might vary from one interpolation method to the other. Thus, in the
results of methods AM (arithmetic mean), MA (moving average); and LP (linear
prediction), as shown in table 14, a weight has been used which has been optimized

by trial and error.

The following conclusions can be drawn from table 14.

With method MA and LP, interpolation in square grid DTM is more accurate 1f
the 16 closest reference points are used, rather than only the 4 closest points
(i.e. i = 2 is superior toi=1). The improvement amounts to about 10%. The
difference between use of 16 or 36 reference points is hardly significant, provided

the weights are properly chosen, Therefore there is no point in chosing i > 2.



These conclusions apply also in the vicinity of a reference point (see right half
of table 13, prepared from e3—va1ues). Interpolation with weighted arithmetic
mean should, if at all, not be done with more than 4 points; the use of more than
4 points (16 or 36) does not improve, but rather impairs the results.

The conclusions, that 16 reference points do provide better interpolation results
than 4 points, has also been found by LAUER in [ 18] , however, for sampling

along contours.,

. 5. Grid Spacing, Type of Terrain,DTM-Accuracy

In order to establish models for the relation between accuracy, grid spacing

and terrain type, both the "average' rms value e according to formula (13) and
also e (of only the centre of gravity of the reference pattern) are considered.
Interpolation errors are largest in this centre of gravity and therefore of special
importance for planning. Both the full range of available e- and el—values are

shown in table 15.

To cover a maximum range of grid spacings the values of table 14 have to be
obtained by an interpolation method using 4 reference points. With methods using
16 or 36 reference points, the full range of grid spacings was not obtained (sce

figure 5).

Grid spacing (m) 10 30 45 50 90 135 225 103
Wiesentheid .10 L 11 .25 12
@ = Oherschw, .9 2,06 8,27 L.72
52 |welten 260 .61 .10 1.72
€5 S, Wales 1.50 HRG 6019 1005
g
' 7 | Kowloon 1.19 3,08 5,29 0,27
& Surenen 2,92 8.43 171 11.0
Wiesenlheid (.10 16 21 29
'gq Oberschw, (.91 1,71 2.47 3,506
5 & e
3 E Welten (.26) .54 4 156
i 5. Wales (1.50) 5,08 4. BB 7,83
o | Kowloon (1.19) 2,60 4T 726
Surenen 2,92) G.77 12,8 30.0
Table 15.

Grid spacing, lerraln, interpolatlon errors (rms. e and ¢y values in m).
Tor grid spacings 10 and 45 m, no average e values, but only ¢, is known; the
corresponding values are in brackets

Hence, table 15 was prepared with the results of method DLI. For e these
are identical with those from AM, POL, and LP.
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4,5.1. Grid Spacing and DTM Accuracy

The most significant effect on the accuracy of digital terrain representation is,
of course, produced by the spacing between the sampled terrain heights.
Figures 9 illustrate graphically the relationship between sampling density and
interpolation error. Graphs 9a, bshow this relationship separately for each of
the three interpolated points P1, P2, P3.

To stress the differences between these 3 points, a logarithmic scale has been
chosen for the ordinate. Point 3 is located at a constant distance from the closest
reference point, irrespective of the sampling density (see fig. 5). Consequently ,
the accuracy of interpolation is hardly affected in point 3 by a change of sampling
density. For points 1 and 2, however, the distance from the closest reference

point increases with decreasing sampling density.
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Fig. 8. Relation between accuracy nnd grid spacing of DTMs. (Note that
a logarithmle ordlnate has been used In flgs (a) and (b)
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Figures 9c,d illustrate the relationship between sampling density and average
interpolation error e according o formula (13b). This relationship appears to

be fairly linear, with a slight nonlinearity only for model "Surenen'.

This suggests,for the investigated range of grid spacings and terrain types,a

linear regression polynomial:

X (Surenen: + a x2) e e e e (15)

2

where x = grid spacing. Coefficient a, represents the measuring error. Table

16 shows the computed regression coef(}icients for the six models studied. The
slope of the regression polynomial {15) varies from .02 (Wiesentheid) up to
.77 (Surenen). The 2 models which fall into terrain class 1 according to SILAR
[ 30 ] , have a slope ay < . 1; terrain class 2 : a; = . 2; terrain class

3:a,= .6t .8,

i
g ag pim) n_|

Wicsentheid .} 02 28 L}

Welten I 161,006 5.4

Kowloon [} 61 .32 26,06

Obecrschw no.08 097 4L

S. Wales % 22 12,3 15.1

Surenen a 78 32,0 32,0

Table 16,

Regression coelficients of formula (15)
Values.a  are in metres, and represent
aceuracy of measurements. ¢, is the
"normalized standard deviation'of terrain
relief”, and @, Is the proper standard
deviation of |‘e¢lic[ (sce Lable 3)

Equation (15) confirms BEYER's result, obtained in the study of sampling for
flat terrain [ 6 ] . BEYER found that the regression lines were linear and
that their slopes varied between . 0009 and .01 in 6 investigated models of flat

terrain,

Further results on the relation between sampling density and grid spacing have
been published by VIITA [33/3] , SILAR [ 30] and NAKAMURA [ 25 ]
Table 17 summarizes these results. The range of grid spacings, and the
description of terrain types are, however, so limited that sound comparison

with the present study is impossible.
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Author VIITA | 33/3 ) SILAR [40] NAKANURA {25)

Method LI MA PMA

Grid spacing {m) ) 10 h 10 15 10 20 30

Accuracy (m) .18 .23 4 .19 28 S5E 1,17 2,38

Terrain unknown Category I Category II17?
Table 17.

Interpolation results in regular point grid DTMs, published by VIITA, SILAR, and

NAKAMURA. SILAR's MA did make use of weights, The patchwise moving average

of NAKAMURA uses a full 3rd order polynoniial, and 12 tangents. Continuity is,
however. not achieved along boundaries

When the relation between sampling density and grid spacing is quantitatively
described, the question arises whether an "indicator" for the slope ay of the
basically linear relation (15) can be found. Such an indicator refers to the type

of terrain. This will be discussed in the next section.

4.5, 2. Terrain Type and DTM Accuracy

If a practical use of graphs 9 is considered, then these must, in the first
instance, be combined with figures 3. On the basis of the contour plots, the
terrain for which a DTM has to be established is classified, and the
corresponding curve can be selected (or interpolated) in figure 9. This curve

relates DTM accuracy with grid spacing.

The question arises whether a more quantitative terrain classification is possible
for the present purpose. An attempt is made using the "normalized" variance

of the terrain. The variances of the terrain heights (see also table 3) are
obtained from the residuals left after fitting a 2nd order polynomial through

the observed heights in a network of 20 x 20 points. This "trend" has been
subtracted from the raw data to obtain a zero mean and to remove global land-
forms which are insignificant for the result of interpolation. Of interest are

only local variations.

The polynomial is computed from a given number of points. Trerefore the area,
over which it is found, is different for the small and large scale terrain models,
In the case of small scale models, the polynomial is determined for an area of

2
800 x 800 mz. In large scale models this is only 200x200 m~, Consequently, an
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identical terrain model would produce different polynomials and variances

2
depending on whether they are found from 200 x 200 or from 800x 800 m™,

For use as an indicator for the coefficient a, of relation (15), the effect of the
size of the area has to be removed from the trend polynomial from which it was
determined, This is attempted by '""normalising'" the standard deviations Ut’
by simply dividing these by the side length s of the area considered. Thus one

_ .obtains normalized standard deviations o’n:

o = ort/s S E.E. . REE. LB . (16)
:'c 4
e
&
ré/
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Fig. 10. Normallzed standard varia-
tion of terraln versus slope a, of the
linea regression formula (15).

Figure 10 shows that there is high correlation between the normalized 42
and the coefficient 2y of relation (15) for the six terrain models under

consideration.

Provided that further experience confirms the present results, relation (15),
together with figure 10, could be used as an accuracy model in planning for a

DTM, according to the following method:
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- An estimate is made of the local variation of the relief of the terrain in
question, i.e. with the standard deviation O of residuals after polynomial
smoothing. The size of the area is described by side length s.

- The normalized standard deviation 0'n = Ut/s is computed. From
figure 10, an estimate of coefficient a; is obtained.

-  Coefficient ay is found as the standard measuring error.

- Evaluation of relation {15) for a given grid spacing, provides an estimate
of the accuracy of terrain representation. If this accuracy is specified,

then the grid spacing to obtain such accuracy can be computed.

This procedure is of .course only applicable for those ranges of Un and grid
spacing, for which figure 10 and relation (15) have been established.

Plotting the variance of the terrain versus interpolation accuracy leads to
figure 11 and a slightly different approach to the prediction of accuracy of

terrain representation.

Both axes of figures 11 are in logarithmic scales.
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VARIANCE 6 2 OF TERRAIN M2

o

Figure 11. Relation between ter rain variance and DTAI performance.
(The seales arve logarithmic)

With these scales, the relation between variances and e-values are again
approximately linear. Almost exact linearity is obtained in the large scale cases
(i.e. fig. 11la, where variances vary between 0.08 m2 up to 30 m ) In the three
small scale models, a larger range of variances is covered, from 15 m2 up to
1,021 mz. Over this larger range, slight non-linearity of the relation (with

logarithmic scales) is found.
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This suggests the following regression function between variance Utz of terrain
height (according to above definition) and the r. m.s. interpolation error:

b, + b, log Utz
e =100 Lot (1)

Coefficient bO is clearly a function of the grid spacing, whereas coefficient bl

appears to be almost constant in the cases under study.

The accuracy models according to formulae (15), (16), and figure 10, do
represent to some extent an alternative to the approach of MAKAROVIEJ[ 23 1,
in so far as they both could serve as a tool for planning of a DTM. In [ 23 ]
accuracy models were produced analytically, starting from the smallest topo-
graphic feature, which should still be reconstructed from the sampled terrain
points rather than from a terrain type and desired accuracy. Therefore, this
approach is rather different from the experimental onc presented herc. It is

left for further study to establish the relation between the two approaches,

Summarizing, the conclusions on the relation between terrain types and accuracy

are:

- The normalized standard deviation of terrain height appears to be an
indicator for the relation '"grid spacing - DTM accuracy".

- The slope of the linear regression (15) (between DTM accuracy and grid
spacing) is strongly correlated with the normalized standard deviation of
terrain relief.

- With logarithmic scales, the regression between DTM accuracy and terrain
variance is approximately linear.

- The slope of this relation (accuracy/terrain variance) is constant, irrespective
of grid spacing. Grid spacing only displaces the regression line, but does

not affect its inclination.

4.6 Variation of Accuracy as a Function of Planimetric Location

This problem consists of two components. Firstly the question arises as to how
the interpolation accuracy varies within a square mesh, using the identical
reference points. The second question concerns the variation of accuracy over

larger distances within a whole DTM.
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r

Grid spacing (m) 30 50 90 135 225 405
Point P2 P3 P2 P3 P2 Py P2 P3 P2 P3 P2 P3
Wiesentheid .94 .82 . B4 G L6029

Oberschw. .84 LGl 73 +3 76 34
Welten .98 .61 62 .25 1,17 .31

S Wales .99 56 87 34 80 .16
Kowloon 86 .62 63 31 88 .26

Surenen 80 2 3 33 .72 .19
Average 94 6B 9 3T .88 29 .88 oy .78 37 LT6 .23

Table 18.

\'ariation of Interpolation error within a square mesh of varylng side length. Shown are e /e, e,/e. -
values, relative to the centre of gravity. P2. PJ are the cccentrle points; according to 271 e
fipure 5. Point P3 Is at a constant distance from the closcst reference point, whereas for points P1, P2,
the distance to the closest points increases with increasing grid spaclng

An answer to the first question may be found from table 18. This shows the
€qs e3—va1ues found with method LP, fqr the two eccentric points (see fig. 5).
These values are normalized using the el—value of the center of gravity.

The accuracy of interpolation obviously improves considerably if a point in the
vicinity of a reference point is interpolated, rather than the center of gravity of
a symmetric pattern. If the eccentric point is kept at a constant distance from
the closest reference point then this effect is pronounced with increasing grid
spacing. Therefore, the accuracy of the interpolation of an eccentric point

close to a reference point hardly depends on the grid spacing.

The second problem, of varying accuracy within the whole of the DTM, is
illustrated in figure 12, For the center of gravity and the grid spacings

indicated in the figure the example shows the interpolation errors of 16 x16 points
of the six models.

The magnitude of the errors v is described by symbols '"1'", 2", "3", and

g,

v£e/2 - 1
e/2 & v L e -~ 2
e \<vg2e - 3
2,e < vV -~ 4
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Figure 12. Error distribution at the centres of gravity in the § terrain

3.

modlels for a grid spacing ¢

The 6 selected graphs show a fairly even distribution of the various error

magnitudes in most of the models. Strong clustering of errors of similar

magnitude occur only in models "Welten' and "South Wales". Visual inspection

of the error distributions for varying grid spacing and planimetric location

allows the following conclusions to be drawn:

The distance to the closest reference point does not affect the distribution of

ed for all three

error magnitudes. The error magnitudes areeither cluster

investigated planimetric locations, or for none of them..

- The grid spacing has no significant influence on the clustering of error

magnitudes since the error magnitudes are either clustered for all

investigated grid spacings of a terrain model or for none of them.

- No tendency is noticed for an increase (or decrease) of clustering with

2

increase of the variance Ut of the terrain.

- Except for models "Welten'" and ""South Wales' the area covered by the

individual terrain samples of the experiment appears to be sufficiently

small since no excessive clustering occurs of errors of the same class.

(No large variation of terrain type occurs within the sample).
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Terrain models "Welten" and "South Wales'" demonstrate inhomogeneity of
accuracy. In figure 12, the upper section of model "Welten" and the lower left
part of model "South Wales" should have been sampled with a different grid
spacing than the plot of the area. This emphasises the fact that problems of

adjusting sampling density do represent an important field for further study.

5. CONCLUSIONS AND RECOMMENDATIONS

5.1. Conclusions

The present study was limited to the problem of interpolation in square grid

DTMs. By means of a numerical experiment with 6 different terrain samples,
the study concentrated on the performance of various interpolation algorithms,
and the relation between accuracy of terrain representation, sampling density,

and type of terrain.

Interpolation methods were studied in three respects: weighting, accuracy,

and computation time. Linear prediction and patchwise polynomial interpolation
were found to be the most effective interpolation methods for the specific case
of square grid DTMs. The method of moving averages is of the same accuracy
as the two aforementioned algorithms, but somewhat more expensive. The
average improvement obtained by the use in the experiment of one of these
methods rather than of simple linear interpolation was found to be in the order

of magnitude of 20 - 30%, with a maximum of approximately 50%.

Weighting deserves utmost attention when applying moving averages, or linear
prediction. Incorrect weight might even have a detrimental effect on the
performance of these methods. As far as linear prediction is concerned, it was
concluded that computation of a second order polynomial "trend" was a necessity

to obtain satisfactory results of interpolation.

For certain applications, the use of a patchwise polynomial surface rather

than the pointwise interpolation algorithms might be a significant advantage
(profiling, contouring, intersection with lines). It has been found that for such
cases, the bilinear polynomial through 4 reference points, and the more
sophisticated patchwise third degree polynomial do represent valuable alternatives

to linear prediction, with almost the same performance.



It was further concluded, that no gain is to be expected by using more than the
4 x4 surrounding reference points for interpolation of a new point. It also
became obvious, however, that the use of 4x4 points is slightly superior (10%)

to the use of only the 4 closest reference points.

It could finally be shown, that a linear relation exists between interpolation
accuracy and sampling density. The slope of this linear regression is related to
the terrain type. In an attempt to identify an indicator for the slope of (he
regression, it was found that it is correlated with the ""normalized standard
deviation of terrain relief", as defined in formula (16). Based on these results,
an accuracy model is tentatively proposed to predict inlerpolation errors in

future projects.

5.2, Recommendations

Traditionally one uses linear interpolation in regular grid DTMs[ 3 ] , [ 35],
[ 33/3 ] - The present study leads to the recommendation not to oversimplify
interpolation in square grid DTMs, Instead, linear prediction or patchwise
polynomials should be considered, depending on the use of the DTM and the

number of points to be interpolated per mesh.

For objective decisions on developments of future DTMs, information is of course
required beyond the results of the present study. The most important questions

to be answered apart from those on square grid DT Ms concern:

adjustment of sampling density; classification of terrain relief; elimination of
gross errors; inclusion of terrain break lines and points in the DT M, which is
procured along contours or on a regular grid; continuous versus point by

point sampling of lines; and sampling along contours versus square grid DT M.

The study of these problems presumably leads to rather extensive numerical
work, similar to the one presented in this report. It is highly desirable to keep
a common frame for objective comparison of alternatives. The organisation of
future studies should have as an important goal the comparability of their

results with previous ones.
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