
Master’s Thesis

Debugging Formal Specifications with Simplified
Counterstrategies

Robert Könighofer1

Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology

A-8010 Graz, Austria

Advisor: Prof. Roderick Bloem

Graz, October 2009

1 E-mail: robert.koenighofer@student.tugraz.at

© Copyright 2009 by the author

Masterarbeit

Fehlerlokalisierung in formalen Spezifikationen
mit vereinfachten Gegenstrategien

Robert Könighofer1

Institut für Angewandte Informationsverarbeitung und
Kommunikationstechnologie (IAIK)

Technische Universität Graz
A-8010 Graz, Österreich

Gutachter: Prof. Roderick Bloem

Graz, im Oktober 2009

Diese Arbeit ist in englischer Sprache verfasst.

1 E-Mail: robert.koenighofer@student.tugraz.at

© Copyright 2009, Robert Könighofer

Abstract

A formal specification is typically derived manually from an informal design intent.
Due to mistakes in this process, the resulting specification may be incomplete, unreal-
izable, or in conflict with the design intent. This work proposes debugging techniques
for the latter two cases in the context of temporal specifications for reactive systems.

In order to debug conflicts between the formal specification and the informal design
intent, the user has to understand the conflicts first. We show how the explanation of
such conflicts can be reduced to the explanation of the unrealizability of a specification.
Unrealizability is also interesting in its own right. Again, the user has to understand
the problem before she can fix it. Our method for explaining unrealizability is based
on the presentation of a counterstrategy, which illustrates the problem: If the input
is chosen according to the counterstrategy, no behavior of the system can fulfill the
specification. Counterstrategies may be complex and hard to understand for the user,
especially for large specifications. Hence, we propose several ways to simplify them.
First, we remove those requirements and signals from the specification which are not
part of the problem. Second, we heuristically search for a countertrace. A countertrace
is a single input trace for which no system can fulfill the specification. It can be thought
of as a counterstrategy that is independent of the behavior of the system. Finally, we
present the countertrace or the counterstrategy to the user in form of an interactive
game and as a graph that summarizes all plays in this game. Our debugging method
operates solely on the specification, i.e., it does not require an actual implementation
of the design.

This work shows how simplified counterstrategies can be computed and presented to
the user in order to debug unrealizable specifications, and specifications which are in
conflict with the design intent. At first, this is done for a rather general setting. Then,
the approach is further elaborated for the class of GR(1) specifications. For this class
of specifications, experimental results are finally presented.

Keywords: Formal Specifications, Reactive Systems, Debugging, Unrealizability,
Counterstrategies

i

Kurzfassung

Eine formale Spezifikation wird typischerweise manuell von einer informellen Design-
Absicht abgeleitet. Aufgrund von Fehlern in diesem Prozess kann die so entstandene
Spezifikation unvollständig sein, sie kann nicht realisierbar sein oder sie kann im Wi-
derspruch mit der Design-Absicht stehen. Diese Arbeit präsentiert Konzepte zur Feh-
lerlokalisierung für die beiden letztgenannten Fälle im Kontext von temporalen Spezi-
fikationen für reaktive Systeme.

Bevor ein Widerspruch zwischen einer formalen Spezifikation und einer informellen
Design-Absicht aufgelöst werden kann, muss dieser Widerspruch zunächst verstan-
den werden. Wir zeigen, dass die Erklärung solcher Widersprüche auf die Erklärung
der Unrealisierbarkeit einer Spezifikation zurückgeführt werden kann. Die Unreali-
sierbarkeit einer Spezifikation ist auch für sich genommen ein interessantes Problem.
Wie vorhin muss das Problem zunächst verstanden werden bevor es gelöst werden
kann. Unsere Methode um die Unrealisierbarkeit einer Spezifikation zu erklären ba-
siert auf der Präsentation einer Gegenstrategie, die das Problem illustriert: Wenn der
Input gemäß dieser Gegenstrategie gewählt wird, kann kein Verhalten des Systems die
Spezifikation erfüllen. Solche Gegenstrategien können mitunter recht komplex und
dadurch schwierig zu verstehen sein, insbesondere für große Spezifikationen. Deshalb
stellen wir einige Konzepte zu ihrer Vereinfachung vor. Zunächst entfernen wir jene
Anforderungen und Signale von der Spezifikation, die nicht Teil des Problems sind.
Weiters suchen wir heuristisch nach einer Gegensequenz. Eine Gegensequenz ist eine
einzelne Sequenz von Inputs, für die kein System die Spezifikation erfüllen kann. Sie
kann als eine Gegenstrategie verstanden werden, die unabhängig vom Verhalten des
Systems ist. Schließlich präsentieren wir die Gegensequenz oder die Gegenstrategie
dem Benutzer in Form eines interaktiven Spiels und als Graph, der alle möglichen
Abläufe in diesem Spiel zusammenfasst. Unsere Methode zur Fehlerlokalisierung ar-
beitet einzig und alleine mit der Spezifikation, das heißt sie benötigt keine Implemen-
tierung des Designs.

Diese Arbeit zeigt wie vereinfachte Gegenstrategien berechnet und präsentiert wer-
den können um damit Fehler in nicht realisierbaren Spezifikationen oder in Spezifi-
kationen, die der Design-Absicht widersprechen, zu finden. Der Ansatz wird zunächst
für recht allgemeine Rahmenbedingungen erläutert. Danach erfolgt eine tiefergehende
Ausarbeitung für GR(1)-Spezifikationen. Für diese Klasse von Spezifikationen werden
schließlich auch experimentelle Ergebnisse präsentiert.

Schlagworte: Formale Spezifikationen, Reaktive Systeme, Unrealisierbarkeit, Ge-
genstrategien, Fehlerlokalisierung

ii

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared
sources/resources, and that I have explicitly marked all material which has been quoted either literally or
by content from the used sources.

. .
place, date (signature)

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angege-
benen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnom-
menen Stellen als solche kenntlich gemacht habe.

. .
Ort, Datum (Unterschrift)

iii

Acknowledgements

I am indebted to numerous people who supported me in the creation of this the-
sis. First of all, I want to express my gratitude to my advisor Roderick Bloem. He
sparked my interest in the field of formal methods for design and verification. Roder-
ick always took time to discuss problems and half-baked ideas with a lot of patience.
Without him giving theoretical background knowledge, pinpointing inconsistencies,
and giving impulses to solutions, I would have been hopelessly lost in the topic.

Secondly, I would like to thank Georg Hofferek and Karin Greimel for their support
and feedback concerning the implementation of this work. I also want to thank for
the fruitful exchange of ideas in various project meetings and paper discussions. I
furthermore thank Amir Pnueli for suggesting the use of counterstrategies and Viktor
Schuppan for his valuable comments.

Special thanks is addressed to my girlfriend Elisabeth Jöbstl for proofreading this
work, for motivating me, and for keeping me grounded. Last but not least, I thank
my parents Rosa and Heinz Könighofer for giving me the opportunity to study as
well as for their moral support and financial backing.

Robert Könighofer
Graz, Austria, October 2009

Danksagung

Vielen Menschen, die mich in der Erstellung dieser Diplomarbeit unterstützt haben,
bin ich zu großem Dank verpflichtet. Zunächst will ich meinem Betreuer Roderick
Bloem meine Dankbarkeit zum Ausdruck bringen. Er hat mein Interesse an forma-
len Methoden für Design und Verifikation geweckt. Roderick hat sich immer Zeit
genommen um Probleme und unausgegorene Ideen zu diskutieren, und das mit viel
Geduld. Ohne dass er theoretisches Hintergrundwissen gegeben hätte, Inkonsisten-
zen aufgezeigt hätte, und Impulse zur Lösung von Problemen gegeben hätte, hätte
ich mich im Thema wohl hoffnungslos verloren.

Weiters möchte ich Georg Hofferek und Karin Greimel für ihre Unterstützung und
ihr Feedback bezüglich der Umsetzung dieser Arbeit danken. Ich bedanke mich auch
für den fruchtbaren Gedankenaustausch in zahlreichen Projekttreffen und Paperbe-
sprechungen. Ich danke weiters Amir Pnueli für den Vorschlag Gegenstrategien zu
verwenden und Viktor Schuppan für seine wertvollen Kommentare.

Ganz besonderer Dank gilt meiner Freundin Elisabeth Jöbstl für ihr Korrekturlesen,
dafür dass sie mich motiviert, und für den Rückhalt, den sie mir gibt. Schließlich
danke ich meinen Eltern Rosa und Heinz Könighofer für die Möglichkeit zu studieren
sowie für ihre moralische und finanzielle Unterstützung.

Robert Könighofer
Graz, Österreich, im Oktober 2009

iv

Contents

Contents v

List of Figures viii

List of Tables ix

List of Listings ix

1 Introduction 1
1.1 Background and Motivation . 1

1.1.1 Model Checking . 1
1.1.2 Automated Synthesis . 2
1.1.3 Correct Formal Specifications . 3

1.2 Problems Addressed in this Thesis . 3
1.2.1 The Assumed Setting . 4
1.2.2 The Problem of Unrealizability . 5
1.2.3 Soundness Problems in General . 6

1.3 Outline of the Solution . 6
1.3.1 Explaining Unrealizability . 6
1.3.2 Resolving the General Case of a Soundness Problem 7

1.4 Structure of this Document . 8

2 Preliminaries 9
2.1 Linear Temporal Logic . 9

2.1.1 Quantified Propositional Temporal Logic . 9
2.2 Generalized Reactivity . 10
2.3 Automata . 10

2.3.1 Finite ω-Automata . 10
2.3.2 Finite ω-Automata with Output . 11

2.4 Games . 11
2.4.1 Strategies . 12
2.4.2 Implementation of a Strategy . 12
2.4.3 GR(1) Games . 12

2.5 µ-Calculus . 13
2.5.1 Syntax . 13
2.5.2 Semantics . 14

2.6 Synthesis of GR(1) Specifications . 15
2.6.1 Computation of the Winning Region for the System 15
2.6.2 Computation of the Winning Strategy for the System 16
2.6.3 Synthesis from GR(1) Specifications that are Given with LTL Formulas 17

2.7 Delta Debugging . 17
2.7.1 Definition of the Algorithm . 18
2.7.2 Properties of the Algorithm . 18

v

3 Debugging Approach 19
3.1 Prerequisites . 19

3.2 Debugging Unrealizability . 19

3.2.1 Minimization . 20

3.2.2 Countertraces . 26

3.2.3 Interactive Game . 29

3.2.4 Summarizing Graph . 30

3.3 Debugging Undesired Behavior . 32

3.3.1 Our Debugging Procedure . 33

3.3.2 Formalization of the Desired Behavior . 34

3.3.3 Example . 34

3.3.4 Application to Specification Development . 35

4 Debugging GR(1) Specifications 36
4.1 Checking for Satisfiability . 36

4.1.1 Definition of Satisfiability . 36

4.1.2 Symbolic Algorithm . 37

4.2 Minimization . 37

4.3 Counterstrategies . 38

4.3.1 Computation of the Winning Region . 39

4.3.2 Computation of the Counterstrategy . 41

4.4 Interactive Game and Graph . 44

4.4.1 Additional Information for the User . 44

4.4.2 Combining Countertraces with Counterstrategies 44

4.5 Debugging Undesired Behavior . 45

4.5.1 Recap . 45

4.5.2 Definition of the DBW Representing the Desired Behavior 45

4.5.3 The Rationale Behind this Construction . 46

4.5.4 Analysis of Fundamental Properties . 46

5 Implementation 48
5.1 Differences to the Theoretical Framework . 48

5.2 Features available from the RATSY GUI . 48

5.2.1 The Testing Game . 49

5.2.2 Specifying Desired Behavior . 51

5.2.3 The Debugging Game . 52

5.3 Features Available from the Textual User Interface . 56

5.4 Software Design . 58

5.4.1 Integration into Marduk . 58

5.4.2 Integration into RATSY . 59

vi

6 Experimental Results 63
6.1 Performance Evaluation . 63

6.1.1 Performance Results . 63

6.1.2 Discussion . 66

6.2 Evaluation of the given Explanations . 73

6.2.1 Debugging Unrealizability . 74

6.2.2 Debugging Undesired Behavior . 76

7 Related Work 81
7.1 Debugging Incomplete Specifications . 81

7.2 Debugging Specifications which are not Sound . 81

7.2.1 Counterstrategies as Debugging Aids . 81

7.2.2 Other Debugging Techniques . 82

8 Conclusion and Outlook 83
8.1 Summary . 83

8.1.1 Debugging Approach . 83

8.1.2 Simplification of Counterstrategies . 83

8.2 Discussion . 83

8.2.1 Debugging Undesired Behavior . 83

8.2.2 Countertraces . 84

8.2.3 Summarizing Graphs . 84

8.2.4 Minimization . 84

8.3 Future Work . 84

8.3.1 Evaluation . 85

8.3.2 Graph Computation . 85

8.3.3 Countertraces . 85

8.3.4 Minimization . 86

Appendices

A A session with Marduk 88

Bibliography 89

vii

List of Figures

1.1 The assumed design flow for the construction of a correct system 4

1.2 The setting of a reactive system . 4

3.1 Swapping the roles to gain insight into the cause of unrealizability 20

3.2 The flow of our method to explain unrealizability . 20

3.3 An example specification to illustrate the minimization with Delta Debugging 24

3.4 The minimization result for the example specification of Figure 3.3 25

3.5 Illustration of the heuristic for computing countertraces 28

3.6 An example to illustrate the idea of the graph . 32

3.7 The flow of our method to handle mismatches with the design intent 33

4.1 The structure of the DBW gd representing the desired behavior d 47

5.1 The game part of the RATSY GUI . 49

5.2 A testing game played with RATSY . 50

5.3 Specifying design intents within RATSY . 52

5.4 The automatically generated DBW enforcing the desired behavior 53

5.5 A debugging game played with RATSY . 54

5.6 The Automata Window of the game part of RATSY . 55

5.7 The graph G for our example as created by RATSY . 57

5.8 The software design for the extension of Marduk . 59

5.9 The software design for the integration into RATSY . 60

6.1 The reduction in the computation time due to Delta Debugging as a scatter plot 69

6.2 The reduction in the graph size due to minimization as a scatter plot 70

6.3 Analysis of the minimization process in case of G20wsf1 71

6.4 Analysis of the minimization process in case of G20wst1 72

6.5 The countertrace for the specification G5wst2 . 75

6.6 The graph G computed for the specification G5wst2 after minimization 76

6.7 A possible simulation trace of the unmodified bus arbiter specification A2 77

6.8 The desired behavior as specified by the user . 77

6.9 The countertrace for the specification A2wst1 . 78

6.10 The graph G computed for the specification A2wst1 after minimization 80

viii

List of Tables

3.1 The steps performed by the Delta Debugging algorithm for the example in Figure 3.3 . . 25

6.1 Performance results for the bus arbiter specification when skipping minimization 64

6.2 Performance results for the generalized buffer specification when skipping minimization 65

6.3 Performance results for the bus arbiter specification when performing minimization . . . 66

6.4 Performance results for the generalized buffer specification when performing minimization 67

Listings

4.1 A symbolic algorithm solving the satisfiability problem for GR(1) 38

4.2 A symbolic algorithm to compute WGR(1)
env in GGR(1) 40

4.3 A symbolic algorithm to compute a counterstrategy . 43

4.4 A symbolic algorithm to compute the set of reachable states 44

A.1 A session with Marduk using its textual user interface 88

ix

1 Introduction

1.1 Background and Motivation

More than ever, our daily life is dependent on the correct functioning of the computer systems surround-
ing us. Incorrect systems often cause high costs and sometimes even endanger lives. One example of
an incorrect hardware system that has been shipped to customers is the Pentium processor of 1994. The
famous FDIV bug let the floating point unit compute false results under certain circumstances [83]. In-
tel had to spend about 475 million US dollars to replace the faulty processors [65]. In 1996, an even
more spectacular instance of a bug caused an Ariane 5 rocket to leave its intended path, so it had to
be destructed. The reason was an incorrectly handled software exception caused by a data conversion
operation [78]. The direct costs were estimated to about 370 million US dollars [36]. Further examples
of hardware and software bugs, even some causing loss of life, can easily be found [48].

Ensuring the correctness of the developed systems is also one of the biggest challenges in today’s
hardware and software engineering processes. Various formal and informal methods can be utilized.
Informal methods such as testing or simulation usually cannot be carried out exhaustively [77]. Formal
methods, on the other hand, are able to guarantee the correctness regarding some formal specification.
In the past, the applicability of formal methods for design and verification in industrial practice was
very limited. The methods did not scale, the notation was complicated, and tools rarely existed [30].
Recent advances, especially in the field of model checking and automated property-based synthesis,
have changed the situation.

1.1.1 Model Checking

Model checking, which is a technique for formal verification, can be used to prove that a system (a model
thereof, to be more precise) has a certain property. The full automation of the check, together with the
fact that efficient algorithms for powerful logics are available, makes model checking attractive [76].

The key inspiration was provided by modal and temporal logics [40]. Pnueli [81] suggested to use
temporal logics to reason about non-terminating concurrent programs, so-called reactive systems. Tem-
poral logic can be classified into linear and branching time [38]. The Linear Temporal Logic (LTL) [81]
is a popular instance of the former class, whereas the Computation Tree Logic (CTL) [26] is a widely
used representative of the latter. Both logics, LTL and CTL, are of incomparable expressive power [25].

Pnueli and others first advocated hand constructed proofs [24], but the manual proof construction
was soon replaced by a model-theoretic approach that could be automated. The first model checker,
named Extended Model Checker (EMC), was already created in 1982 [27; 28]. It could solve the model
checking problem for CTL properties in polynomial time. McMillan [73] proposed the use of Binary
Decision Diagrams (BDDs) [12] for the symbolic representations of the state transition graph, which
made the verification of larger systems feasible [29]. For the more popular class of LTL specifications,
the model checking problem could be proven to be PSPACE-complete [89]. Nevertheless, several new
techniques and advances (e.g., as presented by Bloem et al. [9]) made LTL model checking competitive
with CTL model checking regarding efficiency.

Nowadays, model checkers are already widely used in the industry, first of all in the development of
systems with safety critical or economically vital applications [40]. Among the most popular [44] model
checking tools are SPIN [54], SMV [73] with its variants NuSMV [20] and RuleBase [4], VIS [11],
and COSPAN/FormalCheck [52].

1

Chapter 1. Introduction 2

1.1.2 Automated Synthesis

Another way to obtain a correct system is to use automated synthesis techniques. Given a formal spec-
ification of a system, an implementation thereof is constructed automatically. The resulting system is
guaranteed to conform to the specification (correct-by-construction).

The applications and benefits that automated synthesis procedures can provide are numerous. The
system engineer only has to specify what the system should do, but not how. Hence, the system engi-
neer can operate on a higher abstraction level. The circumstance that the construction of a system that
implements the specified behavior is automated excludes a potential source of defects and reduces the
amount of manual work and hence the costs for the development of a system. Another application of
automated synthesis is in rapid prototyping: Automatically synthesized implementations of some mod-
ules of a complex system can be used to test or simulate the entire system already before more efficient
(manual) implementations of all system modules are available. Last but not least, automated synthesis
can help in the task of understanding and debugging specifications. It makes simulations of the speci-
fication possible, since simulating the outcome of the synthesis process can be thought of as simulating
the specification itself. In this thesis, we will make use of this idea.

Research on Automated Synthesis

The problem of finding an implementation to a given specification was already mentioned in 1962 by
Church [19]. It is therefore often referred to as Church’s problem. Church stated the synthesis problem
in the context of the monadic second-order logic S1S (confer to the work of Thomas [94]). A few years
later, a theoretical solution has been given by Büchi and Landweber [14] as well as by Rabin [85]. The
given solutions are quite different: Büchi and Landweber use infinite games, while Rabin solves the
problem over tree automata.

For the more popular class of LTL specifications, the synthesis problem was solved in the context
of reactive systems by Pnueli and Rosner [82]. The idea was to transform the LTL specification into a
Büchi automaton [13] which accepts exactly those words that fulfill the specification. Vardi et al. [98]
as well as Emerson et al. [42] show how this can be done. In general, the resulting Büchi automaton is
non-deterministic. Also, its size is exponentially larger than the size of the LTL specification. Next, the
non-deterministic Büchi automaton is determinized by Safra’s construction [88], yielding a determinis-
tic Rabin automaton [84]. This operation causes another exponential blow-up of the state space. The
resulting Rabin automaton is finally interpreted as a tree automaton. This tree automaton represents an
implementation of the specification. If its language is empty, the specification is unrealizable, i.e., no
system can implement the specification.

The high complexity of the synthesis procedure as defined by Pnueli and Rosner is no coincidence.
It can even be proven that the complexity of synthesis from LTL specifications has a double exponen-
tial lower bound [86]. Another problem of this approach is that Safra’s construction is very hard to
implement [51]. Hence, there has been research focused on the avoidance of Safra’s construction in
the synthesis process. Kupferman and Vardi [68] propose a method to avoid Safra’s construction by a
transformation into universal co-Büchi tree automata and non-deterministic Büchi tree automata. This
procedure has the same complexity as the approach over Safra’s construction (which is asymptotically
optimal), but is much simpler to implement. It furthermore provides various possibilities for optimiza-
tions and can be implemented symbolically (e.g., by using BDDs). In a subsequent publication [67], a
compositional version of this construction has been presented. Jobstmann and Bloem [58] finally present
several optimizations of the Safraless approach. They also implemented their ideas in the tool Lily, which
is able to synthesize systems from full LTL specifications. Of course, the tool is limited to rather small
specifications because of the difficulty of the problem.

The high complexity of LTL synthesis caused the research in this field to focus on subsets of LTL
and on other specification languages for which more efficient synthesis procedures exist. Alur and La
Torre [3] define different fragments of LTL for which synthesis is feasible with less than a double ex-

Chapter 1. Introduction 3

ponential complexity in the size of the specification. Wallmeier et al. [99] consider specifications that
consist of safety conditions and so-called request-response conditions. Request-response conditions are
given as tuples (p, q) with the meaning that after the condition p has been fulfilled, the condition q must
be fulfilled. A synthesis algorithm, which has also been implemented, is presented. Other recent work
includes synthesis from Live Sequence Charts (LSCs) [10; 66] and synthesis from Metric Temporal
Logic (MTL) [72]. Live Sequence Charts [32] represent a scenario based specification notation, whereas
MTL [63] is a real-time temporal logic.

An important contribution to automated synthesis has also been made by Piterman et al. [80]. They
present an algorithm (see also Section 2.6) to synthesize systems from specifications belonging to the
class of Generalized Reactivity of Rank 1 (GR(1) for short), a subset of LTL. Such a specification consists
of two parts, a set of environment assumptions and a set of system guarantees (see also Section 2.2). If
the environment of the system fulfills all assumptions, the specification requires the system to fulfill all
guarantees. It has been demonstrated in several case studies [7; 8] that the class of GR(1) specifications
is expressive enough to be used for modeling real-world systems. However, there are properties which
cannot be expressed in this language. For example, one cannot embody compassion requirements (also
called strong fairness requirements) within GR(1) [80]. Compassion requirements are given as a set of
tuples {(p1, q1) . . . (pn, qn)} such that for all 1 ≤ i ≤ n the condition qi has to be fulfilled infinitely
often if pi is fulfilled infinitely often. The algorithm of Piterman et al. has been implemented in the tool
Anzu [59] as well as inside RATSY, a successor of the requirement analysis tool RAT [79].

All in all, we conclude that automated synthesis is certainly a promising approach for the construction
of correct systems in the future, although not yet mature enough to be widely accepted in industry.

1.1.3 Correct Formal Specifications

As already motivated, formal methods for design and verification are of great importance for the con-
struction of correct systems. However, such methods can only guarantee the correctness of a system
with respect to a formal specification thereof. If the formal specification itself is incorrect, then the
constructed system is likely to be incorrect as well.

Formal specifications are also used in other engineering tasks. In software testing, for example,
formal specifications can be used to (automatically) generate test cases. One way to do so is to utilize
a model checker [46]. Formal specifications can furthermore serve as test oracles, i.e., to determine the
correct outcome of a test case. For this purpose, the Java Modeling Language (JML) [69], an executable
specification language, is already widely used in practice. Of course, the correctness of the utilized
specifications is of outermost importance for such applications as well.

Typically, a formal specification is derived manually from some informal design intent. Ideally,
the resulting formal specification is sound and complete. A specification is said to be sound [34] if all
systems that correctly implement the informal design intent conform to the specification. It is said to be
complete [34] if no system that is invalid with respect to the design intent conforms to the specification.

Yet, just like many other engineering tasks, creating a formal specification is an error-prone process.
As a consequence of a mistake, the resulting formal specification might not express what it was intended
to express, i.e., it might be incomplete or not sound. The detection of flaws in the specification, as well
as the correction of the specification such that the design intent is expressed, are both challenging tasks.

1.2 Problems Addressed in this Thesis

Incomplete specifications and coverage metrics to detect incompleteness have already been addressed
before in various contexts [17; 18; 23; 34; 45; 56; 60] (see Section 7 for a detailed discussion). This work
is therefore focused on debugging techniques for formal specifications that are not sound. Incompleteness
is only addressed peripherally. A shortened version of this work will soon be published [61].

Chapter 1. Introduction 4

Figure 1.1: The assumed design flow for the construction of a correct system: A formal speci-
fication is derived manually from some informal design intent. This specification is
then implemented either manually or automatically. Verification is used to ensure the
correctness in case of a manual implementation.

Figure 1.2: The setting of a reactive system: A system interacts with its environment via inputs and
outputs. The interaction is maintained indefinitely, i.e, the system does not terminate.
A specification for a reactive system defines what is allowed in this interaction.

1.2.1 The Assumed Setting

We assume a design flow as depicted in Figure 1.1. A formal specification is derived manually from
some informal design intent. The specification is then used to create an implementation, either manually
or by means of automated synthesis. In case of automated synthesis, the produced system is guaranteed
to be correct by construction. In case of a manual implementation, formal verification techniques such
as model checking can be used to ensure the correctness of the system. The design flow illustrated in
Figure 1.1 assumes that the formal specification is created before an implementation of the design is
available. Hence, our goal is a debugging method which operates solely on the specification, i.e., which
does not rely on the availability of a corresponding implementation.

We restrict our investigation to specifications for reactive systems [53]. Reactive systems are systems
that do not terminate. As illustrated in Figure 1.2, they continuously interact with their environment over
a set X of input signals and a set Y of output signals. In every time step, the environment first provides
input values, after which the system responds with output values. Hence, the environment behaves as
a Moore machine and the system as a Mealy machine (see also Section 2.3.2). A specification for a
reactive system defines what is allowed in this interaction.

The specifications considered in this work are furthermore supposed to be of the form A → G,
where A is a (possibly empty) set of environment assumptions and G is some set of system guarantees.
The arrow in this notation indicates an implication of the following form: if the environment behavior is
conform with the assumptions, then the specification requires the system behavior to fulfill all guarantees.

Chapter 1. Introduction 5

1.2.2 The Problem of Unrealizability

A special case of a specification that is not sound is a specification that is unrealizable. Intuitively, a
specification is unrealizable if no system (no Mealy machine as defined in Section 2.3.2) can implement
it [1; 82]. More formally, the realizability of a specification can be defined over an infinite game of
perfect information that is constructed from the specification [1]: The game has two players, the system
controlling the outputs and the environment controlling the inputs. The two players move alternately,
with the environment starting. The system wins if it produces a correct behavior according to the speci-
fication. A winning strategy for the system in this game is a strategy to find output values in such a way
that the system always wins, independent of the behavior of the environment, i.e., independent of the
inputs chosen by the environment (see also Section 2.4). A specification is realizable iff such a winning
strategy for the system exists in the game obtained from the specification [1].

A specification that is unrealizable can never be sound, no matter what the actual design intent was
(as long as this design intent itself is realizable). Hence, unrealizable specifications are never correct
and never desired. They can only result from mistakes in the specification development process. Our
experience with the synthesis tool Anzu [59] shows that the problem of ending up with an unrealizable
specification is quite common when creating a formal specification. In addition, it is often very difficult
to localize the bug in the specification.

Realizability versus Satisfiability

Another similar yet different term is the term of satisfiability. A specification is said to be satisfiable if
there exists at least one trace of signal values that conforms to the specification. For specifications of
closed systems, satisfiability is equivalent to realizability [82]. A closed system is a system without any
inputs, i.e., a system that is not able to react to actions of the environment. In contrast, an open system
has inputs, which cannot be controlled by the system.

We consider reactive systems, which are open systems that do not terminate but continuously interact
with their environment. For specifications of such systems, there is a difference between satisfiability
and realizability [82]. It is sufficient for a specification to be satisfiable if one trace of inputs and outputs
conforms to the specification. Realizability, however, requires that for each input trace there must be an
output trace such that their combination fulfills the specification. Additionally, the output in any time
step may only depend on past and present inputs. If a system can only comply with the specification
when it is able to look into the future, then this specification is unrealizable. Clearly, every unsatisfiable
specification is also unrealizable, but not vice versa.

The difference between satisfiability and realizability in the case of a reactive system can be stated
in a more formal manner with the help of trees [49]. Let X be the input alphabet and let Y be the output
alphabet of a reactive system. An (output labeled, input branching) tree t is a tuple t = (N,L, n0),
where N is a set of nodes, L : N → Y is a node labeling function, and n0 ∈ N is the root node of the
tree. The set of nodes N forms a prefix closed subset of X ∗. Each node represents a trace of inputs, the
node n0 represents the empty trace ε. Let n ·x denote the concatenation of the input trace in node n ∈ N
with the input x ∈ X . A path π in t is a maximal trace n0n1 . . . of nodes such that there exists a trace of
inputs x1x2 . . . so that ni+1 = ni · xi+1 for all i ≥ 0. Each path π, built with the input trace x1x2 . . ., is
assigned a word L(π) = (x1, y1)(x2, y2) . . . such that yi = L(ni) for all i ≥ 1. A specification is now
realizable iff there exists a tree t such that for all path π in t the corresponding word L(π) fulfills the
specification. In contrast, a specification is satisfiable iff there exists a tree t in which for one path π the
corresponding word L(π) fulfills the specification.

Intuitively, in this definition, the function L serves as a strategy for the system to find output values,
given the trace of input values observed so far. For realizability, we require that one such function exists
which produces valid output traces for any possible input trace. In order to find an output value yi in step
i, this function is given only the inputs x1 . . . xi, so the function is not able to look into the future. For
satisfiability, on the other hand, we only require that a function L exists which produces a valid output

Chapter 1. Introduction 6

trace for one particular input trace. For satisfiability, this function could even be allowed to look into the
future, i.e., to use inputs xi+k, with k > 0, in order to determine the output value yi in step i. However,
this function need not be given the entire input trace explicitly. It can simply assume a certain input trace,
because it has to produce valid outputs only for this input trace, anyway.

Our case study (cf. Section 6) will show that many unrealizable specifications are indeed satisfiable.
For specifications of the form A → G, where A is a set of environment assumptions and G is a set
of system guarantees, this is not surprising. The existence of one trace that violates the assumptions is
enough to make the specification satisfiable, no matter what the guarantees are.

Explaining Unrealizability

Before the user can fix an unrealizable specification, she has to understand the problem. Yet, explaining
unrealizability is not easy. In case of an erroneous piece of software or hardware, one would simply
execute or simulate it in order to track down the error. For an unrealizable specification, this is not pos-
sible. As already mentioned, unrealizable specifications are often still satisfiable, so existing techniques
from SAT solvers cannot be used either. Tools like RAT [79] can be used to explain why a single trace
does not fulfill the specification. Again, this does not help much in the task of explaining unrealizability.
After all, the user cannot try out every possible input trace in order to check if it prevents a system from
conforming to the specification.

Providing the user with simple explanations for unrealizability so that she can resolve the problem in
the specification is one of the main issues in this thesis.

1.2.3 Soundness Problems in General

Problems in the specification often show up when an implementation of the specification is simulated or
tested. Hence, we consider soundness problems other than the problem of unrealizability in the following
scenario: The user simulates a system conforming to the formal specification and observes undesired
behavior, i.e., behavior that does not conform to the informal design intent. Since the simulated system
conforms to the formal specification, there must be a mismatch between this formal specification and the
informal design intent, that is, the formal specification is clearly incorrect.

In such a case, the specification can either be incomplete or not sound. The first problem is to find
out which of the two cases applies. If the specification is not sound, the second challenge faced in this
thesis is the explanation of the problem so that the user can fix it.

1.3 Outline of the Solution

In this thesis, we will first present a rather generic approach for debugging soundness issues in formal
specifications. It is then further elaborated for specifications belonging to the class of Generalized Re-
activity of Rank 1 [80] (we will write GR(1) as abbreviation throughout the rest of this document). This
class of specifications was chosen because it is expressive enough to be used for modeling real-world sys-
tems [7; 8] while still offering efficient algorithms [80]. In order to evaluate our debugging approach, we
have implemented it for the class of GR(1) specifications inside RATSY1, a successor of the requirement
analysis tool RAT [79], as well as inside the synthesis tool Anzu2 [59].

1.3.1 Explaining Unrealizability

We explain unrealizability by presenting a counterstrategy. A counterstrategy is a strategy to find “prob-
lematic” inputs. With these inputs, no behavior of the system can fulfill the specification. For a speci-

1Available at http://rat.fbk.eu/ratsy (last visit in October of 2009)
2Available at http://www.ist.tugraz.at/staff/jobstmann/anzu/ (last visit in October of 2009)

http://rat.fbk.eu/ratsy
http://www.ist.tugraz.at/staff/jobstmann/anzu/

Chapter 1. Introduction 7

fication of the form A → G, the inputs dictated by the counterstrategy will conform to all environment
assumptions a ∈ A and at the same time force any system to violate at least one of its guarantees g ∈ G.
Thus, a counterstrategy demonstrates that the environment can force any system to violate the specifica-
tion, i.e., that no system can implement the specification.

The use of counterstrategies in this context is not new. Counterstrategies have already been men-
tioned as aids for diagnostics in various settings [5; 10; 71; 91; 92; 93; 96] (see Section 7 for a detailed
discussion). However, judging from experience, we claim that the sole presentation of a counterstrategy
does not suffice to help the user debug unrealizability in larger specifications.

Keeping the Explanations Simple

In general, the inputs suggested by the counterstrategy depend on all previous values of the output signals
of the system. Thus, a counterstrategy can be presented as a graph or an interactive game (cf. Section 3.2).
For larger specifications, this graph or game can become so complex that the user has no chance to learn
where the specification is too restrictive to be realizable. Hence, we propose several techniques to keep
the counterstrategies simple.

First, we compute an unrealizable core as suggested by Cimatti et al. [21]. An unrealizable core is
a simplified specification that is still unrealizable. The idea is that the problem is easier to locate in this
simplified version of the specification. We combine this idea with counterstrategies. Furthermore, we
improve the work of Cimatti et al. in three points: (1) we do not minimize environment assumptions as
this step is computationally expensive, (2) we also remove output signals from the specification in order
to achieve an additional simplification, and (3) we use Delta Debugging as a more advanced and often
faster minimization algorithm.

Second, we propose to use a countertrace instead of a counterstrategy in order to explain unreal-
izability. A countertrace is a single trace of inputs for which no behavior of the system can fulfill the
specification. A countertrace can therefore be seen as a counterstrategy that is independent of the behav-
ior of the system. It is thus way easier to understand than a conventional counterstrategy. The problem
is that a countertrace does not always exist and that its computation is expensive. We therefore present a
heuristic algorithm for the computation of countertraces. Countertraces have not been mentioned before
in the literature to the best of our knowledge.

The above mentioned simplification techniques for counterstrategies, enabling the communication of
meaningful information to the user even for larger specifications, have to be seen as the core contribution
of this work.

1.3.2 Resolving the General Case of a Soundness Problem

Suppose, as motivated in Section 1.2.3, that undesired behavior has been observed during the simulation
of a system implementing some formal specification. The fact that the implementation conforms to the
formal specification implies that this formal specification is incorrect.

In order to be able to distinguish between the case where the specification is incomplete and the
case where the specification is not sound, we let the user specify the desired response to the given input
scenario. We suggest that the user simply modifies the incorrect simulation trace to make it represent the
desired behavior.

If the specification is so restrictive that no system implementing this desired behavior can comply
with the specification, then the specification is not sound. There is a conflict between the design intent
and the specification, since the specification disallows the desired behavior. Before the user can resolve
this conflict, she has to understand it. We reduce the explanation of such conflicts to the explanation of
the unrealizability of a specification. Thus, our approach for explaining unrealizability can be used to
debug other kinds of soundness problems as well. We are not aware of any previous work that shows how

Chapter 1. Introduction 8

counterstrategies can be used in order to debug conflicts between a formal specification and the design
intent.

If undesired behavior is observed during simulation, and if the formal specification of the system
would allow the desired behavior as well, then the specification must have been incomplete. More or
less as a side-product of our approach to debug conflicts with the design intent, our method is also able
to automatically compute a fix in the case of an incomplete specification: A guarantee that enforces the
desired behavior is added to the specification in order to eliminate the incompleteness regarding the input
trace which uncovered the incompleteness in the first place.

Note that an implementation of the design is only assumed to be present since this is a common
scenario where bugs are uncovered. Our debugging method itself does not require an implementation of
the design to be available.

1.4 Structure of this Document

The rest of this document is structured in a top-down manner: We start by introducing a generic approach,
concretize it for a certain class of specifications, discuss the implementation of this concretization, and
finally present evaluation results obtained from this implementation. To be more precise, the subsequent
chapters have the following contents.

Chapter 2 gives some definitions and establishes notation that is used throughout the rest of this
document. It does not contain anything new.

In Chapter 3, we introduce our generic debugging approach. After a discussion of the prerequisites
for its application, we illustrate how counterstrategies can be used to explain unrealizability. Further-
more, simplification of counterstrategies is addressed as well as their presentation. Finally, this chapter
shows how counterstrategies can be used to explain other kinds of soundness problems as well.

Chapter 4 concretizes the generic debugging approach for the class of GR(1) specifications. Concrete
algorithms for the different steps of the procedure to explain unrealizability are discussed. Furthermore,
a definition of a counterstrategy for unrealizable GR(1) specifications is given. This definition is then
used to construct a symbolic algorithm which computes such counterstrategies. Finally, a concrete con-
struction that allows to explain conflicts between GR(1) specifications and the informal design intent is
presented.

In Chapter 5, we introduce the implementation of the debugging concepts for GR(1) specifications.
The most important features added to the tools Anzu [59] and RATSY are illustrated on an example.
The example also shows which information the tools provide for the user, and how this information can
be used for debugging. Furthermore, a brief overview of the software design is given.

We present an evaluation of our debugging concepts in Chapter 6. Since both Anzu and RATSY
behave very similar, we only use RATSY for the evaluation. First, we analyze the performance of the
different steps that are carried out by RATSY. Second, we investigate the explanations given by the tool
for two examples. A discussion of the main outcomes is included as well.

Chapter 7 discusses related work and in which points our work differs therefrom. Chapter 8 con-
cludes the document by summarizing and discussing the most important facts. Finally, proposals for
future work are made.

2 Preliminaries

2.1 Linear Temporal Logic

Linear Temporal Logic (LTL) [81] is one of the most popular logics used for the specification of reactive
systems. It allows for the description of the time dependence of events. LTL formulas are constructed
over a set P of atomic propositions. The syntax can be defined in the following way [35]:

• An atomic proposition p ∈ P is a valid LTL formula.

• If ϕ and ψ are LTL formulas, then so are ¬ϕ, ϕ ∨ ψ, Xϕ and ϕ U ψ.

Let τ = τ0τ1τ2 . . . ∈
(
2P
)ω be an infinite trace over P . In this notation, ω denotes the set of non-negative

integers as common for denoting infinite words (refer to the work of Farwer [43] for an introduction into
this topic). Let τ , i |= ϕ denote that the LTL formula ϕ holds at the point i ∈ N of τ . We further say
that τ satisfies a formula ϕ, denoted τ |= ϕ, iff τ , 0 |= ϕ. The semantics of an LTL formula can then be
defined as follows [97]:

• τ , i |= p for p ∈ P iff p ∈ τi,
• τ , i |= ¬ϕ iff not τ , i |= ϕ,

• τ , i |= ϕ ∨ ψ iff τ , i |= ϕ or τ , i |= ψ,

• τ , i |= Xϕ iff τ , i+ 1 |= ϕ, and

• τ , i |= ϕ U ψ iff for some j ≥ i, the condition τ , j |= ψ holds and for all k, i ≤ k < j, the
condition τ , j |= ϕ holds.

The semantics of the operators ¬ and ∨ are defined as usual. Intuitively, a formula Xϕ is true iff ϕ is
true in the next step. Hence, the operator X can be read as “next”. A formula ϕ U ψ is true iff ϕ is true
until ψ becomes true. Hence, U is read as “until”. Other Boolean operators can be reduced to ¬ and ∨
in the usual way:

ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ),

ϕ⇒ ψ = ¬ϕ ∨ ψ,

ϕ⇔ ψ = (ϕ ∧ ψ) ∨ (¬ϕ ∧ ¬ψ), and

ϕ⊕ ψ = (ϕ ∧ ¬ψ) ∨ (¬ϕ ∧ ψ).

Based on the operator U, some more temporal operators can be defined [97]:

• Fϕ = true U ϕ, where the operator F is read as “eventually” or “finally”. Intuitively, Fϕ is true
iff ϕ will become true at some point in the future.

• Gϕ = ¬F¬ϕ, where the operator G is read as “globally” or “henceforth”. Intuitively, Gϕ is true
iff ϕ will be true at any point in the future.

2.1.1 Quantified Propositional Temporal Logic

Quantified Propositional Temporal Logic (QPTL) [90] is an extension of LTL that allows to quantify
over propositional variables. The syntax can be defined as for LTL with the additional rule:

• If ϕ is an LTL formula, then so is ∃p . ϕ for a propositional variable p ∈ P .

9

Chapter 2. Preliminaries 10

The rules defining the semantics of LTL are extended by the additional rule:

• τ , i |= ∃p . ϕ for p ∈ P iff τ ′, i |= ϕ for some p-variant τ ′ of τ . A trace τ ′ = τ ′0τ
′
1τ
′
2 ∈

(
2P
)ω

is a p-variant of τ = τ0τ1τ2 ∈
(
2P
)ω iff ∃p0p1p2 ∈

(
2{p}

)ω
. ∀i ≥ 0 . τ ′i = τ∃i , where τ∃i =

(τi \ {p}) ∪ pi.

The universal quantification can be reduced to an existential quantification in the usual way, i.e, with the
equality ∀p . ϕ = ¬∃p .¬ϕ. We will furthermore handle ∃P ′ . ϕ with P ′ ⊆ P as an abbreviation for the
existential quantification of all propositional variables p ∈ P ′ in ϕ.

2.2 Generalized Reactivity

The class of Generalized Reactivity of Rank 1 [80] formulas, abbreviated as GR(1), forms a subset of
LTL. A GR(1) formula ϕ defines the allowed interaction between a system and its environment. The
system controls a set Y of Boolean output variables and the environment controls a set X of Boolean
input variables. A GR(1) formula ϕ can be written as [80]

ϕ = ϕe → ϕs = ϕei ∧ ϕet ∧ ϕeg → ϕsi ∧ ϕst ∧ ϕsg,

where the parts are defined below.

• ϕei and ϕsi are Boolean formulas over the sets X and Y of variables.

• ϕet is a formula of the form
∧
i∈I GBi where each Bi is a Boolean combination of variables from

X ∪ Y and expressions X v where v ∈ X .

• ϕst is a formula of the form
∧
i∈I GBi where each Bi is a Boolean combination of variables from

X ∪ Y and expressions X v where v ∈ X ∪ Y .

• ϕeg and ϕsg are formulas of the form
∧
i∈I G FBi where each Bi is a Boolean formula.

Intuitively, the part ϕe defines assumptions about the environment and ϕs defines guarantees provided
by the system. If the environment fulfills all the assumptions, the implication in the formula requires
the system to fulfill all the guarantees. The formulas ϕei and ϕsi characterize the initial state of the
environment and the system, respectively. The term ϕet determines allowed next input values when given
the present input and output values. With ϕst , allowed next output values are specified, given the present
variable values and the next input values. The formulas ϕeg and ϕsg define fairness constraints for the
environment and the system, respectively. These are conditions that have to be fulfilled infinitely often.

2.3 Automata

2.3.1 Finite ω-Automata

A finite ω-automatonA is a 5-tupleA = (Q,Σ,∆, q0,Acc), where Q is a finite set of states, Σ is a finite
input alphabet, ∆ ⊆ Q × Σ × Q is a transition relation, q0 ∈ Q is the initial state, and Acc : Qω →
{false, true} is the acceptance condition [94]. A finite ω-automaton is called complete iff its transition
relation is complete, i.e., iff [37]

∀q ∈ Q, σ ∈ Σ .
∣∣{q′ ∈ Q | (q, σ, q′) ∈ ∆

}∣∣ ≥ 1.

A finite ω-automaton is called deterministic iff its transition relation is deterministic, i.e., iff [37]

∀q ∈ Q, σ ∈ Σ .
∣∣{q′ ∈ Q | (q, σ, q′) ∈ ∆

}∣∣ ≤ 1.

Chapter 2. Preliminaries 11

In case of a deterministic automaton, the transition relation ∆ is replaced by a transition function δ :
Q× Σ→ Q [94].

A run r of a deterministic automaton A = (Q,Σ, δ, q0,Acc) on a given ω-word σ = σ0σ1σ2 . . . ∈
Σω is an infinite sequence r = r0r1r2 . . . ∈ Qω of states such that r0 = q0 and ri+1 = δ(ri, σi) for all
i ≥ 0. The run is accepting iff Acc(r) = true [94].

A deterministic and complete Büchi word automaton (DBW) is a deterministic and complete au-
tomaton A = (Q,Σ, δ, q0,Acc) in which the acceptance condition Acc is given by a set of accepting
states F ⊆ Q. Let inf(r) denote the set of states which occur infinitely often in r. Then Acc is defined
as

Acc(r)⇔ inf(r) ∩ F 6= ∅.

That is, a run r of a DBW is accepting iff some accepting state f ∈ F occurs infinitely often in that
run r [94].

In the following, we assume that Q = 2V for a set V of state bits. We furthermore suppose that
Σ = 2X × 2Y , with X and Y being sets of Boolean signals. With these assumptions, automata can be
represented symbolically as BDDs [12]. Symbolic representations are often more space efficient than
explicit ones, especially if the state space is large. To simplify notation, we will use the abbreviations
X = 2X and Y = 2Y . For an input trace x = x0x1 . . . ∈ X ω and an output trace y = y0y1 . . . ∈ Yω,
we define x||y = (x0, y0)(x1, y1) . . . ∈ Σω to denote their combination.

2.3.2 Finite ω-Automata with Output

A Mealy machine [55] is a six-tuple M = (Q,X ,Y, δ, λ, q0), where Q is a finite set of states, X is an
input alphabet, Y is an output alphabet, δ : Q × X → Q is a transition function, λ : Q × X → Y is
an output function, and q0 ∈ Q is the initial state. When given an input trace x0x1x2 . . . ∈ X ω, the
output trace produced by the Mealy machine is defined as λ(q0, x0)λ(q1, x1)λ(q2, x2) . . . ∈ Yω, where
q0q1q2 . . . ∈ Qω is a sequence of states such that qi+1 = δ(qi, xi) for all i ≥ 0.

Likewise, a Moore machine [55] is a six-tuple M = (Q,Y,X , δ, λ, q0), where Q is a finite set of
states, Y is an input alphabet,X is an output alphabet, δ : Q×Y → Q is a transition function, λ : Q→ X
is an output function, and q0 ∈ Q is the initial state. Note that, in comparison to the definition of the
Mealy machine, we have swapped the letters Y and X . This makes further definitions less confusing,
because Moore machines will be combined with Mealy machines so that the input of the one is the output
of the other. When given an input trace y = y0y1y2 . . . ∈ Yω, the output trace produced by the Moore
machine M is defined as M(y) = λ(q0)λ(q1)λ(q2) . . . ∈ X ω, where q0q1q2 . . . ∈ Qω is a sequence of
states such that qi+1 = δ(qi, yi) for all i ≥ 0. Finally, we denote with L(M) = {x||y ∈ (X × Y)ω |
M(y) = x} the set of words that can be produced by the Mealy machine M .

2.4 Games

Similar to Piterman et al. [80], we define a game as a tuple G = (Q,Σ, δ, q0,Win). The elements of this
tuple are defined as for deterministic ω-automata. That is, Q is a finite set of states, Σ is a finite alphabet,
δ : Q× Σ→ Q is a transition function, q0 ∈ Q is the initial state, and Win : Qω → {false, true} is the
winning condition. We further require that Σ = X × Y , which means that each letter in the alphabet is
composed of an input letter and an output letter.

The game is played by two players, Player 1 and Player 2. When we talk about games for reactive
systems, we will also refer to Player 1 as the environment and to Player 2 as the system. A play π of G is
defined as an infinite sequence of states π = q0q1q2 . . . ∈ Qω such that qi+1 = δ(qi, σi) for all i ≥ 0. The
letters σi = (xi, yi) are chosen by the two players in cooperation. In each step, Player 1 first chooses
an xi ∈ X and then Player 2 chooses some yi ∈ Y . Hence, Player 1 behaves as a Moore machine

Chapter 2. Preliminaries 12

and Player 2 as a Mealy machine (see Section 2.3.2). A play is won by Player 2 iff Win(π) = true.
Otherwise, it is lost for Player 2 and won for Player 1.

2.4.1 Strategies

We further define a (finite memory) strategy for Player 1 on G = (Q,Σ, δ, q0,Win) to be a tuple % =
(Γ, γ0, ρ). The element Γ is some finite set representing the memory, and γ0 ∈ Γ is the initial memory
content. The last element ρ of the tuple is a relation ρ ⊆ (Q×Γ×X ×Γ) such that ∀q ∈ Q, γ ∈ Γ .∃x ∈
X , γ′ ∈ Γ .(q, γ, x, γ′) ∈ ρ. This relation contains tuples (q, γ, x, γ′) that determine possible next inputs
x ∈ X and next memory contents γ′ ∈ Γ, given a certain state q ∈ Q of the game and a certain memory
content γ ∈ Γ. A strategy is deterministic iff ∀q ∈ Q, γ ∈ Γ . |{(q, γ, x, γ′) ∈ ρ}| ≤ 1. Otherwise it is
non-deterministic. A play π = q0q1q2 . . . ∈ Qω conforms to a strategy %, denoted π v %, iff in all time
steps the input xi is chosen such that (qi, γi, xi, γi+1) ∈ ρ. More formally, conformance with a strategy
is defined as

π v %⇔ ∃γ0γ1γ2 . . . ∈ Γω . ∀i ≥ 0 .∃(xi, yi) ∈ Σ . δ(qi, (xi, yi)) = qi+1 ∧ (qi, γi, xi, γi+1) ∈ ρ.

Similarly, π v x denotes that a play π = q0q1q2 . . . ∈ Qω conforms to an input trace x = x0x1x2 . . . ∈
X ω. This conformance relation is defined as

π v x⇔ ∀i ≥ 0 .∃yi ∈ Y . δ(qi, (xi, yi)) = qi+1.

A strategy % is winning from a state q ∈ Q for Player 1 iff all plays that start in q and conform
to % are won by Player 1. The winning region W ⊆ Q of Player 1 is the set of all states for which
a winning strategy for Player 1 exists. A strategy is winning for Player 1 iff it is winning from q0.
A winning strategy for Player 1 will also be called counterstrategy in the following, as it enforces the
negated winning condition ¬Win.

2.4.2 Implementation of a Strategy

Let G = (Q,Σ, δ, q0,Win) be a game with Σ = X ×Y , and let % = (Γ, γ0, ρ) with ρ ⊆ (Q×Γ×X ×Γ)
be a deterministic strategy for Player 1 in this game. Then this strategy can be implemented as a Moore
machine M = (QM ,Y,X , δM , λM , qM0), where

• QM = Q× Γ,

• δM : QM ×Y → QM such that δM ((q, γ), y) = (δ(q, (x, y)), γ′), where x and γ′ are chosen such
that (q, γ, x, γ′) ∈ ρ,

• λM : QM → X such that λ((q, γ)) = x, where x is chosen such that ∃γ′ ∈ Γ .(q, γ, x, γ′) ∈ ρ
holds, and

• qM0 = (q0, γ0).

We will denote this construction by M = G × %. In the case of a non-deterministic strategy, we use the
same notation and assume that the strategy is determinized before the above construction is applied.

2.4.3 GR(1) Games

A GR(1) specification ϕ with m environment assumptions and n system guarantees can always be ex-
pressed with m+n DBWs [80]. In the following, we assume that a GR(1) specification is represented in
this form. If the GR(1) specification is given in terms of LTL formulas (cf. Section 2.2), a transformation
into sets of DBWs is straight forward. The DBWs representing the environment assumptions will be de-
notedAei = (Qei ,Σ, δ

e
i , q

e
0,i, F

e
i), and the DBWs representing the system guarantees will be referred to as

Asj = (Qsj ,Σ, δ
s
j , q

s
0,j , F

s
j) in the following. All these DBWs operate with the same alphabet Σ = X ×Y .

Chapter 2. Preliminaries 13

We define a GR(1) game GGR(1) to be the tuple (Q,Σ, δ, q0,Win), which is determined as the product
of all DBWsAei andAsj representing the GR(1) specification. The set of states Q of this product is given
by

Q = Qe1 × · · · ×Qem ×Qs1 × · · · ×Qsn.

The alphabet Σ is again Σ = X × Y . The transition function δ : Q× Σ→ Q is defined as

δ ((qe1, . . . , q
e
m, q

s
1, . . . , q

s
n) , σ) = (δe1 (qe1, σ) , . . . , δem (qem, σ) , δs1 (qs1, σ) , . . . , δsn (qsn, σ)) .

The initial state of the product is determined by the equation q0 = (qe0,1, . . . , q
e
0,m, q

s
0,1, . . . , q

s
0,n). Let

Jei = {(qe1, . . . , qem, qs1, . . . , qsn) | qei ∈ F ei } be the set of all states of the game GGR(1) that are accepting
in Aei . Analogously, let Jsj = {(qe1, . . . , qem, qs1, . . . , qsn) | qsj ∈ F sj } be the set of all states of GGR(1) that
are accepting in Asj . Then, the winning condition Win for the GR(1) game GGR(1) is given by

Win (π) ⇔ (∀i . inf(π) ∩ Jei 6= ∅)⇒
(
∀j . inf(π) ∩ Jsj 6= ∅

)
⇔ ¬ (∀i . inf(π) ∩ Jei 6= ∅) ∨

(
∀j . inf(π) ∩ Jsj 6= ∅

)
.

Intuitively, a play of the game GGR(1) is won by the system (by Player 2) iff all sets Jsj of accepting
states of the system are visited infinitely often, or some set Jei of accepting states of the environment is
visited only finitely often. The sets Jei represent the environment assumptions and the sets Jsj represent
the system guarantees. The game GGR(1) hence represents the entire GR(1) specification ϕ from which
it was constructed: A play resulting from an infinite word σ ∈ Σω is won by the system iff σ |= ϕ, i.e.,
iff σ satisfies the GR(1) specification ϕ.

2.5 µ-Calculus

The (propositional) µ-calculus [64] can be seen as an extension of a temporal logic with a least fixpoint
operator µ and a greatest fixpoint operator ν [39]. We will extend the propositional µ-calculus with some
more operators and use it on games. Just like Piterman et al. [80], we additionally allow two different
mixed preimage operators MXe and MXs in µ-calculus expressions. Furthermore, we will make use of
an image operator IMG.

2.5.1 Syntax

Let G = (Q,Σ, δ, q0,Win) be a game with Σ = X × Y , as defined in Section 2.4. Furthermore, let Var
be a set of variables, each representing a specific subset of Q. The syntax of a propositional µ-calculus
formula can then be defined as following [39]:

• A state q ∈ Q is a valid µ-calculus formula.

• A variable Y ∈ Var is a valid µ-calculus formula.

• If p is a µ-calculus formula, then EX p is a µ-calculus formula.

• If p is a µ-calculus formula, then ¬p is a µ-calculus formula.

• If p and q are µ-calculus formulas, then p ∧ q is a µ-calculus formula.

• Let Y ∈ Var be some variable and let p be a µ-calculus formula that is syntactically monotone in
Y , i.e., all occurrences of Y in p fall under an even number of negations. Then µY.p and νY.p are
µ-calculus formulas.

We slightly extend this definition with two mixed preimage operators, one for the environment and one
for the system [80]:

• If p is a µ-calculus formula, then MXe p and MXs p are µ-calculus formulas.

Chapter 2. Preliminaries 14

We furthermore allow an image operator IMG in µ-calculus formulas:

• If p is a µ-calculus formula, then so is IMG p.

2.5.2 Semantics

Let G = (Q,Σ, δ, q0,Win) be a game with Σ = X ×Y , as defined in Section 2.4. A µ-calculus formula
p represents a set of states in which p is true. We will use the same notation as Piterman et al. [80],
where [[p]]e ⊆ Q denotes this set of states and e : Var → 2Q is an environment assigning subsets of
Q to each variable Y ∈ Var. Furthermore, the environment is denoted by e[X ← S] in the way that
e[X ← S](X) = S and e[X ← S](Y) = e(Y) forX 6= Y . Utilizing this notation, the set of states [[p]]e

in which the µ-calculus formula p is true can be defined inductively as following [80]:

• [[q]]e = {q} for q ∈ Q.

• [[Y]]e = e(Y) for Y ∈ Var.

• [[EX p]]e = {q ∈ Q | ∃σ ∈ Σ . δ(q, σ) ∈ [[p]]e}. Intuitively, a state q ∈ Q is in [[EX p]]e iff there
exists a letter σ ∈ Σ, so that a state of [[p]]e is reached from that state q. Therefore, the operator
EX applied to p gives all states from which a state of [[p]]e can be reached in one step when both
players cooperate.

• [[¬p]]e = Q \ [[p]]e.

• [[p ∧ q]]e = [[p]]e ∩ [[q]]e.

• The least fixpoint operator µ is defined as

[[µY.p]]e =
⋃
i

Yi with Y0 = ∅ and Yi+1 = [[p]]e[Y←Yi]. (2.1)

We will refer to the intermediate values Yi as the iterates of the fixpoint. Clearly, the computation
of these iterates can be stopped at iteration j if Yj = Yj−1. All further iterates Yj+a with a > 0
would be equal to Yj−1 anyway. Including them into the union over all iterates would not change
the result.

• The greatest fixpoint operator ν is defined as

[[νY.p]]e =
⋂
i

Yi with Y0 = Q and Yi+1 = [[p]]e[Y←Yi]. (2.2)

The same considerations as for the least fixpoint operator concerning the computation of the iter-
ates apply.

• [[MXe p]]e = {q ∈ Q | ∃x ∈ X .∀y ∈ Y . δ(q, (x, y)) ∈ [[p]]e}. That is, a state q ∈ Q is in
[[MXe p]]e iff there exists an input x ∈ X so that for all outputs y ∈ Y a state in [[p]]e is reached
from that state q. Thus, [[MXe p]]e is the set of states from which the environment can force a play
into a state of [[p]]e in one step.

• [[MXs p]]e = {q ∈ Q | ∀x ∈ X . ∃y ∈ Y . δ(q, (x, y)) ∈ [[p]]e}. That is, a state q ∈ Q is in
[[MXs p]]e iff for every input x ∈ X there exists some outputs y ∈ Y such that a state in [[p]]e

is reached from that state q. Thus, [[MXs p]]e is the set of states from which the system can force a
play into a state of [[p]]e in one step.

• [[IMG p]]e = {q′ ∈ Q | ∃q ∈ [[p]]e . ∃σ ∈ Σ . q′ = δ(q, σ)}. Hence, the operator IMG applied to p
gives all states that can be reached from [[p]]e in one step if both players cooperate.

With slight abuse of notation, we also allow subsets J ⊆ Q in a µ-calculus formula and define [[J]]e = J
for J ⊆ Q. We furthermore allow other Boolean connectivities than ¬ and ∧ by handling them as
abbreviations for their reduction to ¬ and ∧ (see also Section 2.1).

Chapter 2. Preliminaries 15

Each occurrence of a variable Y ∈ Var in a sub-formula µY.p(Y) or νY.p(Y) is said to be bound. All
other occurrences are called free. A µ-calculus formula is a sentence (or a closed formula) if it contains
no free variables [39]. We will only use sentences in this document, and hence, the initial environment
e : Var → 2Q is irrelevant for the evaluation of a µ-calculus formula. With slight abuse of notation, we
will therefore simply write [[p]] instead of [[p]]e in the following.

As obvious from their definition, the two mixed preimage operators can be transformed into each
other by the rules

[[MXs p]] = [[¬MXe ¬p]] and (2.3)

[[MXe p]] = [[¬MXs ¬p]] . (2.4)

For the fixpoint operators, we have the dualities [39]

[[¬µY . p(Y)]] = [[νY .¬p(¬Y)]] and (2.5)

[[¬νY . p(Y)]] = [[µY .¬p(¬Y)]] . (2.6)

2.6 Synthesis of GR(1) Specifications

Piterman et al. [80] describe a synthesis procedure for GR(1) specifications. Since our method to com-
pute counterstrategies for unrealizable GR(1) specifications (see Section 4.3) is based on their work, we
will briefly explain this synthesis procedure for the case that all environment assumptions and system
guarantees are given as DBWs.

Let GGR(1) = (Q,Σ, δ, q0,Win) be a game obtained from a GR(1) specification as shown in Sec-
tion 2.4.3. In a first step, the winning region of the system, i.e., the set of all states from which a winning
strategy for the system exists, is computed. In a second step, some intermediate results obtained during
the computation of this winning region are used to build up the strategy for the system.

2.6.1 Computation of the Winning Region for the System

Using the notation introduced so far in this chapter, the winning region WGR(1)
sys of the system can be

defined as

WGR(1)
sys =

νZ . n∧
j=1

µY .
m∨
i=1

νX . Jsj ∧MXs Z ∨MXs Y ∨ ¬Jei ∧MXsX

 .
The greatest fixpoint in X computes all states from which the system can enforce that the play either
stays in [[¬Jei]] or eventually reaches [[Jsj ∧MXs Z ∨MXs Y]]. Both cases are winning for the system.
If the play stays in [[¬Jei]] forever, then an environment assumption is violated. The disjunction over all
values of i captures the fact that it is sufficient for the system to win when one environment assumption
is violated. The fixpoints in Y and Z ensure that a play can be won from any state of [[Jsj ∧MXs Z ∨
MXs Y]]. The least fixpoint in Y ensures together with the conjunction over all j that each set Jsj′ can be
reached from any state of [[Jsj ∧MXs Z ∨MXs Y]] in a finite number of steps. The greatest fixpoint in Z
ensures that after visiting a certain Jsj , the next set Jsj⊕1 can be reached, where j ⊕ 1 = (j mod n) + 1.
Hence, the game can be won from all states in [[Jsj ∧MXs Z ∨MXs Y]] by visiting all sets Jsj infinitely
often, i.e., by fulfilling all guarantees.

Intermediate Results for the Strategy Computation

The required intermediate results are the sets Yj,r and Xj,r,i for all values of j ∈ {1, 2, . . . , n}, r ∈
{0, 1, . . . , Rj}, and i ∈ {1, 2, . . . ,m}. All these sets are subsets of Q. The set Yj,r is the r-th iterate

Chapter 2. Preliminaries 16

(according to Equation 2.1) of the fixpoint

Yj =

[[
µY .

m∨
i=1

νX . Jsj ∧MXs Z ∨MXs Y ∨ ¬Jei ∧MXsX

]]
,

where Z is the final value of the variable Z in the computation of WGR(1)
sys , i.e., the set WGR(1)

sys itself.
The maximum value Rj of r is the smallest integer b such that Yj,b = Yj,b−1. The set Xj,r,i is defined to
be

Xj,r,i =
[[
νX . Jsj ∧MXs Z ∨MXs Yj,r−1 ∨ ¬Jei ∧MXsX

]]
,

where Z is again the final value of the variable Z, i.e., the set WGR(1)
sys . To simplify notation, we also

introduce

Y new
j,r = Yj,r \ Yj,r−1 and

Xnew
j,r,i = Xj,r,i \

 ⋃
(r′,i′)≺(r,i)

Xj,r′,i′

 ,

where (r′, i′) ≺ (r, i) iff r′ < r ∨ (r′ = r ∧ i′ < i).

2.6.2 Computation of the Winning Strategy for the System

Similar to the definition of a strategy for the environment (Player 1) in Section 2.4, a strategy for the
system (Player 2) in the GR(1) game GGR(1) = (Q,Σ, δ, q0,Win) can be defined as a tuple %GR(1)

sys =
(Γ, γ0, ρ), where Γ is some finite set representing the memory, and γ0 is the initial memory content. The
relation ρ ⊆ (Q × Γ × X × Y × Γ) maps a state q ∈ Q of the game, a current memory content γ ∈ Γ,
and a given input letter x ∈ X to an output letter y ∈ Y and an updated memory content γ′ ∈ Γ. Note
the difference to the definition of a strategy for the environment: the strategy for the system takes an
input letter as an additional argument. This difference is due to the fact that the environment is a Moore
machine while the system is a Mealy machine (cf. Section 2.3.2).

Piterman et al. define the memory Γ = {1, 2, . . . n} to store the index j of the set Jsj of accepting
states of the system which should be reached next. The initial memory content is in fact irrelevant, so
we arbitrarily define γ0 = 1. The relation ρ is composed of the three sub-strategies ρ1, ρ2, and ρ3 in the
way that ρ = ρ1 ∪ ρ2 ∪ ρ3. The sub-strategies are defined below.

Sub-strategy ρ1 is applied if the the play has reached the next target set Jsj of accepting states of the
system:

ρ1 =
{

(q, j, x, y, j ⊕ 1) ∈ (Q× Γ×X × Y × Γ) | q ∈WGR(1)
sys ∩ Jsj ∧ δ(q, (x, y)) ∈WGR(1)

sys

}
The next goal is to reach the set Jsj⊕1, so the value of j is updated accordingly.

Sub-strategy ρ2 is an attractor strategy forcing the play ever closer to the next target set Jsj :

ρ2 =
{

(q, j, x, y, j) ∈ (Q× Γ×X × Y × Γ) | ∃r > 1 . q ∈ Y new
j,r ∧ δ(q, (x, y)) ∈ Yj,r−1

}
The strategy ρ2 is applied if the next target set Jsj is not yet reached. The value of j remains unchanged
as the system is still heading for the same target. From a state q ∈ Y new

j,r , the system can force a play into
a state of Jsj in at most r− 1 steps. The strategy forces the play into a state of Yj,r−1, from which the set
Jsj can be reached in at most r− 2 steps. The set Yj,1 is reached eventually if ρ2 is continuously applied.
All states of Yj,1 are also in Jsj , so the target is reached eventually.

Chapter 2. Preliminaries 17

Sub-strategy ρ3 is a strategy to force the environment to violate an assumption:

ρ3 =
{

(q, j, x, y, j) ∈ (Q× Γ×X × Y × Γ) |
∃r > 1, i ∈ {1 . . .m} . q ∈ Xnew

j,r,i \ Jei ∧ δ(q, (x, y)) ∈ Xj,r,i

}
If the play is in an iterate Xnew

j,r,i and not in Jei , the strategy ρ3 forces the play to remain in Xj,r,i. The
continuous application of ρ3 ensures that an environment assumption is violated.

2.6.3 Synthesis from GR(1) Specifications that are Given with LTL Formulas

In the previous subsections we described the synthesis algorithm as introduced by Piterman et al. [80]
for the case that all environment assumptions and system guarantees are given as DBWs. However, the
algorithm does not only work for DBWs and games as defined in Section 2.4.3. In the work of Piterman
et al., the definition of a game is more general. It allows to use LTL formulas directly in the construction
of the game. The formulas do not have to be transformed into DBWs beforehand. We briefly explain how
games are defined in the work of Piterman et al., because our implementation (see Section 5.1) works
with this definition.

Essentially, the definition of the game in the work of Piterman et al. [80] differs from our definition in
two points. First, they define Q = X ×Y , and second, they use two transition relations ρe and ρs instead
of the transition function δ used in our framework. The relation ρe ⊆ (Q× X) maps states of the game
to possible next input letters. It is built from the safety assumptions (the part ϕet ; see Section 2.2) of the
specification. The relation ρs ⊆ (Q×X × Y) maps states of the game and next input letters to possible
next output letters. It is built from the safety guarantees (the part ϕst) of the specification. Furthermore,
the fairness assumptions (the part ϕeg) and guarantees (the part ϕsg) are used to define the sets Jei and Jsj ,
and the formulas ϕei and ϕsi of the specification are used to characterize the initial state of the game.

For a game defined in this way, the synthesis procedure works basically in the same way as already
described. Only two minor modifications are necessary. First, the semantics of the µ-calculus operators
MXe and MXs have to be adopted. They have to be redefined to

• [[MXe p]]e = {q ∈ Q | ∃x′ ∈ X .(q, x′) ∈ ρe ∧ ∀y′ ∈ Y .(q, x′, y′) ∈ ρs ⇒ (x′, y′) ∈ [[p]]e} and

• [[MXs p]]e = {q ∈ Q | ∀x′ ∈ X .(q, x′) ∈ ρe ⇒ ∃y′ ∈ Y .(q, x′, y′) ∈ ρs ∧ (x′, y′) ∈ [[p]]e}.

Second, the transition function δ has to be replaced by the transition relations ρe and ρs in the definition
of the sub-strategies ρ1, ρ2, and ρ3. That is, the sub-strategies have to be redefined to

ρ1 =
{

((x, y), j, x′, y′, j ⊕ 1) ∈ (Q× Γ×X × Y × Γ) |
(x, y) ∈WGR(1)

sys ∩ Jsj ∧ ((x, y), x′) ∈ ρe ∧ ((x, y), x′, y′) ∈ ρs ∧ (x′, y′) ∈WGR(1)
sys

}
,

ρ2 =
{

((x, y), j, x′, y′, j) ∈ (Q× Γ×X × Y × Γ) |
∃r > 1 .(x, y) ∈ Y new

j,r ∧ ((x, y), x′) ∈ ρe ∧ ((x, y), x′, y′) ∈ ρs ∧ (x′, y′) ∈ Yj,r−1

}
, and

ρ3 =
{

((x, y), j, x′, y′, j) ∈ (Q× Γ×X × Y × Γ) | ∃r > 1, i ∈ {1 . . .m} .
(x, y) ∈ Xnew

j,r,i \ Jei ∧ ((x, y), x′) ∈ ρe ∧ ((x, y), x′, y′) ∈ ρs ∧ (x′, y′) ∈ Xj,r,i

}
.

2.7 Delta Debugging

Delta Debugging [102] is a method to isolate the trigger of a failure. Given a test case that causes a
program to fail, Delta Debugging can be used to simplify it to a minimal test case which still results in the
failure of the program. The algorithm performing this minimization was first introduced by Zeller [101],
then improved and further investigated in subsequent publications [31; 102]. In this document, we refer
to the algorithm as defined in [102].

Chapter 2. Preliminaries 18

2.7.1 Definition of the Algorithm

Given a setC that fails some test, the Delta Debugging algorithm computes a minimal subset Ĉ ⊆ C that
still fails the test. We will write Ĉ = ddmin(C) to denote the minimization algorithm, where C is some
set that should be minimized, and Ĉ ⊆ C is the minimization result. Furthermore, let test(C ′) = 8

denote that C ′ fails the test, let test(C ′) = 4 mean that C ′ passes the test, and let test(C ′) = ? denote
that test gives an indeterminate result. An indeterminate result can be returned by test, for example, if
a syntax error occurred, or if a failure was triggered which is different to the one that should be isolated.
The algorithm requires that test(C) = 8 and that test(∅) = 4. Under these conditions, it guarantees to
return a set Ĉ = ddmin(C) such that test(Ĉ) = 8. The algorithm is defined as

ddmin(C) = ddmin2(C, 2) with

ddmin2(C ′, n) =

ddmin2 (C ′i, 2) if ∃i . test (C ′i) = 8

ddmin2

(
C ′i,max(n− 1, 2)

)
else if ∃i . test

(
C ′i

)
= 8

ddmin2 (C ′,min (|C ′|, 2n)) else if n < |C ′|
C ′ otherwise,

where C ′i = C ′ \ C ′i and the sets C ′1, . . . , C
′
n form a partition of C ′ into n parts. The size of all these

parts is approximately equal.

The algorithm for ddmin2(C ′, n) works recursively. The first step is called reduce to subset. It tries
to find a subset C ′i ⊆ C ′ that still fails the test. The granularity n determines the size of the examined
subsets. If such a subset C ′i that fails the test could be found, it is further reduced by a recursive call of
ddmin2 with the lowest possible granularity. If no such subset could be found, the reduce to complement
step is performed. It checks if a complement C ′i = C ′ \C ′i of a subset C ′i ⊆ C ′ examined in the previous
step fails the test. If so, then this complementC ′i is again further reduced by a recursive call of ddmin2. If
not, the algorithm doubles the granularity. If the granularity cannot be increased any further, the currently
examined set C ′ is returned as a minimal subset failing the test. See Section 3.2.1 for an example.

2.7.2 Properties of the Algorithm

In the best case, half of the elements of the set are removed with every call to the function test. The
number of tests is then logarithmic in the size of the set C that should be minimized. In the worst
case, however, the number of tests is quadratic in the size of the input (see the work of Zeller and
Hildebrandt [102] for an explanation and the proof).

In order to find a minimal subset Ĉ ⊆ C that still fails the test, the algorithm handles subsets that
give inconclusive test results (i.e., subsets C ′ ⊆ C such that test(C ′) = ?) as though they would have
passed the test. For the purpose of our work, we can assume that inconclusive test results do not occur,
i.e., that

test(C ′) 6= 4⇔ test(C ′) = 8.

In the rest of this document, we implicitly assume that the above property holds. This simplifies the
reasoning about the algorithm.

The algorithm guarantees that the computed subset Ĉ = ddmin(C) is 1-minimal, meaning that
∀c ∈ Ĉ . test(Ĉ \ {c}) = 4 holds [102]. Without additional assumptions, the algorithm does not ensure
that Ĉ is a local minimum in the sense that ∀C ′ ⊂ Ĉ . test(C ′) = 4 holds. A local minimum is however
obtained if test is monotonic, i.e., if

∀C ′′ ⊆ C ′ ⊆ C . test(C ′) = 4⇒ test(C ′′) = 4.

The monotonicity of test obviously implies that every 1-minimal set is also a local minimum. Mono-
tonicity can also be exploited to increase the performance of the implementation: if a superset of a set C ′

has already passed the test, then so will C ′. The (maybe computationally expensive) call to the function
test with argument C ′ does not have to be performed.

3 Debugging Approach

This chapter describes our approach for debugging formal specifications. After outlining some prerequi-
sites, it explains how unrealizable specifications and specifications that allow undesired behavior can be
debugged.

3.1 Prerequisites

Our approach is not specific to any particular kind of specification. However, in our setting we expect
the specification to meet the following requirements:

1. The specification defines the temporal behavior of a reactive system, i.e., it defines the allowed
interaction between a system and its environment (see also Figure 1.2). The system communicates
with its environment over a set of output signals Y and a (possibly empty) set of input signals X .
Without loss of generality, we assume that all signals are Boolean.

2. The specification is of the form ϕ = A→ G, whereA is a (possibly empty) set of environment as-
sumptions and G is some set of system guarantees. The specification requires the system behavior
to fulfill all guarantees if the environment behavior is conform with all assumptions.

3. It is possible to add guarantees to the specification and to remove guarantees from the specification.

4. It is possible to existentially quantify an output y ∈ Y in all system guarantees. The existential
quantification must have the effect that all restrictions on that output y are nullified. After quan-
tification, the system is allowed to choose the value for the output y completely arbitrarily in every
time step without any consequences for other outputs.

5. A decision procedure for realizability is available. Given a concrete instance of a specification,
this procedure is able to find out whether or not the specification is realizable.

6. A synthesis procedure for a counterstrategy is available. Given an unrealizable specification, this
procedure is able to compute a counterstrategy as defined in Section 2.4.1.

7. It is possible to turn the specification into a game as defined in Section 2.4.

These assumptions are rather weak and apply to various widespread specification languages such as LTL
and subsets thereof. For one particular subset of LTL, namely for the class of GR(1) specifications, the
debugging approach will be elaborated in Chapter 4.

3.2 Debugging Unrealizability

We present an interactive approach for explaining unrealizability. It is based on the following idea:
While creating a formal specification for a reactive system, the user must have an imagination of an
implementation of the system in his mind. When the user finds out that her specification is unrealizable,
we show that the imagined implementation does not conform to her formal specification. This is done
by swapping roles as shown in Figure 3.1. The user takes on the role of the system while the debugging
tool takes on the role of the environment. The tool provides inputs and the user tries to provide outputs
conforming to the specification. The tool uses a counterstrategy to find inputs such that the user is forced
to violate the specification. Since the specification is unrealizable, such a counterstrategy always exists
and the user is bound to fail. However, while trying, she gains insights into why there is no way for her
to fulfill the specification, i.e., why the specification is unrealizable. This knowledge can subsequently
be used to correct the specification.

We extend this basic approach as shown in Figure 3.2. This is done to keep the explanations for
unrealizability simple. First, we check for satisfiability. If a specification is unsatisfiable, trace-based

19

Chapter 3. Debugging Approach 20

(a) Simulating the System (b) Debugging Unrealizability

Figure 3.1: Swapping the roles to gain insight into the cause of unrealizability: The user takes on
the role of the system and fails to fulfill the specification when the environment utilizes
a counterstrategy to find problematic inputs. While failing, she will understand where
the specification is too restrictive to be realizable.

Figure 3.2: The flow of our method to explain unrealizability: After a SAT-check, we generate an
unrealizable core by removing requirements and signals that do not contribute to the
problem. A counterstrategy and a countertrace are then computed and presented to the
user in form of a graph and as an interactive game.

debugging methods (as presented by Pill et al. [79] or by Cimatti et al. [22], for instance) can be applied.
Such methods are likely to produce simpler explanations. Nevertheless, as unsatisfiability is just a special
case of unrealizability, our method is able to handle both cases. Next, we compute an unrealizable core
as suggested by Cimatti et al. [21]. That is, we remove parts of the specification which do not have hand
in the unrealizability problem. We improve the work of Cimatti et al. by removing not only unneces-
sary properties but also unnecessary signals. Moreover, we use Delta Debugging [102] as minimization
algorithm with the goal of achieving a better performance. Next, we compute a counterstrategy for the
minimized specification. We then try to obtain a countertrace from it. A countertrace is a fixed input
trace for which there is no output trace that conforms to the specification. Knowing the complete input
trace in advance makes it easier for the user to localize the problem. Unfortunately, such a countertrace
does not always exist (see Section 3.2.2). Additionally, even if one exists, its computation is expensive.
Thus, we present a heuristic algorithm that is fast but does not always find a countertrace, even if one
exists. The obtained countertrace or the counterstrategy is finally presented to the user as a summarizing
graph and in form of an interactive game.

The following subsections explain the different steps of this debugging procedure in detail. All
aspects which are specific to a particular kind of specification language are discussed in Chapter 4 for
the class of GR(1) specifications.

3.2.1 Minimization

Finding the cause of unrealizability in a specification becomes especially difficult if the specification
is large. Nevertheless, in a large unrealizable specification, it will often be the case that big parts are
not involved in the conflict causing the specification to be unrealizable. These parts can be removed,

Chapter 3. Debugging Approach 21

resulting in a simpler specification ϕ̂ that is still unrealizable. A game with a counterstrategy can then be
constructed from this simplified specification. The idea is that this game becomes easier to understand as
a lot of restrictions that are not directly connected with the unrealizability problem have been removed.
The user can focus on the restrictions that really cause the problem. Any counterstrategy for the simpli-
fied specification ϕ̂ is also a counterstrategy for the original specification (see Theorem 5), and hence, it
illustrates a problem of the original specification.

Parts to be Removed from a Specification

Cimatti et al. [21] propose to minimize both environment assumptions and system guarantees in order to
find an unrealizable core that can be used for diagnostics. In a first step, system guarantees g ∈ G are
removed as long as removing them preserves unrealizability. This leads to an intermediate specification
ϕ′ = A → G′ with G′ ⊆ G. In a second step, environment assumptions a ∈ A are removed as long as
removing them preserves minimality of G′, i.e., as long as removing them does not allow the algorithm
to remove any guarantee g ∈ G′ without ending up with a realizable specification.

Our goal is not to obtain a specification ϕ̂ that is as short as possible, but to simplify the underlying
game as much as possible. Hence, we only remove system guarantees. Removing assumptions would
confuse the user during the interactive game as it allows behavior of the environment which the user
before forbade. We do not want the counterstrategy to exploit originally forbidden behavior to win the
game. Also, removing assumptions such that the set of guarantees remains a minimal set is computation-
ally expensive.

Our experience shows that removing guarantees does not suffice to obtain simple games. In fact, the
corresponding game becomes often more difficult to understand. The reason is that removing guarantees
leads to more possibilities for the user in the role of the system to choose outputs. The game graph is
getting larger and there are more possible plays. The user potentially has to play more often to appreciate
that there is no way for her to win any of these possible plays.

To counteract this effect, we propose to additionally remove output signals which are not involved
in the conflict causing unrealizability. Removing them is done with an existential quantification in all
guarantees. We denote this operation ∃Y ′ . G for some set Y ′ ⊆ Y of outputs to remove. Let τ =
(x0, y0)(x1, y1)(x2, y2) . . . ∈ (X × Y)ω be an infinite trace over an input alphabet X and an output
alphabet Y , where the input alphabet is X = 2X and the output alphabet is Y = 2Y for a set X of
Boolean input signals and a set Y of Boolean output signals. Let τ |= G denote that τ fulfills all system
guarantees g ∈ G. We define the semantics of the existential quantification operation ∃Y ′ . G such that
for all traces τ = (x0, y0)(x1, y1)(x2, y2) . . . ∈ (X × Y)ω the equivalence

τ |= ∃Y ′ . G⇔ ∃y′0y′1y′2 ∈
(

2Y
′
)ω

.(x0, y
∃
0)(x1, y

∃
1)(x2, y

∃
2) . . . |= G

holds, where y∃i is an abbreviation for (yi \ Y ′)∪ y′i for all i ≥ 0. Note the similarity of this definition to
the semantics of the existential quantifier in QPTL formulas (see Section 2.1.1). In fact, if each guarantee
g ∈ G is given as an LTL formula, the quantification operation ∃Y ′ . G, with Y ′ ⊆ Y , means that each
guarantee g ∈ G is replaced by the QPTL formula ∃Y ′ . g. If each guarantee g ∈ G is given as a Büchi
automaton, then the quantification ∃Y ′ . G reduces to a projection of all output signals y ∈ Y ′ from the
automaton, i.e., to the existential quantification of the outputs y ∈ Y ′ in the transition relation of the
automaton. The resulting automaton may be non-deterministic.

Just like guarantees, outputs are removed as long as removing them preserves unrealizability. Sup-
pose the output y ∈ Y has been removed. This means for the game that the value of y can be chosen
completely arbitrarily in any time step without any consequences for other outputs. Still, the specifica-
tion is unrealizable, and hence, the output y is irrelevant for the unrealizability problem. Choosing a
value for y completely arbitrarily in every time step is of course senseless, so the output is not included
in the interactive game at all. As the user does not have to care about such outputs that are irrelevant for

Chapter 3. Debugging Approach 22

the unrealizability problem, the game becomes simpler again. The user has less choices, and hence, she
potentially has to play less often to accept that none of her choices can make her win.

The Minimization Algorithm

Different algorithms can be used to perform the minimization of the specification. Cimatti et al. [21]
remove one guarantee after the other. If removing a guarantee makes the specification realizable, the
guarantee is added again. Otherwise, the guarantee is kept removed. This procedure repeats until there
has been an attempt to remove every single guarantee. This simple algorithm requires |G| realizability
checks to find an unrealizable core. We use Delta Debugging [102], a more advanced algorithm for min-
imization problems. As already mentioned in Section 2.7, this algorithm takes a set to be minimized as
parameter and utilizes a function test. Suppose now that realizable(ϕ) implements a decision procedure
for realizability, i.e., that it returns true if ϕ is realizable and false otherwise. We define

test
(
G′ ∪ Y ′

)
=
{

4 if realizable (A→ ∃ (Y \ Y ′) . G′)
8 otherwise

for G′ ⊆ G and Y ′ ⊆ Y . The minimized specification ϕ̂ is finally computed as

ϕ̂ = A→ ∃
(
Y \ Ŷ

)
. Ĝ, with Ŷ = ddmin(G ∪ Y) ∩ Y and Ĝ = ddmin(G ∪ Y) ∩G.

Fundamental Properties

For the minimization procedure as defined above, the following properties can be observed.

Lemma 1. For all G′′ ⊆ G′ ⊆ G and Y ′′ ⊆ Y ′ ⊆ Y , we have that realizable (A→ ∃(Y \ Y ′) . G′)
implies realizable (A→ ∃(Y \ Y ′′) . G′′).

Proof. Every system that implements a specification ϕ′ = A → ∃(Y \ Y ′) . G′ also implements ϕ′′ =
A→ ∃(Y \Y ′′) . G′′ for all G′′ ⊆ G′ ⊆ G and Y ′′ ⊆ Y ′ ⊆ Y . Hence, if an implementation of ϕ′ exists,
then an implementation of ϕ′′ exists as well.

Corollary 2. For all C ′′ ⊆ C ′ ⊆ (Q ∪ Y), the condition test(C ′) = 4 implies that test(C ′′) = 4.

Claim 3. The specification A→ ∃
(
Y \ Ŷ

)
. Ĝ is unrealizable.

Proof. All preconditions for ddmin are fulfilled: test(G ∪ Y) = 8 as ϕ = A → G is assumed to be
unrealizable, and test(∅) = 4 as realizable(A → true) holds for all A. In this case, ddmin(G ∪ Y)
guarantees to return a subset Ĉ such that test(Ĉ) = 8 (cf. Section 2.7). With the definitions of test, Ĝ,
and Ŷ , this is exactly what Claim 3 affirms.

Claim 4. For all G′ ⊆ Ĝ and Y ′ ⊆ Ŷ , we have that the condition (G′, Y ′) 6=
(
Ĝ, Ŷ

)
implies

realizable (A→ ∃(Y \ Y ′) . G′).

Proof. Claim 4 states that the set Ĉ = Ĝ ∪ Ŷ = ddmin(G ∪ Y) is a local minimum. The proof of
Proposition 11 in [102] shows that Ĉ is 1-minimal. The function test is monotonic (Corollary 2), hence,
every 1-minimal set is also a local minimum (see also Section 2.7).

Theorem 5. Let % = (Γ, γ0, ρ) be a counterstrategy for the game based on ϕ̂. Then % is also a counter-
strategy for the game based on ϕ.

Chapter 3. Debugging Approach 23

Proof. Let G be the game obtained from ϕ, and let Ĝ be the game obtained from ϕ̂. Furthermore, let
M = Ĝ × % be a Moore machine implementing the counterstrategy as defined in Section 2.4.2. Since %
is a counterstrategy in Ĝ, ∀t ∈ L(M) . t 6|= ϕ̂ holds, where L(M) denotes the set of words that can be
produced by M (see Section 2.3.2 for the definition). Clearly, ∀t ∈ L(M) . t 6|= ϕ holds as well, since ϕ
is stricter than ϕ̂, i.e., ∀t ∈ Σω . t 6|= ϕ̂ ⇒ t 6|= ϕ applies. Hence, M is also a valid implementation of a
counterstrategy in the game G obtained from the original specification ϕ.

Discussion of the Properties

Lemma 1 states that the realizability of a specification is preserved when guarantees or output variables
are removed from the specification. This is clear, since removing them can never make it harder for the
system to conform to the specification. Corollary 2 follows immediately from Lemma 1 and the definition
of the function test. It states that test is monotonic. The following optimization [102] can therefore be
applied: During minimization, all examined sets R = G′ ∪ Y ′ are stored, for which test(R) = 4 holds.
If a subset R′ of a stored set R is subjected to test, the value 4 can be returned immediately without
actually invoking the check for realizability. This has a great impact on the overall performance of the
minimization algorithm.

Claim 3 states that the minimized specification ϕ̂ obtained by applying Delta Debugging is still
unrealizable. Claim 4 says that it contains a (locally) minimal set of guarantees and output signals so
that ϕ̂ is unrealizable. Theorem 5 finally relates the game based on the simplified specification ϕ̂ to the
game based on the original specification ϕ. The counterstrategy for the game based on ϕ̂ also applies
to the original game. This means that the conflict causing unrealizability, which is exploited by the
counterstrategy, must have been preserved by the minimization step. (If there are more conflicts, at least
one is preserved.) Thus, minimization is indeed useful for finding the conflict causing the unrealizability
in the original specification.

Example

Figure 3.3 depicts an example specification used to illustrate the minimization of a specification by the
Delta Debugging algorithm. It contains three Boolean input signals x1, x2, and x3, three Boolean output
signals y1, y2, and y3, and four system guarantees g1, g2, g3, and g4. All guarantees are represented as
DBWs and as LTL formulas in Figure 3.3. The guarantees gi, with 1 ≤ i ≤ 3, enforce that the output
signals yi are true eventually. The guarantee g4 requires that yi = xi for 1 ≤ i ≤ 3 in all time steps.
There are no environment assumptions. This specification is clearly unrealizable since the environment
could set an input xi to false forever for some 1 ≤ i ≤ 3. The guarantee g4 requires yi to be false in
all time steps while guarantee gi requires yi to be true eventually. Thus, the system cannot fulfill all
guarantees in such a case. However, the specification is satisfiable, because the trace where all inputs
and outputs are true in all time steps fulfills the specification.

Table 3.1 illustrates the steps performed by the Delta Debugging algorithm. The first column contains
a step counter, and the second column contains the current granularity n of the algorithm. The third
column states which subset is subjected to the function test (cf. Section 2.7), and the next column
contains the elements of this subset. The last two columns finally contain the test result and whether a
superset of the tested set already passed the test before.

The set that should be minimized is G ∪ Y = {g1, g2, g3, g4, y1, y2, y3}. A subset thereof represents
an unrealizable specification if it contains the guarantee g4 and some guarantee gi together with the
output yi for 1 ≤ i ≤ 3. Hence, the function test returns 8 iff {g1, g4, y1}, {g2, g4, y2}, {g3, g4, y3}, or
a superset of one of these sets is used as input.

In the first two steps, the subsets with granularity 2 are tested. Both subsets pass the test, so the
algorithm would normally proceed with the complements of these two sets. However, for the granu-
larity of 2, the complements are equal to the sets themselves, so this step can be skipped. Next, the

Chapter 3. Debugging Approach 24

(a) The guarantee g1 as DBW. It corresponds to
the LTL formula F(y1 = true).

(b) The guarantee g2 as DBW. It corresponds to
the LTL formula F(y2 = true).

(c) The guarantee g3 as DBW. It corresponds to
the LTL formula F(y3 = true).

(d) The guarantee g4 as DBW. It corresponds to the
LTL formula G(y1 = x1∧y2 = x2∧y3 = x3).

Figure 3.3: An example specification to illustrate the minimization with the Delta Debugging al-
gorithm. It consists of the three Boolean input signals x1, x2, and x3, of the three
Boolean output signals y1, y2, and y3, and of the four depicted system guarantees g1,
g2, g3, and g4. There are no environment assumptions. Accepting states in DBWs are
double bordered. The initial states are marked with incoming arrows.

algorithm doubles its granularity to the value of 4. In the steps 3 to 7, we can see that all subsets pass
the test. The first complement, however, fails the test, so the algorithm tries to further minimizes the
set {g3, g4, y1, y2, y3}, starting with a granularity of 3. This procedure repeats in the steps 8 to 12 once
more. The algorithm again finds a smaller set {g3, g4, y3} that fails the test. Since this set cannot be
reduced any further in the steps 13 to 20, it is returned as the result.

Note that not all steps performed by the Delta Debugging algorithm require a realizability check
to be performed. As already mentioned, if a superset of the examined set has passed the test before,
then the function test can return 4 without actually performing a realizability check. The last column
of Table 3.1 indicates when this is the case. For this example, only 6 realizability checks have to be
performed.

The specification that is represented by the minimization result is depicted in Figure 3.4. Existentially
quantifying the outputs y1 and y2 in g3 does not change g3, since g3 does not depend on these outputs.
In contrast, the guarantee g4 is simplified by the existential quantification. It now only requires that the
output y3 has to be equal to x3 in all time steps. It does no longer restrict the outputs y1 and y2. If g4 is
given as a Büchi automaton, the projection gives a non-deterministic automaton.

Once the minimization result is obtained, our debugging approach proceeds with the computation
and illustration of a counterstrategy. The counterstrategy exploits the conflict between the guarantees
g3 and g4 regarding the output y3 by setting x3 = false forever. In the interactive game, the user then
has the task of finding a value sequence for the output y3 which fulfills the guarantees g3 and g4 (see
also Section 3.2.4, where the example is continued). She can ignore all other guarantees and outputs,
which makes it easier to understand the problem. In addition, if the specification contains more than one
conflict, the user is forced to focus on one of them. This is easier than trying to understand all conflicts
at once, possibly by analyzing a counterstrategy that exploits several problems simultaneously.

Chapter 3. Debugging Approach 25

Table 3.1: The steps performed by the Delta Debugging algorithm for the example in Figure 3.3.

step n subset subset’s content test result superset passed

1 2 C ′1 = C ′2 g1 g2 g3 g4 4 no

2 2 C ′2 = C ′1 y1 y2 y3 4 no

3 4 C ′1 g1 g2 4 yes

4 4 C ′2 g3 g4 4 yes

5 4 C ′3 y1 y2 4 yes

6 4 C ′4 y3 4 yes

7 4 C ′1 g3 g4 y1 y2 y3 8 no

8 3 C ′1 g3 g4 4 yes

9 3 C ′2 y1 y2 4 yes

10 3 C ′3 y3 4 yes

11 3 C ′1 y1 y2 y3 4 yes

12 3 C ′2 g3 g4 y3 8 no

13 2 C ′1 = C ′2 g3 g4 4 yes

14 2 C ′2 = C ′1 y3 4 yes

15 3 C ′1 g3 4 yes

16 3 C ′2 g4 4 yes

17 3 C ′3 y3 4 yes

18 3 C ′1 g4 y3 4 no

19 3 C ′2 g3 y3 4 no

20 3 C ′3 g3 g4 4 yes

result g3 g4 y3

(a) The guarantee g3 with the outputs y1 and y2
projected out. It corresponds to the QPLT
formula ∃{y1, y2} .F(y3 = true), which is
equivalent to F(y3 = true).

(b) The guarantee g4 with the outputs y1 and y2
projected out. It corresponds to the QPLT for-
mula ∃{y1, y2} .G(y1 = x1 ∧ y2 = x2 ∧ y3 =
x3), which is equivalent to G(y3 = x3).

Figure 3.4: The minimization result for the example specification of Figure 3.3. Only the two
guarantees g3 and g4, and one output, namely y3, are remaining.

Chapter 3. Debugging Approach 26

3.2.2 Countertraces

When a specification ϕ is unrealizable, a counterstrategy can be computed. A counterstrategy is a win-
ning strategy for the environment. It dictates inputs so that the system cannot find outputs that conform
to the specification. In every time step, the inputs given by the counterstrategy may depend on previous
moves of the opponent, i.e., on previous output values chosen by the system. Hence, it can only be illus-
trated as a graph or as an interactive game. A counterstrategy would be easier to understand if all moves
it dictates would be independent of the previous moves of the opponent. In this case, the counterstrategy
could be illustrated with a single trace of inputs.

We therefore define a countertrace to be an infinite trace of inputs, for which no trace of outputs
exists, such that the specification is fulfilled. More formally, we have that

x ∈ X ω is a countertrace for ϕ ⇔ ¬∃y ∈ Yω .(x||y) |= ϕ

⇔ ∀y ∈ Yω .(x||y) 6|= ϕ.

Problems with Countertraces

Unfortunately, there are two serious problems when trying to use countertraces instead of counterstrate-
gies as explanations for the unrealizability of a specification.

First, a countertrace does not always exist. For example, consider the LTL specification y ⇔ Fx,
where y is a Boolean output and x is a Boolean input [82]. This specification requires the output y to
be true in the first time step iff the input x is true at some point in the future. Clearly, this specification
is unrealizable. In order to implement it, the system would have to look into the future [82]. However,
a counterstrategy exists. It could for instance dictate to set x0 = false and xi = ¬y0 in all time steps
i > 0. Yet, every counterstrategy for this example must react to the first move of the system in order
to be winning for the environment. A countertrace, which is defined to be independent of the system’s
moves, does not exist. For every infinite trace of inputs, there is always an infinite trace of outputs so
that both traces together fulfill the specification. Mori et al. [75] define a specification ϕ to be strongly
satisfiable iff

∀x ∈ X ω . ∃y ∈ Yω .(x||y) |= ϕ.

We can use this definition to determine whether a countertrace exists.

Corollary 6. A countertrace for a specification ϕ exists iff ϕ is not strongly satisfiable.

Proof.

ϕ is not strongly satisfiable ⇔ ¬∀x ∈ X ω .∃y ∈ Yω .(x||y) |= ϕ

⇔ ∃x ∈ X ω . ∀y ∈ Yω .(x||y) 6|= ϕ.

⇔ ∃x ∈ X ω . x is a countertrace for ϕ

As a second problem, the computation of a countertrace is expensive. Checking if a countertrace ex-
ists is already expensive. In order to perform such a check, one can remove all output variables from the
game automaton with an existential quantification. The resulting automaton is then complemented. Un-
fortunately, this complementation causes an exponential blow-up of the state space, as the automaton is
in general non-deterministic after quantification. We therefore define a heuristic to keep the computation
of a countertrace feasible, even for larger specifications.

Chapter 3. Debugging Approach 27

Heuristic Computation of Countertraces

Our heuristic to compute countertraces works as following. Let ϕ be an unrealizable specification, and
let G = (Q,X × Y, δ, q0,Win) be the game (as defined in Section 2.4) obtained from this specification.
Furthermore, let % = (Γ, γ0, ρ) be a counterstrategy for G, where ρ ⊆ (Q × Γ × X × Γ). In order to
obtain a countertrace, we compute two sequences in parallel. The first one is a sequence τ = τ0τ1τ2 . . .
of inputs τi ∈ X being the resulting countertrace itself. The second one is a sequence S = S0S1S2 . . .
of sets Si ⊆ (Q × Γ). Each set Si contains exactly those pairs of states and memory contents that
are possible after τ0τ1 . . . τi−1 has been used as input. In the following, we will refer to such pairs
(q, γ) ∈ (Q × Γ) as situations in order not to mix them up with states of the game. The computation
starts with S0 = {(q0, γ0)}. Further sets of situations are computed as

Si+1 =
{

(q′, γ′)
∣∣ ∃(q, γ) ∈ Si .∃y ∈ Y . q′ = δ(q, (τi, y)) ∧ (q, γ, τi, γ′) ∈ ρ

}
,

where τi is chosen arbitrarily from the set

Ti =
{
τ ∈ X

∣∣ ∀(q, γ) ∈ Si . ∃(γ′ ∈ Γ) .(q, γ, τ, γ′) ∈ ρ
}
.

The set Ti contains all inputs τ that conform to the counterstrategy from all situations (qi, γi) ∈ Si. The
exact situation (qi, γi) ∈ Si in step i depends on the outputs chosen by the system in all previous time
steps. In every time step, we choose τi ∈ Ti, so the input τi conforms to the counterstrategy no matter
how the system moved in earlier steps.

If Ti = ∅ for any i, the computation aborts signaling that no countertrace was found. The algorithm
terminates with success in step k if Sk ⊆ Sj for some j < k. This makes sense, because Sk ⊆ Sj
implies Tk ⊇ Tj . We can choose τk = τj , which leads to a set Sk+1 ⊆ Sj+1 in the next step. Again,
Tk+1 ⊇ Tj+1, so we can choose τk+1 = τj+1, and so on. Obviously, the countertrace τ starts to
repeat after step k. It is finally composed of the finite stem τ0τ1 . . . τj−1 and infinite many repetitions of
τjτj+1 . . . τk−1.

Example

Figure 3.5 illustrates the working principle of the heuristic on an example. In this example, there are
two possible input letters xA and xB , and two possible output letters yA and yB . Arrows labeled with
input letters represent moves of the environment which comply with the counterstrategy. If there is no
outgoing arrow labeled with a certain input letter, then this indicates that the input letter does not conform
to the counterstrategy in this situation. Arrows labeled with output letters represent possible moves of
the system.

Step 0: The computation starts with the set S0 = {(q0, γ0)} containing only the initial situation. From
(q0, γ0), the counterstrategy % = (Γ, γ0, ρ) allows only xB as next input letter, i.e., ∃γ′ .(q0, γ0, xB, γ

′) ∈
ρ and @γ′ .(q0, γ0, xA, γ

′) ∈ ρ. As a consequence, T0 = {xB}, so xB is the only possible choice for τ0.
When xB is used as input in Step 0, we might end up in (q1, γ1) or (q2, γ2), depending on the output
letter chosen by the system. The set S1 is therefore {(q1, γ1), (q2, γ2)}.

Step 1: The resulting countertrace must be winning for the environment, independent of which output
letter is chosen by the system in Step 0. Hence, the next input τ1 must conform to the counterstrategy,
no matter if the situation (q1, γ1) or (q2, γ2) occurs in Step 1. Both input letters, xA and xB , conform to
the counterstrategy from (q1, γ1) in our example. From (q2, γ2), the counterstrategy only allows xB as
next input. The set T1 is thus {xB}, meaning that xB is the only input conforming to the counterstrategy
from all elements of S1. We can thus only set τ1 = xB . Depending on the choice of the system on the
next output letter, we might end up in (q3, γ1) or (q4, γ2) in Step 2, so S2 = {(q3, γ1), (q4, γ2)}. The
situation (q2, γ3) is not possible as we used xB and not xA as input in Step 1.

Chapter 3. Debugging Approach 28

Figure 3.5: An example to illustrate the heuristic for computing countertraces: When xA and xB

are the only input letters, and yA and yB are the only output letters, our heuristic returns
τ = xBxBxAxBxAxBxA . . . as countertrace for this example.

Step 2: We are now again looking for an input τ2 which conforms to the countertrace from all situations
(q, γ) ∈ S2. The counterstrategy allows both, xA and xB , from both situations (q3, γ1) and (q4, γ2).
Hence, T2 = {xA, xB}meaning that we could choose either τ2 = xA or τ2 = xB as next input. Suppose
that we decide for τ2 = xA. Depending on the output letter chosen by the system, the play might be in
(q2, γ2) or (q1, γ1) in Step 3.

Step 3: We have that S3 = {(q1, γ1), (q2, γ2)} ⊆ S1, so we can stop the computation. We can do so,
because we can set τ3 = τ1 ending up in S4 ⊆ S2, where we could choose τ4 = τ2, and so on. The
resulting countertrace τ is composed of the finite stem τ0 followed by infinitely many repetitions of the
sequence τ1τ2. This gives τ = xBxBxAxBxAxBxA . . . for our example.

Analysis of Fundamental Properties

Even if a countertrace exists, our heuristic is not always able to find one. There are two reasons for that.

First, the counterstrategy from which the countertrace is constructed might not embody all ways to
force the system to violate the specification. To give an example, refer to Figure 3.5 again. Suppose that
from the situation (q1, γ1), the input xA would be the only input conforming to the counterstrategy %.

Chapter 3. Debugging Approach 29

Then T1 would be the empty set and our heuristic would fail. Suppose further that a second counter-
strategy %′ exists, that this counterstrategy %′ allows the input xA from the initial situation (q0, γ0) as
well, and that our heuristic would succeed if τ0 would be chosen to be xA. This is an example where our
heuristic fails because of the counterstrategy % not being aware of all ways to win.

Second, our heuristic may fail due to a bad choice of an input letter τi ∈ Ti. The heuristic chooses
one such input randomly. The selection influences the next set Si+1 and can so also influence the success
of the heuristic. The algorithm could be extended with a backtracking mechanism that makes a different
selection in a previous time step if it cannot succeed with the undertaken selection. This would exclude
failure due to a bad choice of an input letter, but it would not make the heuristic complete.

Although our heuristic does not always find a countertrace even if one exists, our experiments (see
Section 6) will show that it works well for many real-world examples. Furthermore, the algorithm can be
implemented symbolically, which is especially straight forward if the game G and the counterstrategy %
are encoded symbolically (e.g., using BDDs).

Claim 7. The number k of iterations needed by the algorithm is 2|Q×Γ| − 1 in the worst case.

Proof. All sets Si are elements of the power set 2Q×Γ, only the empty set is not possible for any Si. The
power set 2Q×Γ consists of 2|Q×Γ| elements. Hence, there are z = 2|Q×Γ| − 1 different values for the
sets Si. The algorithm computes a sequence S = S0S1S2 . . . and aborts at Step k if ∃j < k . Sk ⊆ Sj .
(It may also abort at Step l if Tl = ∅, but as we are considering the worst case for the execution time,
we assume that this does not happen.) It is possible to sort all elements of the power set 2Q×Γ to obtain
a sequence SMAX = S0S1S2 . . . Sz−1 such that ∀i .@j < i . Si ⊆ Sj holds. (Simply start with all sets
containing only one pair (q, γ), proceed with all sets containing exactly two pairs, etc.) However, another
element of 2Q×Γ cannot be added to the sequence SMAX without already having an equal element in the
sequence.

Claim 7 states that our heuristic has an exponential execution time in the worst case. To overcome
that, searching for a countertrace can be bounded to a certain number t of iterations. That is, if no coun-
tertrace was found after t iterations, the algorithm aborts without success. According to our experiments
(see Section 6), t can be kept rather small without decreasing the quality of the heuristic significantly:
None of our computations needed more than 10 iterations.

Theorem 8. Every play π conforming to the countertrace τ also conforms to the counterstrategy % =
(Γ, γ0, ρ) and is thus won by the environment.

Proof. In every time step i, the input τi is a singleton subset of the inputs allowed by ρ. This is obvious
from the construction of τ .

Theorem 8 finally states that a countertrace τ obtained from a counterstrategy % explains unrealiz-
ability, as it forces the system to violate the specification, just like a counterstrategy. The countertrace
can thus be used instead of a counterstrategy in the interactive game.

3.2.3 Interactive Game

The idea of using an interactive game in order to demonstrate the unrealizability of a specification to the
user has already been introduced. The tool takes on the role of the environment and the user takes on the
role of the system. In this way, the user can try to demonstrate that a system exists, which implements
the specification. The tool can demonstrate that the user is wrong and that the implementation imagined
by the user does not conform to the specification. In every time step of the interactive game, the tool
applies the counterstrategy or the countertrace to find values for the inputs of the system. Then the user
chooses values for the outputs and the next time step starts. A play is won for the user if she fulfills
the specification. It is lost by the user and won by the tool otherwise. As the utilized counterstrategy or

Chapter 3. Debugging Approach 30

countertrace is winning for the environment, the user will not be able to find outputs that conform to the
specification. However, while playing, she will find out where the specification is too restrictive for her
to win, i.e., where the specification is too restrictive to be realizable.

Using Counterstrategies

More technically speaking, the interactive game works in the following way when given a counterstrategy
% = (Γ, γ0, ρ). Every play starts in (q0, γ0). When the play is in a situation (qi, γi), the tool simply selects
one tuple (qi, γi, xi, γi+1) ∈ ρ and uses xi as input. The next memory content γi+1 is already determined
with this selection. With the output letter yi chosen by the user, the next state qi+1 = δ(qi, (xi, yi)) is
fixed as well. From the situation (qi+1, γi+1), the play proceeds in the same way.

In order not to confuse the user, the behavior of the environment should be deterministic throughout
the play. That is, when the same situation (q, γ) is encountered again, the environment should also give
the same input letter. This can be ensured by making the counterstrategy deterministic before starting
the game. An explicit determinization step is however not necessary. Determinization can also be done
implicitly during the interactive game: Given a certain situation (qi, γi), a tuple (qi, γi, xi, γi+1) ∈ ρ is
simply chosen in some deterministic way.

Using Countertraces

Instead of a counterstrategy, the tool can also use a countertrace to determine the values of the input
signals. The tool maintains a step counter and uses the value τi of the countertrace τ = τ0τ1τ2 . . . ∈ X ω
as input in step i. The moves performed by the environment are then independent of the moves carried out
by the user. This makes it easier for the user to stay on top of things in the game. The whole countertrace
is printed before the play starts. This helps the user, as she knows in advance how the environment will
behave in all further steps. Nevertheless, there is no way for her to win.

When a play engine is used which is only able to utilize counterstrategies but no countertraces, a
countertrace can be put into the shape of a strategy in the following way. Let τ be a countertrace com-
posed of a finite stem τ0τ1 . . . τj−1 and infinite many repetitions of τjτj+1 . . . τk−1. A counterstrategy
%τ =

(
Γτ , γτ0 , ρ

τ
)

can then be defined, where

Γτ = {0, 1, . . . k − 1},
γτ0 = 0 , and

ρτ =
{

(q, γ, x, γ′) ∈
(
Q,Γτ ,X ,Γτ

)
| γ′ = next(γ) ∧ x = τγ

}
, with

next(γ) =
{
γ + 1 if γ < k − 1
j otherwise.

3.2.4 Summarizing Graph

More than one play of the interactive game might be necessary until the user accepts that none of her
alternatives for the output values in the different time steps can make her win. Playing the game more
often might be very time consuming. To counteract, we propose to compute a graph G, which summa-
rizes all plays conforming to the counterstrategy. This graph shows how the environment will react to
outputs chosen by the system. It can thus be seen as a “cheat sheet” for the user in the interactive game.
The user might discard some alternatives for output values without even trying them in the game. This
reduces the number of plays necessary to understand the cause of unrealizability.

Definition of the Graph

Let G = (Q,Σ, δ, q0,Win) with Σ = X × Y be a game as defined in Section 2.4, and let % = (Γ, γ0, ρ)
be a counterstrategy for G, where ρ ⊆ (Q × Γ × X × Γ). The graph G = (V,E, l) consists of a set

Chapter 3. Debugging Approach 31

V ⊆ (Q×Γ) of vertices, a set E ⊆ V ×V of directed edges, and an edge labeling function l : E → 2Σ.
Every vertex v ∈ V is a tuple (q, γ) ∈ (Q×Γ), i.e., a situation that might occur during a play. We define
the set V of vertices inductively:

• (q0, γ0) is element of V

• (q′, γ′) is element of V if:

∃(q, γ) ∈ V .∃(x, y) ∈ Σ . δ(q, (x, y)) = q′ ∧ (q, γ, x, γ′) ∈ ρ

The vertex v0 = (q0, γ0) is distinguished as start vertex. The set of edges is defined as

E = {((q, γ), (q′, γ′)) ∈ V × V | ∃(x, y) ∈ Σ . δ(q, (x, y)) = q′ ∧ (q, γ, x, γ′) ∈ ρ}.

Edges (v, v′) ∈ E are labeled with all letters (x, y) ∈ Σ for which a transition from v to v′ is possible.
We therefore define the labeling function to be

l((q, γ), (q′, γ′)) = {(x, y) ∈ Σ | δ(q, (x, y)) = q′ ∧ (q, γ, x, γ′) ∈ ρ}.

In presence of a countertrace τ , the according counterstrategy %τ as defined in Section 3.2.3 is used in
the definition of the graph G.

Computation of the Graph

A symbolic algorithm computing G is possible but not useful, as the graph needs to be represented in an
explicit manner in the end. After all, it must be presented to the user. Thus, the computation is done with
a simple depth first search for all situations (q, γ) ∈ V , starting with (q0, γ0). Edges and their labels are
computed simultaneously with new vertices during this search. To overcome performance problems, the
computation of the graph is aborted if it exceeds a certain number of vertices. It is intractable for the user
to analyze huge graphs anyway.

For the visualization of the graph, we recommend the graph drawing tool DOT1 [62]. This tool takes
a textual description of the graph as input and produces a graphical representation thereof as output. It
attempts to avoid edge crossings, it tries to keeps edges short, and it provides a rich set of formatting
options. These arguments, together with the simplicity of the input language, made us decide for DOT.

For games with a large state space, the graph G can become quite large as well. For every situation
(qi, γi) that might occur, it contains edges to successor situations (qi+1, γi+1) for all input letters that
conform to the counterstrategy and for all output letters that can then be chosen by the system. How-
ever, having more than one input letter for any situation (qi, γi) is not necessary. One counterstrategy-
conforming input letter per situation suffices for the tool to win every play. The size of the graph can
therefore be reduced by ensuring that the counterstrategy is deterministic, meaning that

∀q ∈ Q, γ ∈ Γ .
∣∣{(q, γ, x, γ′) ∈ ρ}∣∣ ≤ 1.

As already mentioned in the previous section, determinization can be done implicitly during the graph
computation: Given a certain situation (qi, γi), the tool selects one tuple (qi, γi, xi, γi+1) ∈ ρ in some
deterministic way and behaves as though there would not be any other tuple (qi, γi, x′i, γ

′
i+1) ∈ ρ. Using a

deterministic counterstrategy for the graph computation potentially reduces not only the number of edges
but also the number of vertices. If some input letters are not used any more in a particular situation, some
successor situations might not occur any more.

1http://www.graphviz.org/ (last visit in October 2009)

http://www.graphviz.org/

Chapter 3. Debugging Approach 32

Figure 3.6: An example to illustrate the idea of the graph. The graph was created for the specifica-
tion in Figure 3.4 under the assumption of a memoryless counterstrategy that dictates
x1 = true, x2 = true, and x3 = false forever.

Example

We will use the minimization result for the example specification of Section 3.2.1 to illustrate the idea
of the graph. This minimization result is depicted in Figure 3.4. Suppose the state space Q of the
game G = (Q,Σ, δ, q0,Win) is the cross product (as defined in Section 2.4.3) of the state spaces of the
automata g3 and g4 of Figure 3.4, i.e., Q = {q31, q32} × {q41, q42}. Let us further assume for simplicity
that the counterstrategy % has no memory and dictates to set x1 = true, x2 = true, and x3 = false
forever.

Under these assumptions, the graph G would look as depicted in Figure 3.6. The graph summarizes
all plays that are possible in the interactive game. It shows all possibilities for the user in the role of
the system to choose outputs in the game. It also shows how the counterstrategy reacts to the choices of
the user. The user can set y3 = false forever to stay in the state (q31, q41). This state is, however, not
accepting in the automaton representing the guarantee g3, i.e, this behavior violates guarantee g3. The
user can also set y3 = true eventually. In this case, the play will come to the state (q32, q42), which
cannot be left any more. This state is not accepting in the automaton representing guarantee g4, i.e.,
such a behavior violates g4. So, whatever the user in the role of the system does, she cannot fulfill
both guarantees g3 and g4. The states (q31, y42) and (q32, y41) cannot be reached when the environment
adheres to the counterstrategy of setting x1 = true, x2 = true, and x3 = false forever. Hence, these
states are not included in the graph.

Note that the graph G as well as the corresponding interactive game would be much more complex
if the game was constructed not from the minimized specification depicted in Figure 3.4 but from the
original specification depicted in Figure 3.3. The state space of the game would be much larger and, as
the system would have to choose values for outputs other than y3 as well, the user would have much
more choices with which she can influence the course of the play. Thus, she potentially would have to
play more often in order to accept that none of her choices can make her win, i.e., that the specification
is unrealizable.

3.3 Debugging Undesired Behavior

A formal specification is typically derived manually from some informal design intent. Mistakes in this
process can result in a formal specification that does not express what the designer originally wanted
to express. Such mismatches with the design intent often show up when a concrete implementation of
the specification is simulated or tested. The implemented system might exhibit undesired behavior. It is
clear in such a situation that the simulated system does not implement the design intent. If the incorrect

Chapter 3. Debugging Approach 33

Figure 3.7: The flow of our method to handle mismatches with the design intent: When an im-
plementation of a formal specification shows undesired behavior during simulation, its
specification is augmented with a guarantee that enforces the desired behavior. If the
resulting specification is realizable, the undesired behavior has been eliminated by the
additional guarantee. If not, we explain unrealizability as shown in Figure 3.2.

system conforms to the specification, this further means that the specification does not represent the
design intent. In such a case, it is often difficult to correct or to refine the specification so that the design
intent is expressed.

The problem of having a system that does not implement the original design intent can arise with au-
tomatically synthesized systems as well as with manual implementations. In case of automatic synthesis,
the resulting system is guaranteed to conform to the specification. If the synthesized system is incorrect,
then the specification must be incorrect. Manual implementations can deviate from the design intent if
they are implemented from the formal specification without full knowledge about the informal design
intent. Conformance with the formal specification can be ensured by model checking.

3.3.1 Our Debugging Procedure

Figure 3.7 illustrates our approach for handling mismatches between a formal specification and the design
intent. Suppose that some undesired behavior was observed while simulating an implementation of the
specification. Then, the following two cases can be distinguished:

1. There exists a system (i.e., a Mealy machine as defined in Section 2.3.2) that fulfills the spec-
ification and, at the same time, shows the desired behavior. This means that the specification
leaves enough freedom to choose either the observed or the desired behavior. The specification is
incomplete.

2. Any system exhibiting the desired behavior violates the specification. This means that there exists
no implementation of the specification that shows the desired behavior. The specification is in
conflict with the desired behavior.

In order to find out which of the two cases applies, an additional guarantee gd enforcing the desired
behavior is added to the specification ϕ = A → G to obtain ϕ′ = A → (G ∪ {gd}). If ϕ′ is realizable,
then the first case applies. The specification ϕ is incomplete and needs to be refined. The augmented
specification ϕ′ is a refinement of ϕ which eliminates the undesired behavior. If ϕ′ is unrealizable,
the second case applies. The specification is so restrictive that it forbids the desired behavior. We
need to explain why enforcing the desired behavior makes the specification unrealizable, i.e., why ϕ′ is
unrealizable. This is done as illustrated in Figure 3.2 and explained in Section 3.2. The minimization
step removes parts of the specification which are not in conflict with the design intent. The conflict is
then illustrated by a counterstrategy or a countertrace with a graph and in form of an interactive game.
Once the user has understood the conflict, she can resolve it. The process of resolving the conflict cannot
be automated since there are typically various different fixes. One can add environment assumptions,
remove or weaken certain guarantees, etc. Only the user can decide which of these solutions is best
suitable, because only the user knows how the system should finally behave.

Chapter 3. Debugging Approach 34

3.3.2 Formalization of the Desired Behavior

We suggest to use the simulation trace to specify the desired behavior. We suppose that this simula-
tion trace s = s0s1s2 . . . ∈ Σω is represented with a finite stem f0f1 . . . fa−1 of length a and a loop
l0l1 . . . lb−1 of length b such that

si =
{
fi if i < a
l(i−a) mod b otherwise

for all i ∈ N. In a first step, we allow the user to change any signal value in any time step of the loop or
the stem to 0, 1, or “?”, where “?” stands for “don’t care”. The user has to modify the trace in such a way
that it represents the desired behavior: Every trace that matches the input part of the desired behavior
must also match the output part of the desired behavior. After the desired behavior has been specified by
the user, the tool checks if the input part conforms to the environment assumptions. If not, a warning is
given as the system does not have to fulfill any guarantees in such a case. If the input part conforms to
the assumptions, the desired behavior is automatically turned into the guarantee gd which enforces the
desired behavior.

In the following, we formalize how gd must look like. Let d = d0d1d2 . . . be the desired behavior as
specified by the user. For every time step i, this desired behavior can be seen as a function di : (X∪Y)→
{0, 1, ?}. We will refer to the input part of the desired behavior as d

x = dx0d
x
1d
x
2 . . ., where dxi : X →

{0, 1, ?} for all time steps i. The output part will be written as d
y = dy0d

y
1d
y
2 . . . with dyi : Y → {0, 1, ?},

respectively. Let σ v dxi denote that the letter σ = (x, y) ∈ Σ conforms to the function dxi in the sense
that

(x, y) v dxi ⇔ ∀v ∈ X . (dxi (v) = 0⇒ v /∈ x) ∧ (dxi (v) = 1⇒ v ∈ x) .

Analogously, let σ v dyi denote that the letter σ = (x, y) ∈ Σ conforms to the function dyi , defined as

(x, y) v dyi ⇔ .∀v ∈ Y . (dyi (v) = 0⇒ v /∈ y) ∧ (dyi (v) = 1⇒ v ∈ y) .

We extend the semantics of the operator v to traces in the natural way. We write σ v d
x

to state that a
trace σ = (x0, y0)(x1, y1)(x2, y2) . . . ∈ Σω matches the input part d

x
of the desired behavior. We define

σ v dx ⇔ ∀i ∈ N . σi v dxi .

Analogously, σ v d
y

means that the trace σ matches the output part d
y

of the desired behavior in the
sense that

σ v dy ⇔ ∀i ∈ N . σi v dyi .

The guarantee gd which enforces the desired behavior must be constructed such that

gd accepts a trace σ ⇔
(
σ v dx ⇒ σ v dy

)
.

How the guarantee gd can be built depends on the actual specification language. Section 4.5.2 explains
the construction for GR(1) specifications. This construction can also be used for other kinds of specifi-
cations if the guarantees are represented by DBWs.

3.3.3 Example

For an example we refer the reader to Section 6.2.2, in which an industrial-size specification is debugged
with our approach. A simpler example can be found in Section 5.2.

Chapter 3. Debugging Approach 35

3.3.4 Application to Specification Development

When systems can be synthesized automatically from the specification, our debugging procedure can also
be used for specification development. The user simply starts with an empty specification and simulates
a synthesized system with some input scenario. She modifies the trace to obtain the desired behavior for
that scenario. The desired behavior is turned into an additional guarantee automatically. Next, the user
simulates an implementation of this refined specification with another input scenario, and so on. This is
done until all scenarios are covered and all conflicts are resolved. When no conflicts arise, the user does
not have to know anything about the underlying specification language.

4 Debugging GR(1) Specifications

This chapter explains how the debugging approach presented in Chapter 3 can be applied to GR(1)
specifications. All prerequisites are met:

1. A GR(1) specification defines the allowed behavior of a reactive system in a temporal manner.

2. The specification is composed of environment assumptions and system guarantees.

3. Guarantees can be added to the specification and removed from it.

4. Output variables can be existentially quantified.

5. Realizability can be decided as explained by Piterman et al. [80].

6. Counterstrategies for unrealizable GR(1) specifications can be computed. We are not aware of any
work that explains how this is done. Hence, we discuss counterstrategy computation for GR(1)
specifications in this chapter.

7. A GR(1) specification can be turned into a game G. Section 2.4.3 describes this step.

The following sections concretize aspects of our debugging approach which are specific to the particular
kind of specification. Note that the computation of countertraces has already been sufficiently explained
in Section 3.2.2. We assume that ϕ = A → G is a GR(1) specification, where A = {Aei} is a set of m
DBWs representing the environment assumptions, and G = {Asj} is a set of n DBWs representing the
system guarantees. The corresponding game GGR(1) = (Q,Σ, δ, q0,Win) is constructed as explained in
Section 2.4.3.

4.1 Checking for Satisfiability

A lot of tools exist that are able to check an LTL specification for satisfiability. An overview and a
performance comparison is given by Rozier and Vardi [87]. Such an existing tool could have been used
to check GR(1) specifications for satisfiability as well, because the class of GR(1) is just a subset of
LTL. However, in order to avoid the drawbacks of using an external tool, we developed an own symbolic
algorithm that fits into our GR(1) setting.

4.1.1 Definition of Satisfiability

A specification is satisfiable iff there exists at least one trace σ ∈ Σω of signal values that fulfills the
specification. A GR(1) specification is composed of system guarantees and environment assumptions. It
is fulfilled by a trace if all guarantees are fulfilled by the trace, or if at least one assumption is violated
by the trace. Hence, we split the problem of deciding satisfiability into two sub-problems.

Sub-Problem 1: Is there a trace that violates an assumption? This decision problem can be solved
by computing the set

S¬A = [[µX .EXX ∨ T]] with T =

[[
m∨
i=1

Ti

]]
and Ti = [[νY .¬Jei ∧ EXY]]

(see also the work of Emerson et al. [41]). The sets Ti contain all states q ∈ Q such that q 6∈ Jei and
∃σ ∈ Σ . δ(q, σ) ∈ Ti. In other words, the states of Ti are not part of the set Jei of accepting states of the
environment. Furthermore, the greatest fixpoint in Y ensures together with the operator EX that there is
always a letter such that Ti is not left. So, from a state q ∈ Ti, a trace exists such that the set Jei is never
visited. The set T is the union of all sets Ti. Hence, from all states q ∈ T , there exists a trace such that

36

Chapter 4. Debugging GR(1) Specifications 37

Jei is never visited for some i. The set S¬A contains all states from which a state of T can be reached in
a finite number of steps. Hence, from all states q ∈ S¬A, there exists a trace such that Jei is visited only
finitely often for some i. This means that there exists a trace that violates some assumption when starting
from a state of S¬A.

Lemma 9. A trace σ ∈ Σω that violates some assumption of a GR(1) specification ϕ exists iff q0 ∈ S¬A.

Sub-Problem 2: Is there a trace that fulfills all guarantees? In order to solve this decision problem,
the set

SG = [[µX .EXX ∨ U]] with U =

νY . n∧
j=1

EX
(
µZ . Y ∧ (Jsj ∨ EX(Z))

)
is computed (see also the work of Emerson et al. [41]). The set U contains all states q ∈ Q from which
all sets Jsj can be reached while never leaving U . The least fixpoint in Z ensures together with the
conjunction over all j that all sets Jsj can be reached from any state q ∈ U . The greatest fixpoint in Y
and the operator EX ensure that every state in U has a successor in U , i.e., that U does not need to be
left. Hence, from all states of U , there exists a trace such that all sets Jsj of accepting states of the system
are visited infinitely often. However, the states in U are not the only ones from which this is possible.
Such a trace can also be found when starting in states from which a state in U can be reached in a finite
number of steps. These states are added in the computation of SG. The set SG finally contains all states
from which a trace exists that fulfills all guarantees.

Lemma 10. A trace σ ∈ Σω that fulfills all guarantees of a GR(1) specification ϕ exists iff q0 ∈ SG.

The following theorem finally states how the satisfiability problem can be decided for GR(1) speci-
fications.

Theorem 11. A GR(1) specification ϕ is satisfiable iff q0 ∈ (S¬A ∪ SG).

Proof. Theorem 11 follows immediately from Lemma 9 and Lemma 10.

4.1.2 Symbolic Algorithm

Listing 4.1 depicts a symbolic algorithm that checks if a GR(1) specification is satisfiable. It is written
in Python-like pseudo code. The operator | implements the µ-calculus operator ∨, i.e., the union of two
sets. The operator & implements the µ-calculus operator ∧, and ! implements ¬. The expression {}
denotes the empty set of states.

4.2 Minimization

The minimization approach proposed in Section 3.2.1 requires that a decision procedure for realizability
is available. Piterman et al. [80] explain how such a check for realizability can be performed. The
winning region

WGR(1)
sys =

νZ . n∧
j=1

µY .
m∨
i=1

νX . Jsj ∧MXs Z ∨MXs Y ∨ ¬Jei ∧MXsX

of the system is computed (see also Section 2.6). The specification is realizable iff q0 ∈ WGR(1)

sys . We
use this procedure with the following performance improvement. For every iterate Za of Z (according

Chapter 4. Debugging GR(1) Specifications 38

1 is_sat () :
2 T = {}
3 for i in range (1 , m) :
4 Y = Q
5 while Y changes :
6 Y = (!Je [i]) & EX (Y)
7 T = T | Y
8 X = {}
9 while X changes :

10 X = T | EX (X)
11 if q_0 in X :
12 return True
13 Y = Q
14 while Y changes :
15 tmp = Q
16 for j in range (1 , n) :
17 Z = {}
18 while Z changes :
19 Z = Y & (Js [j] | EX (Z))
20 tmp = tmp & EX (Z)
21 Y = tmp
22 X = {}
23 while X changes :
24 X = Y | EX (X)
25 if q_0 in X :
26 return True
27 return False

Listing 4.1: A symbolic algorithm that checks if a GR(1) specification is satisfiable. The algorithm
is written in Python-like pseudo code. The operator | implements the µ-calculus
operator ∨, & implements ∧, ! implements ¬, and {} denotes the empty set of states.

to Equation 2.2), we check if q0 ∈ Za. If q0 6∈ Za for some a, we abort the computation, signaling that
the specification is unrealizable. This is possible, because the iterates in a greatest fixpoint computation
are monotonically decreasing, so

(∃a ∈ N . q0 6∈ Za)⇒ q0 6∈WGR(1)
sys .

The minimization method introduced in Section 3.2.1 furthermore requires that guarantees and output
signals can be removed from the specification. In our GR(1) setting, the set G of guarantees is a set
of DBWs, so removing guarantees reduces to removing DBWs from this set. Output signals can be
removed by projecting them from the DBWs, i.e., by existentially quantifying them in the transition
relations of the DBWs. If the DBWs are encoded symbolically with BDDs, the existential quantification
operation provided by the BDD library can be used. In fact, the automata may be non-deterministic after
quantification, so the term DBW is no longer appropriate. However, our symbolic algorithms can handle
this non-determinism without difficulty.

4.3 Counterstrategies

This section explains how a counterstrategy for an unrealizable GR(1) specification can be computed.
As discussed in Section 2.4.3, a GR(1) specification ϕ can be transformed into a game GGR(1) =
(Q,Σ, δ, q0,Win). A counterstrategy is a winning strategy for the environment in this game. Piter-
man et al. [80] show how to compute a winning strategy for the system in this game (see Section 2.6).

Chapter 4. Debugging GR(1) Specifications 39

They first compute the winning region for the system. In a second step, they derive the strategy from
some intermediate results obtained during the computation of the winning region. We follow their ap-
proach. We first compute a winning region for the environment. Intermediate results are then used to
derive a counterstrategy.

4.3.1 Computation of the Winning Region

The winning region for the system in the game GGR(1) is defined as [80]

WGR(1)
sys =

νZ . n∧
j=1

µY .

m∨
i=1

νX . Jsj ∧MXs Z ∨MXs Y ∨ ¬Jei ∧MXsX

 .
The winning region for the environment is the complement of the winning region for the system. With
the equalities defined in Equation 2.5 and Equation 2.6, this complement can be written as

WGR(1)
env = Q \WGR(1)

sys

=

¬νZ . n∧
j=1

µY .

m∨
i=1

νX . Jsj ∧MXs Z ∨MXs Y ∨ ¬Jei ∧MXsX

=

µZ . n∨
j=1

νY .

m∧
i=1

µX .¬
(
Jsj ∧MXs ¬Z ∨MXs ¬Y ∨ ¬Jei ∧MXs ¬X

)
=

µZ . n∨
j=1

νY .
m∧
i=1

µX .(¬Jsj ∨ ¬MXs ¬Z) ∧ ¬MXs ¬Y ∧ (Jei ∨ ¬MXs ¬X)

 .
The duality stated in Equation 2.4 can now be applied to obtain

WGR(1)
env =

µZ . n∨
j=1

νY .
m∧
i=1

µX .(¬Jsj ∨MXe Z) ∧MXe Y ∧ (Jei ∨MXeX)

 . (4.1)

Theorem 12. The set WGR(1)
env is the winning region for the environment in the game GGR(1).

Intermediate Results for the Counterstrategy Computation

The computation of a counterstrategy relies on some intermediate results of the nested fixpoint compu-
tation defined by Equation 4.1. The required intermediate results are the sets Za, Ya,j , and Xa,j,i,c for all
values of a ∈ {0, 1, . . . , A}, j ∈ {1, 2, . . . , n}, i ∈ {1, 2, . . . ,m}, and c ∈ {0, 1, . . . , Ca,j,i}. All these
sets are subsets of Q. They are defined as following.

The set Za is the a-th iterate of the outermost fixpoint in Equation 4.1. The iterates are defined
according to Equation 2.1. The maximum value of a is the smallest integer A such that ZA = ZA−1.
The sets Ya,j are defined as

Ya,j =

[[
νY .

m∧
i=1

µX .
(
¬Jsj ∨MXe Za−1

)
∧MXe Y ∧ (Jei ∨MXeX)

]]
(4.2)

for all values of a and j. The set Xa,j,i,c is defined to be the c-th iterate (again according to Equation 2.1)
of the fixpoint computation

Xa,j,i =
[[
µX .

(
¬Jsj ∨MXe Za−1

)
∧MXe Ya−1,j ∧ (Jei ∨MXX)

]]
.

Chapter 4. Debugging GR(1) Specifications 40

The maximum value of c for some a, j, and i, is Ca,j,i. It is defined to be the smallest integer b such that
Xa,j,i,b = Xa,j,i,b−1. We have that Xa,j,i,c ⊇ Xa,j,i,c−1 and Za ⊇ Za−1 for all values of a, j, i, and c in
their respective domains. Hence, we define

Znew
a = Za \ Za−1 and

Xnew
a,j,i,c = Xa,j,i,c \Xa,j,i,c−1

to denote the part of Za or Xa,j,i,c which was added in the last iteration of the least fixpoint computation.

Symbolic Algorithm

Listing 4.2 shows how the µ-calculus formula defining WGR(1)
env can be turned into a symbolic algorithm.

It is written in the same Python-like pseudo code as Listing 4.1. The variable Z contains the resulting set
W

GR(1)
env at the end of the algorithm. The intermediate results Za, Ya,j , and Xa,j,i,c are computed in the

arrays z_array[a], y_array[a][j], and x_array[a][j][i][c].

1 W_env () :
2 Z = {}
3 z_array [0] = Z
4 a = 1
5 while Z changes :
6 unionY = {}
7 for j in range (1 , n) :
8 Y = Q
9 while Y changes :

10 interX = Q
11 for i in range (1 , m) :
12 X = {}
13 x_array [a] [j] [i] [0] = X
14 c = 1
15 while X changes :
16 X = ((! Js [j]) | MXe (Z)) &
17 MXe (Y) &
18 (Je [i] | MXe (X))
19 x_array [a] [j] [i] [c++] = X
20 interX = interX & X
21 Y = interX
22 y_array [a] [j] = Y
23 unionY = unionY | Y
24 Z = unionY
25 z_array [a++] = Z
26 return (Z , z_array , y_array , x_array)

Listing 4.2: A symbolic algorithm to compute the winning region WGR(1)
env for the environment

in the game GGR(1). The intermediate results required for the computation of a
counterstrategy are computed as well. The algorithm is written in the same Python-like
pseudo code syntax as Listing 4.1.

The algorithm in Listing 4.2 can be optimized in the following way. When the initial state q0 is an
element of some iterate Za of Z, the computation can be aborted. As explained later, the counterstrategy
ensures that once the play is in Za, it can only move to lower iterates of Z. Therefore, if q0 ∈ Za, a
counterstrategy from higher iterates of Z is not necessary. The intermediate results for higher iterates of
Z are also not necessary to compute a counterstrategy that is winning for the environment from a state
of Za.

Chapter 4. Debugging GR(1) Specifications 41

Discussion

The following observations are important in order to understand the construction of a counterstrategy
from the intermediate results that have been obtained.

From all states of Y1,j , an infinite play can be enforced by the environment such that the set Jsj of
accepting states of the system is never visited while all sets Jei of accepting states of the environment
are visited infinitely often. Equation 4.2 ensures that as following. The term (Jei ∨ MXeX) together
with the least fixpoint in X enforces that all sets Jei can be visited from every state of Y1,j . From
a state q ∈ X1,j,i,c, the set Jei can be reached in at most c − 1 steps. The conjunction with MXe Y
together with the greatest fixpoint in Y guarantees that Y1,j is not left. The conjunction with the term
(¬Jsj ∨MXe Za−1) in Equation 4.2 makes sure that the set Jsj is never visited, because we consider the
case where a = 1, and the iterate Z0 is the empty set ∅.

The set Z1 is the union of all sets Y1,j . Thus, from all states of Z1, the environment can ensure that
some set Jsj of accepting states of the system is never visited while all sets Jei of accepting states of the
system are visited infinitely often. This is a sufficient but not a necessary condition for the environment
to win. The environment wins already if some set Jsj is visited only finitely often (and all sets Jei are
visited infinitely often). This circumstance is covered by higher iterates of Z.

When the play is in some state q ∈ Znew
a for a > 1, there are two possibilities. First, the play might

stay in Znew
a forever. Second, the play might move to Za−1 eventually. The system can only ensure that

the play stays in Znew
a , if some set Jsj is never visited. If all sets Jsj are visited, it is possible for the

environment to take the play into a smaller iterate of Z. This is ensured by the term (¬Jsj ∨MXe Z) of
Equation 4.1. If the play moves to the next smaller iterate of Z, we have the same situation: Either the
play never visits some set Jsj , or the environment is able to force the play into the next smaller iterate of
Z. If the system forces the play to stay in some set Znew

a forever, the play can of course be won by the
environment, as the environment can enforce that some Jsj is never visited in Znew

a . If the play does not
stay in any set Znew

a forever, it will eventually reach Z1, because the number of iterates of Z is finite and
the play is infinite. From the states of Z1, the environment is able to win as already discussed.

4.3.2 Computation of the Counterstrategy

We now define a counterstrategy %GR(1) = (Γ, γ0, ρ) for the game GGR(1) = (Q,Σ, δ, q0,Win). The
counterstrategy must be winning for the environment. That is, it has to ensure that all sets Jei of accepting
states of the environment are visited infinitely often while at least one set Jsj of accepting states of the
system is visited only finitely often.

The Memory of the Counterstrategy

We define the finite memory Γ of the counterstrategy as Γ = I × J . The set I = {1, . . . ,m} stores
the index i of the set Jei of accepting states of the environment that will be reached next. The set J =
{0, 1, . . . , n} stores the index j of the set Jsj of accepting states of the system, which the environment
tries to evade. The value 0 means that the environment has not yet committed to any such set Jsj . The
environment has to provide inputs before the system responds with outputs. Which set Jsj can be evaded
might be unknown until the system has made its move. In such a situation, the value 0 is chosen for the
index j ∈ J . In the next step, j is set to a proper value depending on the outputs chosen by the system.
The initial memory content is γ0 = (1, 0).

The Relation of the Counterstrategy

The relation ρ ⊆ (Q× Γ× X × Γ) of the counterstrategy can be defined using the intermediate results
Za, Ya,j , and Xa,j,i,c, obtained during the computation of the winning region for the environment. The

Chapter 4. Debugging GR(1) Specifications 42

counterstrategy is composed of the sub-strategies ρ1, ρ2, ρ3, ρ4 ⊆ (Q̂× Γ×X × Γ) in the way that

ρ = ρ1 ∪ ρ2 ∪ ρ3 ∪ ρ4.

The sub-strategies are defined below. In order to simplify notation, we define

MXe
x(P) = {q ∈ Q | ∀y ∈ Y . δ(q, (x, y)) ∈ P}.

Intuitively, MXe
x(P) gives all states from which the environment can force the play in one step into a

state of P using input x. With slight abuse of notation, we will also use the µ-calculus operator MXe

without the square brackets in order to keep the definitions more readable. Furthermore, we will write
i⊕ 1 as abbreviation for (i mod m) + 1.

Sub-strategy ρ1 is used to force the play into a smaller iterate of Z whenever possible:

ρ1 = {(q, (i, j), x, (i, 0)) ∈ (Q× Γ×X × Γ) | ∃a ≥ 2 . q ∈ Znew
a ∩MXe

x(Za−1)}

Taking the play into a smaller iterate of Z has a higher priority than all other sub-strategies. If the envi-
ronment misses a chance, the system might be able to win. When ρ1 is applied, the play moves from a
state q ∈ Znew

a to a state q′ ∈ Za−1. The set Za−1 is the union of all sets Ya−1,j , so q′ ∈ Ya−1,j for some
j. In Ya−1,j , the environment can evade Jsj . The value of j, however, might depend on the next move
of the system. The environment cannot foresee this next move, so it cannot set j to a proper value. The
memory content j is thus set to 0 in order to remember to set it to an adequate value in the next step.

Sub-strategy ρ2 is used to choose a proper value for j if it was set to 0 in the previous step:

ρ2 = {(q, (i, 0), x, (i, j)) ∈ (Q× Γ×X × Γ) | ∃a ≥ 1 . q ∈ Znew
a ∩MXe

x(Ya,j) \MXe(Za−1)}

The strategy ρ2 forces the play into a state of Ya,j and sets the value of j accordingly. Requiring that
q 6∈ MXe(Za−1) ensures that ρ2 is only applied if ρ1 cannot be applied.

Sub-strategy ρ3 is applied if the the play has reached the next target set Jei of accepting states of the
environment:

ρ3 =
{

(q, (i, j), x, (i⊕ 1, j)) ∈ (Q× Γ×X × Γ) |
j 6= 0 ∧ q ∈ Jei ∧ ∃a ≥ 1 . q ∈ Znew

a ∩MXe
x(Ya,j) \MXe(Za−1)

}
The next goal is to reach the set Jei⊕1, so the value of i is updated accordingly. The value of j remains
the same, since the same Jsj as before should be evaded. The play is forced into a state of Ya,j so that
Jsj can be evaded in the next step as well. Requiring that q 6∈ MXe(Za−1) again ensures that ρ3 is only
applied if ρ1 cannot be applied. Furthermore, requiring j 6= 0 ensures that ρ2 has priority over ρ3.

Sub-strategy ρ4 is an attractor strategy forcing the play ever closer to the next target set Jei :

ρ4 =
{

(q, (i, j), x, (i, j)) ∈ (Q× Γ×X × Γ)
∣∣

j 6= 0 ∧ ∃a ≥ 1, c ≥ 2 . q ∈ Znew
a ∩Xnew

a,j,i,c ∩MXe
x(Xa,j,i,c−1) \MXe(Za−1)

}
The strategy ρ4 is applied if the next target set Jei is not yet reached. The value of i remains unchanged as
the environment is still heading for the same target. The value of j remains unchanged as well, because
the same set Jsj as before must be evaded. From a state q ∈ Xnew

a,j,i,c, the environment can force a play into
a state of Jei in at most c− 1 steps. The strategy forces the play into a state of Xa,j,i,c−1, from which the
set Jei can be reached in at most c− 2 steps. The set Xa,j,i,1 is reached eventually. All states of Xa,j,i,1

are also in Jei , so the target is reached eventually. The conditions j 6= 0 and q 6∈ MXe(Za−1) ensure that
ρ4 has lower priority than ρ1 and ρ2.

Theorem 13. The strategy %GR(1) = (I × J , (1, 0), ρ), where ρ = ρ1 ∪ ρ2 ∪ ρ3 ∪ ρ4, is winning for the
environment in the GR(1) game GGR(1).

Chapter 4. Debugging GR(1) Specifications 43

Symbolic Algorithm

Listing 4.3 shows how the relation ρ of the counterstrategy %GR(1) can be computed symbolically. It
is written in the same Python-like pseudo code syntax as Listing 4.1. It uses the intermediate results
z_array[a], y_array[a][j], and x_array[a][j][i][c], obtained from the computation in
Listing 4.2. The utilized functions are defined as

SymPi(n) = {(q, (i, j), x, (i′, j′)) ∈ (Q× Γ×X × Γ) | i = n} ,

SymNi(n) = {(q, (i, j), x, (i′, j′)) ∈ (Q× Γ×X × Γ) | i′ = n} ,

SymPj(n) = {(q, (i, j), x, (i′, j′)) ∈ (Q× Γ×X × Γ) | j = n} ,

SymNj(n) = {(q, (i, j), x, (i′, j′)) ∈ (Q× Γ×X × Γ) | j′ = n} ,

MXex(P) = {(q, (i, j), x, (i′, j′)) ∈ (Q× Γ×X × Γ) | ∀y ∈ Y . δ(q, (x, y)) ∈ P} , and

MXe(P) = {(q, (i, j), x, (i′, j′)) ∈ (Q× Γ×X × Γ) | ∃x ∈ X .∀y ∈ Y . δ(q, (x, y)) ∈ P}.

1 rho1 = {}
2 for a in range (2 , length (z_array) − 1) :
3 for i in range (1 , m) :
4 tmp = SymPi (i) & SymNi (i) & SymNj (0)
5 & z_array [a] & (!z_array [a−1]) & MXex (z_array [a−1])
6 rho1 = rho1 | tmp
7 rho2 = {}
8 for a in range (1 , length (z_array) − 1) :
9 for j in range (1 , n) :

10 for i in range (1 , m) :
11 tmp = SymPi (i) & SymNi (i) & SymPj (0) & SymNj (j)
12 & z_array [a] & (!z_array [a−1])
13 & MXex (y_array [a] [j]) & (!MXe (z_array [a−1]))
14 rho2 = rho2 | tmp
15 rho3 = {}
16 for a in range (1 , length (z_array) − 1) :
17 for j in range (1 , n) :
18 for i in range (1 , m) :
19 tmp = SymPi (i) & SymNi ((i mod m) +1) & SymPj (j) & SymNj (j)
20 & Je [i] & z_array [a] & (!z_array [a−1])
21 & MXex (y_array [a] [j]) & (!MXe (z_array [a−1]))
22 rho3 = rho3 | tmp
23 rho4 = {}
24 for a in range (1 , length (z_array) − 1) :
25 for j in range (1 , n) :
26 for i in range (1 , m) :
27 for c in range (2 , length (x_array [a] [j] [i]) − 1) :
28 tmp = SymPi (i) & SymNi (i) & SymPj (j) & SymNj (j)
29 & x_array [a] [j] [i] [c] & (!x_array [a] [j] [i] [c−1])
30 & z_array [a] & (!z_array [a−1])
31 & MXex (x_array [a] [j] [i] [c−1])
32 & (!MXe (z_array [a−1]))
33 rho4 = rho4 | tmp
34 rho = rho1 | rho2 | rho3 | rho4

Listing 4.3: A symbolic algorithm to compute the counterstrategy. It utilizes the intermediate
results computed within Listing 4.2 and it is written in the same Python-like pseudo
code syntax as Listing 4.1.

Chapter 4. Debugging GR(1) Specifications 44

Optimization

The algorithm depicted in Listing 4.3 can be optimized in various ways. This was not done in order
to keep it readable. The loops can be merged. Intermediate values that are needed in different parts
of the strategy need to be computed only once. Also, the computation can be restricted to states that
are reachable from the initial state q0 [95]. The set R of reachable states is defined with the µ-calculus
formula

R = [[µX . q0 ∨ IMG(X)]].

A symbolic algorithm that computes the set R can be derived from this formula in the usual way. It is
depicted in Listing 4.4.

1 R () :
2 X = {}
3 while X changes :
4 X = q_0 | IMG (X)
5 return X

Listing 4.4: A symbolic algorithm to compute the set of reachable states. It is written in the same
Python-like pseudo code syntax as Listing 4.1.

4.4 Interactive Game and Graph

4.4.1 Additional Information for the User

In order to help the user to understand why a certain specification is unrealizable, she can be provided
with additional information during the interactive game as well as by the graph G.

First, the current memory content of the counterstrategy should be presented in each time step. When
the user knows the index j of the set Jsj which the environment tries to evade, she can concentrate on
reaching this set. That is, the user can work against the counterstrategy more focused. The user might
indeed be able to bring the play into a state of the set Jsj , but in this case, the environment can force the
play into a smaller iterate of Z. The number of iterates of Z is finite, so at least one set Jsj of accepting
states of the system will be visited only a finite number of times and thus the user loses for sure.

Second, the user should be informed about the iterate Za, in which the play is currently in. Whenever
the play enters a smaller iterate of Z, the memory content j ∈ J might change. It is first set to 0, and in
the next step set to a proper value that may be different to the previous proper value. When the play is in
a state of Za, the memory content j of the counterstrategy can change at most a− 1 times (not counting
the changes to the special value 0) in the future of the play. Knowing the iterate Za, the user knows how
often she will be able to reach a set of accepting states which the environment tries to evade. If the play
got to Z1, the memory content j won’t change any more and the user won’t be able to reach a Jsj state
from there on.

Third, the user should know to which sets Jsj and Jei of accepting states the current state of the play
belongs to. When analyzing a play, this helps the user to accept that she has lost. She can comprehend
that all sets Jei have indeed been visited infinitely often and that she did not manage to visit all sets Jsj
infinitely often.

4.4.2 Combining Countertraces with Counterstrategies

When a countertrace is used instead of a counterstrategy, the memory content of the counterstrategy can-
not be presented to the user. In order to have both advantages, the simplicity of the countertrace as well

Chapter 4. Debugging GR(1) Specifications 45

as the additional information provided by the memory content of the counterstrategy, the countertrace
can be used in parallel with the counterstrategy.

The entire countertrace is presented right from the beginning of the play. In every situation (qi, γi),
where i is the step counter, the counterstrategy is first applied. Instead of selecting an arbitrary tuple
(qi, γi, xi, γi+1) ∈ ρ from the counterstrategy and using xi as input in step i, a tuple (qi, γi, τi, γi+1) ∈ ρ
is chosen, where τi is the input dictated by the countertrace in step i. Doing so, we obtain the inputs
dictated by the countertrace and at the same time the memory contents of the counterstrategy. It is always
possible to find a tuple (qi, γi, τi, γi+1) ∈ ρwhere the input is the very same as the input suggested by the
countertrace in step i. The reason is that the countertrace is constructed in such a way that it conforms to
the counterstrategy no matter how the system behaves.

4.5 Debugging Undesired Behavior

In our approach to debug undesired behavior, only the step of turning the desired behavior into a guaran-
tee gd depends on the specification language which is used. Our GR(1) setting assumes that guarantees
are represented as DBWs, so gd has to be incorporated by a DBW as well.

4.5.1 Recap

Remember that the desired behavior d is composed of an input part d
x

and an output part d
y

(see Sec-
tion 3.3). Both parts are defined using a finite stem of length a and a loop of length b, so

∀i ≥ a .
(
dxi = dxi+b

)
∧
(
dyi = dyi+b

)
holds. The DBW gd must be constructed in such a way that it accepts a trace σ = σ0σ1σ2 . . . ∈ Σω iff
(σ v dx)⇒ (σ v dy). This means that the DBW must accept all traces that do not match the input part
of the desired behavior. It must also accept all traces that match the output part of the desired behavior. It
has to reject all traces that match the input part but do not match the output part of the desired behavior.

4.5.2 Definition of the DBW Representing the Desired Behavior

The DBW gd can be defined as a tuple gd = (Qd,Σ, δd, V0, Fd), where

Qd = {V0, V1, . . . , Va+b−1, V
8

1 , . . . , V
8
a+b−1, V4},

Fd = {V0, V1, . . . , Va+b−1, V4}, and

δd : Qd × Σ→ Qd such that

δd(q, σ) =

Vi+1 if 0 ≤ i < a+ b− 1 ∧ q = Vi ∧ σ v dxi ∧ σ v d
y
i

Va if q = Va+b−1 ∧ σ v dxa+b−1 ∧ σ v d
y
a+b−1

V 8
i+1 if 0 < i < a+ b− 1 ∧ q = V 8

i ∧ σ v dxi
V 8
a if q = V 8

a+b−1 ∧ σ v dxa+b−1

V 8
i+1 if 0 ≤ i < a+ b− 1 ∧ q = Vi ∧ σ v dxi ∧ σ 6v d

y
i

V 8
a if q = Va+b−1 ∧ σ v dxa+b−1 ∧ σ 6v d

y
a+b−1

V4 otherwise.

The general structure of the DBW gd is illustrated in Figure 4.1. The state V4 is drawn twice in order
to keep some edges from crossing. The edges are labeled with subsets of the alphabet Σ. These labels

Chapter 4. Debugging GR(1) Specifications 46

define which edge is taken when a certain letter is observed. They are defined as

Ii = {v ∈ Σ | v 6v dxi }, (4.3)

Di = {v ∈ Σ | v v dxi ∧ v v d
y
i }, (4.4)

Ui = {v ∈ Σ | v v dxi ∧ v 6v d
y
i }, and (4.5)

Li = Ui ∪Di. (4.6)

4.5.3 The Rationale Behind this Construction

When a trace matches the input part as well as the output part of the design intent, the edges labeled
with Di will be traversed. The states V0 to Va−1 are visited once, and the run keeps then looping through
the states Va to Va+b−1. All states Va to Va+b−1 are accepting, so the run is accepting and the trace is
accepted.

When a trace matches the input part but not the output part of the design intent, some edge labeled
with Ui will be taken and the run comes to some of the states V 8

1 to V 8
a+b−1. As the trace matches the

input part of the design intent, only edges labeled with Li will be traversed and the run eventually starts
to loop through the states V 8

a to V 8
a+b−1. These states are not accepting, so the trace is not accepted.

When a trace does not match the input part of the design intent, some edge labeled with Ii will be
traversed. The run gets trapped in V4, which is accepting. Hence, the trace is accepted.

The states V 8
1 to V 8

a+b−1 are necessary, because it might be the case that a trace first violates the
output part of the desired behavior and at a later time step violates the input part. Such traces should be
accepted as well. We can only judge whether the input part is violated in a later time step if we keep
track of the position in the loop or the stem. This is exactly what the states V 8

1 to V 8
a+b−1 are for.

4.5.4 Analysis of Fundamental Properties

Claim 14. The automaton gd is complete and deterministic.

Proof. For every state q ∈ Qd and for every letter σ ∈ Σ, there is a unique successor state q′ = δ(q, σ).
This is obvious, because the sets Ii, Di, and Ui form a partition of Σ for all i. The sets Ii and Li do so
for all i as well.

Theorem 15. The DBW gd accepts a trace σ ∈ Σω iff (σ v dx)⇒ (σ v dy) holds.

Proof. The DBW gd accepts all traces σ for which (σ v d
x) ∧ (σ v d

y) holds by visiting the states
V0 to Va−1 once and looping through the states Va to Va+b−1. All traces σ for which (σ 6v d

x) holds
are accepted by gd as well, since the run gets trapped in V4. The DBW rejects all traces σ for which
(σ v dx)∧(σ 6v dy) holds. An edge labeled with Ui is taken eventually and the run finally loops through
the states V 8

a to V 8
a+b−1, which are not accepting.

A DBW is required to be complete and deterministic. Claim 14 attributes these properties to the
automaton gd. This implies that gd is indeed a DBW. Theorem 15 finally states that the construction is
correct, i.e., that the DBW gd enforces the desired behavior according to the definitions in Section 3.3.

Chapter 4. Debugging GR(1) Specifications 47

Fi
gu

re
4.

1:
T

he
st

ru
ct

ur
e

of
th

e
D

B
W
g d

re
pr

es
en

tin
g

th
e

de
si

re
d

be
ha

vi
or
d

.T
he

st
at

e
V

4
is

dr
aw

n
tw

ic
e

to
ke

ep
ed

ge
s

fr
om

cr
os

si
ng

.
E

dg
es

ar
e

la
be

le
d

w
ith

su
bs

et
s

of
th

e
al

ph
ab

et
Σ

ac
co

rd
in

g
to

th
e

E
qu

at
io

ns
4.

3
to

4.
6.

A
cc

ep
tin

g
st

at
es

ar
e

do
ub

le
bo

rd
er

ed
an

d
V

0
is

th
e

in
iti

al
st

at
e.

5 Implementation

This chapter presents the prototypical implementation of our debugging approach for the class of GR(1)
specifications. We have integrated our approach into the synthesis tools Anzu1 [59] and Marduk2. Anzu
is written in Perl, Marduk is written in Python. Both tools provide a textual user interface. Marduk is
also integrated into RATSY, a successor of the requirement analysis tool RAT [79], and can be used with
the graphical user interface (GUI) of RATSY. The implementation in Anzu is very similar to the one
in Marduk. Hence, this chapter describes only the implementation in Marduk and its integration into
RATSY.

5.1 Differences to the Theoretical Framework

In our theoretical framework, we assume that a GR(1) specification is represented by two sets of DBWs.
The first set A contains DBWs incorporating the environment assumptions. The second set G contains
DBWs that represent system guarantees. If the specification is given with LTL formulas as described in
Section 2.2, each formula has to be turned into a DBW at first. Such a transformation is straight forward.
Once the DBWs for all environment assumptions and system guarantees are available, a game can be
defined as shown in Section 2.4.3.

The implementation deviates from this procedure mainly for efficiency reasons. In the implementa-
tion, the user can define system guarantees and environment assumptions either with DBWs or by the
use of LTL formulas. Arbitrary combinations thereof are allowed as well. In order to achieve a better
performance, the implementation does not turn every formula into a DBW before computing the game.
Instead, formulas are used directly in the construction of the game. This is done as explained in Sec-
tion 2.6.3. As a consequence, all safety constraints of the specification, i.e., the parts ϕet and ϕst (cf.
Section 2.2), are directly incorporated by the transition relation of the game. State transitions violating
safety constraints are disallowed by the transition relation.

5.2 Features available from the RATSY GUI

We extended the GUI of RATSY in order to make our specification debugging features accessible. Three
new features are now provided:

• The user can play a testing game in order to test a specified system. In this game, the user is in
the role of the environment and the tool takes on the role of the system. In every time step, the
user provides values for the input signals and the tool responds with values for the output signals
so that the specification is fulfilled. In order to find such values, a winning strategy for the system
is synthesized and queried by the tool.

• The user can specify desired behavior of the system, starting from a trace that was obtained during
a play of the testing game. The tool is able to automatically convert this desired behavior into a
guarantee which enforces it.

• If a certain specification is unrealizable, the user can play a debugging game in order to find out
why the specification is unrealizable. In the debugging game, the user is in the role of the system
while the tool is in the role of the environment. In every time step, the tool first provides the
values for the input signals and the user has to respond with values for the output signals so that
the specification is fulfilled. The tool uses a counterstrategy to find inputs such that no behavior of
the system can fulfill the specification. A satisfiability check, the computation of an unrealizable

1Available at http://www.ist.tugraz.at/staff/jobstmann/anzu/ (last visit in October of 2009)
2Available at http://rat.fbk.eu/ratsy (last visit in October of 2009)

48

http://www.ist.tugraz.at/staff/jobstmann/anzu/
http://rat.fbk.eu/ratsy

Chapter 5. Implementation 49

Figure 5.1: A screenshot of the game part of the RATSY GUI. It also contains the specification
used for demonstrating the tool features. Signals of kind E are inputs, and signals of
kind S are outputs. Assumptions are marked with A, and guarantees with G. Assump-
tions and guarantees are written in LTL syntax.

core, the heuristic search of a countertrace, and the computation of a summarizing graph precede
the debugging game as explained in Section 3.2.

In the following, we will use an example to demonstrate all these new features of RATSY. This
example will also make clear, which information is provided to the user, and how this information can be
used for debugging. Figure 5.1 shows the game part of the RATSY GUI, also containing the specification
used for the demonstration. This specification defines a simple arbiter for a resource shared by two
entities. With the input signals req0 and req1, access to the resource can be requested by Entity 0
and Entity 1, respectively. The outputs grant0 and grant1 signal that the resource is granted to the
entities. The output error is raised in case of an error. The input signal startup_failed indicates
that the environment did not start correctly. The output error must be set in such a case. All signals are
initialized to 0 (env_init and sys_init). The guarantee sys_tran_0 enforces that the resource is
not granted to both entities at the same time. Guarantee sys_tran_1 makes sure that no grant is given
in case of an error. The guarantees sys_fair_0 and sys_fair_1 finally state that every request
must be granted eventually. There is no assumption about the environment.

5.2.1 The Testing Game

When the user clicks onto the button Start (see Figure 5.1), the tool first checks if the specification is
realizable. If so, it starts a testing game. Otherwise, it starts a debugging game. The specification used
for demonstration is indeed realizable, so a testing game is started. Figure 5.2 shows a possible play.
The current time step is marked with red letters. The user can choose values for the inputs in that time
step only. Signals values can be set to 0, 1, or “don’t care”. When all inputs have the desired values in
the current step, the user clicks onto Next Step. All inputs which still have the value “don’t care” are

Chapter 5. Implementation 50

Figure 5.2: A screenshot of RATSY when playing a testing game. The current time step of the
play is marked with red letters. The user can define values for the inputs in the current
time step, and the tool responds with outputs. The finite part of the traces has light
gray background, the infinite loop is marked with dark gray. The Game Log Window
containing log messages is shown as well.

chosen arbitrarily by the tool. Then, the tool gives values for the outputs, utilizing a winning strategy
for the system. After that, the next time step is started. The button Clear can be used to clear the user
selection in the current time step. The button Prev. Step lets the user go back in time if she wants to
change the values in some previous time step.

The tool does not let the user choose signal values that violate safety requirements of the specifica-
tion. If the user attempts to do so, an error message is given. Different colors are used in the waveforms
to indicate different origins of signal values:

• Black is used if the signal value is the only value fulfilling the safety requirements.

• Red is used if the value of a signal was chosen by the user.

• Blue is used if the signal value is determined by the safety requirements and some user selection
for the values of other signals.

• Green is used when the signal value was chosen arbitrarily by the tool.

The different colors should remind the user of her choices and the consequences of her selections in all
previous time steps. When analyzing a lost play, she can see at one glance where she might have chosen
differently, and where she did not have a choice at all.

The user can specify the finite part and the infinite loop of the game trace. The finite part is marked
with a light gray background, and the infinite part has a dark gray background in Figure 5.2. When
the user clicks onto Done, an explanation is created, which argues why the tool managed to fulfill the
specification. The Log Window in Figure 5.5 gives an idea of how this explanation looks like. When the
user finally clicks on Stop, the play engine is reset, all data from the traces vanishes, and a new game
can be started with a subsequent click onto Start.

As can be seen in Figure 5.2, the output trace contains a waveform jx that does not correspond to a
signal of the specification. This special waveform shows the memory content of the strategy as defined
by Piterman et al. [80]. That is, it contains the index j of the set Jsj which the system tries to reach next.
It can be used to gain a deeper insight into what the system is currently doing.

Exporting Game Traces

Game traces can be exported when clicking onto the button Export. The user can choose between three
different output formats: png, jpeg, and vcd (Value Change Dump [57]). Traces exported into png or
jpeg files are better than simple screenshots as no data is hidden due to scroll-bars. When game traces

Chapter 5. Implementation 51

are exported into vcd files, the colors in the traces, as well as the information about the position of the
infinite loop, are lost. This is due to a lack of support of such elements in the definition of the Value
Change Dump format. The main advantage of this format is that it is understood by most waveform
viewers (e.g., by GTKWave3 to name a freely available and powerful instance of a waveform viewer).

In the current version of the implementation, there is no way to save the state of a play. The main
reason is that a lot of data would have to be stored. The strategy by itself can become huge. Storing this
data together with the rest of the project information would lead to huge project files. Additionally, the
use case of disrupting a debugging or testing session during a play, and continuing the play later, is not a
very common one.

Subordinated Windows

There are two subordinated windows associated with the game part of RATSY. They can be shown or
hidden with the buttons Show Subviews and Hide Subviews.

First, there is the Game Log Window. This window is also visible in Figure 5.2. It contains three
types of log messages:

• Results are written in red. Such messages contain the main outcomes obtained by the tool during
the play.

• Operations are printed in black. They show what the tool is currently doing.

• Help messages guide the user through a game. They are written in blue.

All kinds of messages can be enabled or disabled with the according check-boxes (see Figure 5.2).
Disabled kinds of messages can be enabled later without any loss of information during the period of
being disabled.

Second, there is the Automata Window. If the specification contains automata that were constructed
with the Automaton Editor of RATSY, this window contains the current state of the play in all these
automata. Otherwise, this window is not available at all. As our example specification does not contain
any automata yet, this window is not yet available in the game. We will have a look at it when discussing
the debugging game.

5.2.2 Specifying Desired Behavior

Suppose the user is not satisfied with the simulation trace obtained in Figure 5.2. As already mentioned
in the introduction of the example, an error should be signaled when the environment could not start
correctly. To be more precise, suppose that the informal design intent was that the output signal error
has to be set in all time steps if the input startup_failed is set in all time steps (except for the first
step, where the requirements env_init and sys_init require these signals to be 0).

The user can now switch into the Specify Design Intent mode by clicking on the according radio
button, shown at the bottom of the right-hand side in Figure 5.2. In this mode, the user can change the
value of any input and output to 0, 1 or “don’t care” in order to express the design intent. There is also
the possibility of editing signal values for all time steps simultaneously. The position of the infinite loop
in the trace can be modified. Furthermore, new time steps can be inserted, and existing time steps can be
removed. In the end, the trace should represent the desired behavior in the sense that every behavior that
matches its input part must also match its output part (cf. Section 3.3.2).

Figure 5.3 shows the result of expressing the design intent. Two different colors are used for the
waveforms. Black is used for signal values that were taken from the game. Red is used for signal values
that were changed by the user. The user finally clicks on Done and a DBW is created automatically,

3http://gtkwave.sourceforge.net/ (last visit in October of 2009)

http://gtkwave.sourceforge.net/

Chapter 5. Implementation 52

Figure 5.3: A screenshot of RATSY when specifying some design intent. Again, the finite part of
the trace has light gray background, and the infinite loop is marked with dark gray. The
automatically generated DBW which represents the design intent is already contained
in the table of automata of the RATSY project.

which accepts only the desired behavior (design_intent0 in Figure 5.3). This automaton is illus-
trated in Figure 5.4. It is constructed according to the definition of gd in Section 4.5.2. The state accept
corresponds to V4, R2 corresponds to V 8

1 , and the states V1 and V2 correspond to V0 and V1 of gd.

The user can finally add this DBW as an additional guarantee to the specification, in order to eliminate
the undesired behavior.

5.2.3 The Debugging Game

When a game is started with the enhanced specification which contains the DBW of Figure 5.4 as an
additional guarantee, the tool signals that this specification is unrealizable. Following our debugging
approach, the tool first checks the specification for satisfiability with the algorithm of Listing 4.1. The
result of the check is printed into the Game Log Window. In our case, the specification is unrealizable
but still satisfiable.

Next, the specification is minimized following the ideas presented in Section 3.2.1 and Section 4.2.
All guarantees which are irrelevant for the unrealizability problem are deactivated in the table of require-
ments (on the top of the right-hand side in Figure 5.1) of the project. Which signals are irrelevant can be
seen from the Game Log Window. The user might be able to see the conflict in the remaining guarantees
already at one glance if not too many of them are left over. In our example, the guarantees sys_tran_0
and sys_fair_1, as well as the output grant1, are irrelevant for the unrealizability problem. Hence,
they will be ignored in all subsequent steps. The remaining guarantees are sys_tran_1 (no grant
on error), sys_fair_0 (eventually a grant for Entity 0), and the behavior specified in Figure 5.3
(error=1 if startup_failed=1). The problem is already obvious: When the environment sets
startup_failed=1, then error has to be raised and no grant can be given. When the resource is
additionally requested by Entity 0, the guarantee sys_fair_0 cannot be fulfilled.

After the minimization step, the tool computes a counterstrategy. Thereafter, it attempts to obtain a
countertrace from this counterstrategy with the heuristic presented in Section 3.2.2. This countertrace
or the counterstrategy is finally used for the computation of the summarizing graph G as well as in the
interactive debugging game. Per default, the computation of the graph G is aborted if G exceeds 100
vertices. The check for satisfiability, the minimization step, and the computation of the graph can each
be disabled with the according check-boxes shown at the bottom of Figure 5.2.

Chapter 5. Implementation 53

Figure 5.4: The automatically generated DBW enforcing the desired behavior. It has been created
according to the definition of gd in Section 4.5.2 for the desired behavior specified in
Figure 5.3.

Figure 5.5 shows a screenshot of the debugging game. Again, the current state is marked with red
letters, the finite part of the trace is marked with light gray background, and the infinite loop has a dark
gray background. The meaning of the different waveform colors is the same as for the testing game as
well. The only difference to the testing game is that the tool gives values for the inputs and the user has
to respond with values for the outputs. For our example, the tool is able to find a countertrace. It is shown
in the input part of the trace in Figure 5.5. It is presented right from the beginning of the play, so that the
user knows already in advance how the environment will behave. The countertrace exploits the already
described problem by setting startup_failed=1 and req0=1 forever.

When the user finally clicks onto Done, the tool explains why the user did not manage to fulfill the
specification. For our example, the explanation is contained in the Game Log Window of Figure 5.5.
The message states that the first fairness constraint of the system (which is the guarantee sys_fair_0)
could not be fulfilled.

Chapter 5. Implementation 54

Figure 5.5: A screenshot of RATSY when playing a debugging game. It also contains the coun-
tertrace found by our heuristic, as well as the Game Log Window explaining why the
user has lost the play, i.e., why she did not manage to fulfill the specification.

Additional Information Presented in the Debugging Game

As can be seen from Figure 5.5, there are some waveforms in the input trace that do not correspond to in-
put signals. The waveforms ix and jx contain the memory content (ix, jx) ∈ Γ of the counterstrategy4.
Following the idea in Section 4.4.2, the counterstrategy is used in parallel with the countertrace in order
to be able to present the memory content of the counterstrategy to the user. The symbol ? in Figure 5.5
corresponds to the case where the environment has not yet decided which set Jsj it tries to evade. The
waveform jx changes contains the maximum number of times the content of jx might change in the
future of the play (cf. Section 4.4.1). The stripe state in graph finally contains the current state of
the play in the graph G (see also Figure 5.7). As already argued in Section 4.4.1, all this information can
help to understand the cause of unrealizability.

Integration with the Automaton Editor of RATSY

The stripes di_state0 and di_state1 in the output part of the trace in Figure 5.5 contain the bits
that are used for encoding the current state of the play in the DBW depicted in Figure 5.4. However,
there is also a more comfortable way of keeping track of the current state of the play in the automata.

If the specification contains automata which were either constructed with the Automaton Editor of
RATSY, or which were constructed automatically from design intents, the Automata Window of the
game part of RATSY becomes available. It shows the current state of the play in all automata. For
example, Figure 5.6 shows the Automata Window in Step 2 of the play. The user can select an automaton
on the left-hand side (in case of Figure 5.6, there is only one). The automaton is then shown on the right-
hand side. The current state of the play is marked yellow in the selected automaton. Furthermore, all
edges, which are still possible with respect to all safety constraints and already undertaken user selections
for signals values, are also highlighted in yellow. For instance, when the user sets error=1 in the main
window of the game, then only the self loop over the state V2 is highlighted as a possible edge in the
automaton of Figure 5.6. If the user wants to traverse a certain (yellow) edge in the automaton, she can
also simply click onto this edge. All constraints on signal values associated with this edge will be added
as an additional user selection in the main window of the game. Constraints on signals that are not under
the control of the user are of course ignored.

4The reader might wonder about the value 0 for ix. The reason is that the counting of the sets of accepting states starts with
0 in the implementation while counting starts with 1 in our theoretical framework.

Chapter 5. Implementation 55

Figure 5.6: A screenshot of the Automata Window belonging to the game part of RATSY. On
the left-hand side, the user can select one of the automata of the specification. On the
right-hand side, the selected automaton is shown. The current state of the play in the
automaton is highlighted in yellow. Also, all state transitions which are still possible
in the current state of the play are marked yellow.

As an additional feature, not only the current step, but arbitrary time steps of the play can be displayed
in the automata. This can be useful when analyzing a lost play, or when looking for better choices on
signal values in previous time steps. All in all, the integration of the game part with the Automaton
Editor of RATSY greatly increases usability and makes it easier for the user to stay on top of things in
the game.

Recall our unrealizable specification. The automaton in Figure 5.6 makes the other part of the
dilemma, into which the user is brought by the countertrace, obvious: The input startup_failed
is always set according to the countertrace. If the user also sets the output signal error, she stays in
the state V2, which is accepting. If she selects the value of error to be 0 in any time step, she will
get trapped in the state R2, which is not accepting. Hence, when setting error=0, she loses the game.
On the other hand, when setting error=1, she cannot give a grant, and she will lose because of being
unable to fulfill the guarantee sys_fair_0, as already explained.

Chapter 5. Implementation 56

The Summarizing Graph G

Figure 5.7 shows the graph G as created by RATSY for our example. Every vertex corresponds to a
certain state-memory pair (q, γ) ∈ (Q,Γ) that might occur in a play. As suggested in Section 4.4, some
additional information is also written to the vertices of the graph. The meaning of the different values in
a vertex is explained in the box labeled with “Explanation” in Figure 5.7.

Besides a unique name, every vertex contains the memory content (ix, jx) ∈ Γ. It also contains the
indices i and j of all sets Jei and Jsj to which the state belongs. The maximum number of changes of the
memory content jx ∈ J in the future of the play is printed in the vertices too. Finally, the input letter
x ∈ X chosen by the environment from a certain state is included in the vertices as well. This input letter
is not written to the edges to keep the graph more readable. In fact, all inputs which have equal values
for all vertices are printed only once in the left upper corner. Only changing inputs are written into the
vertices. This is done to further increase the readability of the graph.

Every play starts in S0. Edges represent possible choices for the user. They are labeled with the
corresponding values for the outputs. Output values that cannot be chosen due to safety constraints are
not printed on the edges. Their value can be read form an extra file that is created together with the graph
and contains detailed information about the graph. This extra file also contains the exact signal values
corresponding to the vertices of the graph. As graphs tend to become quite large for larger specifications,
a simplified representation of the graph is created by the tool as well. This simplified representation does
not contain any signal values.

The graph in Figure 5.7 explains the unrealizability problem in our example specification as follow-
ing. When the user selects error=1 in all time steps, the play will get stuck in S10 after two steps.
The state corresponding to S10 is not part of the set Js0 of accepting states of the the system5, so this
set is not visited infinitely often. The set Js0 represents the guarantee sys_fair_0. This means that
sys_fair_0 cannot be fulfilled when error is always set to 1. When the user sets error to 0 in
any time step, the play will get trapped in the vertices S3 to S5. None of the states represented by these
vertices is element of Js1 , so this set of accepting states of the system will be visited only finitely often.
The set Js1 represents the accepting states of the DBW depicted in Figure 5.4. This DBW enforces the
design intent concerning the output error. Hence, when setting error to 0 in any time step, the user
violates exactly this design intent.

5.3 Features Available from the Textual User Interface

Most of the specification debugging features have also been made available over a textual user interface
to the tools Marduk and Anzu. Listing A.1 in Appendix A gives an idea of how a session with Marduk
looks like when using this textual user interface. For Anzu, the output looks quite the same. The different
processing steps can be enabled or disabled with command line arguments.

Of course the usability is much lower due to the limitations of the text based user interface. This is
especially true for the interactive game. There is no graphical representation of the traces, so it is harder
for the user to keep track of previous signal values during a play. Only when the user quits the game, a
text file is created which contains a table summarizing all signal values in all time steps. This table looks
similar to the traces in the GUI of RATSY. It is intended to help the user analyze a lost play. As a further
intricateness, the user has to read the countertrace from an extra file in order to know in advance how
the environment will behave during the play. Which parts of the specification have been removed can
also be seen only from an extra file containing the minimized specification. Specifying design intents is
not possible in the text mode at all. The reason is that it would be much more laborious for the user to
specify the traces with the textual user interface, than to simply formulate the design intent in terms of
properties of the specification directly.

5In case the reader is wondering about the index 0: While indices start at 1 in our theoretical framework, they start at 0 in
the implementation.

Chapter 5. Implementation 57

E
xp

la
na

tio
n

N
od

eN
am

e
(s

ee
 g

ra
ph

.in
fo

)

al
l i

 s
uc

h
th

at
 J

e[
i]

is
 f

ul
fi

lle
d

th
e

ix
 s

uc
h

th
at

 J
e[

ix
]

is
 m

et
 n

ex
t

al
l j

 s
uc

h
th

at
 J

s[
j]

is
 f

ul
fi

lle
d

th
e

jx
 s

uc
h

th
at

 J
s[

jx
]

is
 e

va
de

d

th
e

k,
 s

o
th

at
 jx

 c
ha

ng
es

 a
t

m
os

t k
 ti

m
es

 in
 th

e
fu

tu
re

ch
an

gi
ng

 n
ex

t i
np

ut
 v

al
ue

s

S0

0
0

0,
1

?

2

S1

0
0

1
?

1
gr

an
t0

=
0

er
ro

r=
0

S8

0
0

1
?

1

gr
an

t0
=

0
er

ro
r=

1

S1
2

0
0

0,
1

?

1

gr
an

t0
=

1
er

ro
r=

0

C
on

st
an

t n
ex

t i
np

ut
 v

al
ue

s:
 r

eq
0=

1
 r

eq
1=

1
 s

ta
rt

up
_f

ai
le

d=
1

S2

0
0

?

0

gr
an

t0
=

0
er

ro
r=

0

S6

0
0

?

0

gr
an

t0
=

0
er

ro
r=

1

S7

0
0

0
?

0

gr
an

t0
=

1
er

ro
r=

0

S9

0
0

1
0

1

gr
an

t0
=

0
er

ro
r=

0

S1
0

0
0

1
0

1

gr
an

t0
=

0
er

ro
r=

1

S1
1

0
0

0,
1

0

1

gr
an

t0
=

1
er

ro
r=

0

gr
an

t0
=

0
er

ro
r=

0

gr
an

t0
=

0
er

ro
r=

1

gr
an

t0
=

1
er

ro
r=

0

S3

0
0

1

0

gr
an

t0
=

0
er

ro
r=

0

S4

0
0

1

0

gr
an

t0
=

0
er

ro
r=

1

S5

0
0

0
1

0

gr
an

t0
=

1
er

ro
r=

0

gr
an

t0
=

0
er

ro
r=

0

gr
an

t0
=

0
er

ro
r=

1

gr
an

t0
=

1
er

ro
r=

0

gr
an

t0
=

0
er

ro
r=

0

gr
an

t0
=

0
er

ro
r=

1

gr
an

t0
=

1
er

ro
r=

0

gr
an

t0
=

0
er

ro
r=

0

gr
an

t0
=

0
er

ro
r=

1

gr
an

t0
=

1
er

ro
r=

0

gr
an

t0
=

0
er

ro
r=

0

gr
an

t0
=

0
er

ro
r=

1

gr
an

t0
=

1
er

ro
r=

0

gr
an

t0
=

0
er

ro
r=

0

gr
an

t0
=

0
er

ro
r=

1

gr
an

t0
=

1
er

ro
r=

0

gr
an

t0
=

0
er

ro
r=

0

gr
an

t0
=

0
er

ro
r=

1

gr
an

t0
=

1
er

ro
r=

0

gr
an

t0
=

0
er

ro
r=

0

gr
an

t0
=

0
er

ro
r=

1

gr
an

t0
=

1
er

ro
r=

0

gr
an

t0
=

0
er

ro
r=

0

gr
an

t0
=

0
er

ro
r=

1

gr
an

t0
=

1
er

ro
r=

0

Fi
gu

re
5.

7:
T

he
au

to
m

at
ic

al
ly

ge
ne

ra
te

d
gr

ap
h

G
w

hi
ch

su
m

m
ar

iz
es

al
lp

os
si

bl
e

pl
ay

s
fo

ro
ur

ex
am

pl
e.

A
n

ex
pl

an
at

io
n

to
th

e
va

lu
es

in
th

e
ve

rt
ic

es
is

gi
ve

n
on

th
e

le
ft

si
de

.V
er

tic
es

co
rr

es
po

nd
to

si
tu

at
io

ns
in

th
e

ga
m

e,
ed

ge
s

to
ch

oi
ce

s
of

th
e

us
er

.A
ll

pl
ay

s
st

ar
ti

n
S
0

.

Chapter 5. Implementation 58

In the text based mode, detailed information about performance measures is printed to the user and
logged into special files. Hence, this mode is perfectly suitable for scripts that automatically execute
performance tests on lists of specifications to be used as input for the tool. This was done to obtain the
results presented in Section 6.1.

5.4 Software Design

5.4.1 Integration into Marduk

Figure 5.8 depicts a class diagram which shows the software design for the implementation of our debug-
ging method in Marduk. In order to keep the diagram simple, only the most important public methods
are included. Attributes are not listed at all. Also, from the dependencies among the classes, only the
most relevant ones are shown. Subordinated helper classes are not printed either.

The class SpecDebugger implements the flow of our debugging method as illustrated in Fig-
ure 3.2. This class is also responsible for collecting performance measures, which are then logged via
the class PLog. PLog is implemented as a Singleton (cf. Gamma et al. [47]) in order to be accessible
from all modules. The implementation of the different steps of the debugging procedure is encapsulated
in other classes. The class SpecDebugUtils contains a lot of convenient utility functions that are
used by almost all other classes.

The class SatSolver is able to perform a check for satisfiability with the algorithm of Listing 4.1.
The Minimizer is an interface which abstracts the details of the minimization algorithms. Concrete
minimization algorithms are implemented in the classes DeltaDebugger and SimpleMinimizer,
where the latter contains the implementation of the algorithm as used by Cimatti et al. [21]. The interface
MinTarget hides details of the subject to the minimization. It allows to handle any such subject in the
same manner. It contains methods that return the set to be minimized, and it provides a method test,
which checks subsets thereof with respect to a certain property. Currently, RatMinTarget is the only
implementation. This class is able to return the set of guarantees and output signals. It furthermore
implements the method test by performing a realizability check with a given subset of the guarantees
and outputs. The idea of the interfaces is that every Minimizer can be used in the same way, and
that every Minimizer can work with every MinTarget. This provides a maximum of flexibility and
extendability.

The CounterstrategyComputer is able to compute the winning region as well as the win-
ning strategy for the environment in a GR(1) game. Given the so computed counterstrategy, the class
CountertraceComputer heuristically searches for a countertrace as described in Section 3.2.2.
The countertrace is returned as an InfiniteTraceOfBdds, a class which simplifies the access to
elements of the trace. The trace can be written into a file with the help of the Writer.

The counterstrategy and the countertrace, if found, are handled over to the PathFinder, which
computes the graph G. The graph is represented by a set of GraphNodes, where every GraphNode
has references to its successors and predecessors. GraphNodes are furthermore able to transform them-
selves into their DOT representation. The class InteractiveGame finally implements the interactive
game against the user providing a textual user interface. It uses the Writer to produce a summary of
the play when the user quits.

Chapter 5. Implementation 59

Figure 5.8: A class diagram showing the software design for the extension of Marduk. The
SpecDebugger implements the debugging flow as depicted in Figure 3.2, utilizing
classes that implement the different steps of this flow.

5.4.2 Integration into RATSY

Figure 5.9 gives a class diagram illustrating the software design for the integration of our debugging
approach into RATSY. The existing GUI of RATSY is interconnected with the back-end of the tool over
the Model-View-Controller (MVC) design pattern (cf. Buschmann et al. [15]), refined by the Observer

Chapter 5. Implementation 60

Fi
gu

re
5.

9:
A

cl
as

s
di

ag
ra

m
sh

ow
in

g
th

e
so

ft
w

ar
e

de
si

gn
fo

r
th

e
in

te
gr

at
io

n
in

to
R

AT
S

Y
.

T
he

co
nn

ec
tio

n
to

th
e

G
U

I
of

R
AT

S
Y

is
do

ne
w

ith
th

e
M

V
C

de
si

gn
pa

tte
rn

in
co

m
bi

na
tio

n
w

ith
th

e
ob

se
rv

er
pa

tte
rn

.

Chapter 5. Implementation 61

pattern (cf. Gamma et al. [47]). The implementation of these patterns is done with the pygtkmvc6

framework [16]. This framework provides the base classes Model, View, and Controller, which
implement the initialization and the communication between these three layers in a transparent manner.

The extension of the RATSY GUI in order to have the specification debugging features available
is done in the same manner. Although not shown in Figure 5.9, all models, views, and controllers are
derived from the respective base classes provided by the pygtkmvc framework.

Views

The views are responsible for the presentation of contents on the screen. The GameView represents the
main window of the game as shown in Figure 5.2. It consists of two TraceViews, one for the input
trace and one for the output trace, and it additionally presents some buttons and checkboxes. The class
TraceView already existed and could be reused. Only the according model and controller had to be
extended to make them suitable for the management of game traces. The GameLogView handles the
presentation of the Game Log Window as depicted in Figure 5.2. The MAEditorView maintains the
presentation of the Automata Window as shown in Figure 5.6. It is composed of some sub-views with
corresponding sub-controllers and sub-models. Details on that are not shown in the class diagram and
will also be omitted in this discussion.

Controllers

The controllers handle signals from the views, often by notifying them to the models. They furthermore
observe changes in the corresponding models and trigger updates of the view.

In our design, the GameCtrl class can be seen as the main controller of the game. It maintains
references to all other controllers. Not all other controllers are always available, though. While the
user plays the game, there is no DesignIntentCtrl (and also no corresponding model). While the
user specifies some design intent, the controller GameCtrl has no references to instances of the classes
GameLogicCtrl and MAEditorCtrl. The MAEditorCtrl is also unavailable while playing the
game if the specification does not contain any automata. These controllers and their respective models
are created and destructed on demand.

The controllers have a further responsibility. In our design, different models often do not inter-
act directly with each other. The often solely communicate over their controllers. This is done to
keep the different models decoupled from each other. The GameCtrl serves as a mediator in this
communication. For example, whenever the state of the play changes, the change is observed by the
GameLogicCtrl and forwarded to the GameCtrl. The GameCtrl spreads the information to the
classes MAEditorCtrl and TraceCtrlGame so that they can update their models. The changes in
the models are again observed by the controllers, which in turn trigger updates of the views.

Models

The models implement the logic behind the available functionality. They store the relevant data for the
application, and they provide methods to manipulate this data.

The back-end of our design works in the following way. The GameLogicModel utilizes Marduk
in order check the specification for realizability. If the specification turns out to be realizable, Marduk is
used to compute a winning strategy for the system. A NormalPlayEngine is created with the strategy.
If the specification turns out to be unrealizable, the GameLogicModel uses Marduk in order to check
for satisfiability, to minimize the specification, to compute a counterstrategy and a countertrace, and to
compute the summarizing graph G (see also Figure 5.8). Only the interactive debugging game is not

6 http://sourceforge.net/projects/pygtkmvc/ (last visit in October of 2009)

http://sourceforge.net/projects/pygtkmvc/

Chapter 5. Implementation 62

played using Marduk. Instead, a CounterPlayEngine is created, which implements the debugging
game.

The class FunctionThread, which already existed and could be reused, is employed to exe-
cute expensive functions provided by Marduk. Instead of calling the functions directly, this class ex-
ecutes them in an own thread. Executing expensive functions within the thread of the user interface
would cause the user interface the be unresponsive during the operation. With the help of the class
FunctionThread, the user interface remains operable.

After the initialization phase, the GameLogicModel does not have to care about the differences
between the testing game and the debugging game any longer. It simply forwards requests (e.g., requests
to start a new time step, to set a certain signal to a certain value, etc.) to its PlayEngine. The concrete
instance of the PlayEngine (either a NormalPlayEngine or a CounterPlayEngine) handles
the requests correctly according to the rules defined by the kind of the game. Deriving the two different
play engines from a common base class also allows to share code between the implementations of the
two kinds of games. After all, the two kinds of games do not differ that much.

The history of the play is maintained by the class PlayHistory. It contains an instance of the class
PlayHistoryEntry for every time step that has already been played. A HistoryTranslator
is used to translate the information into waveform stripes, i.e., into a format that is understood by the
TraceModel. The PlayEngine could also have been built to manipulate the TraceModel di-
rectly. The indirection with the HistoryTranslator is performed to have a higher flexibility in the
representation of the data inside the PlayEngine. Also, the PlayEngine is more decoupled from
the traces when using a translator. The efficiency of the implementation does not suffers perceptibly from
the translation.

When the user switches from playing the game into the Specify Design Intent mode, an instance
of a DesignIntentModel (and a corresponding controller) is created. It is initialized with the
PlayHistory of the PlayEngine, after which the GameLogicModel and the PlayEngine are
destructed. From that point on, the GameCtrl forwards all requests to the DesignIntentModel
instead of the GameLogicModel.

6 Experimental Results

We used two different GR(1) specifications to evaluate our approach. Both are parameterized. The first
one defines an arbiter for the AMBA AHB bus [7]. It is parameterized with the number of bus masters.
We will write An to denote this specification for n bus masters. Furthermore, we will write Anei to
denote mutants of the specification, where e describes the kind of modification and i is a running index.
The term woef inserted for e states that some sub-formula was removed from the part ϕeg of the GR(1)
specification (see Section 2.2). The term wsfmeans that some conjunct was added toϕsg, and wstmeans
that the part ϕst of the GR(1) specification was further restricted. The second specification we utilize is a
generalized buffer [8], which is used by n senders and two receivers. Again, we write Gn to denote the
unmodified specification for n senders. We write Gnei to denote mutants of this specification with the
same syntax as for the bus arbiter specification. All mutants of the two specifications are satisfiable but
not realizable.

6.1 Performance Evaluation

6.1.1 Performance Results

The Tables 6.1, 6.2, 6.3, and 6.4 summarize the results of our performance evaluation for Marduk.
The results for Anzu are similar and thus not printed in this document. All experiments were per-
formed on a machine equipped with an Intel® Core™ 2 Duo Mobile Processor P7350 and 3 GB of RAM.
Kubuntu 8.10 served as operating system, and Python 2.5.2 was used as interpreter.

Table 6.1 and Table 6.2 show the results when the minimization step is skipped. Table 6.1 gives the
results for the different mutants of the AMBA AHB bus arbiter specification, and Table 6.2 does so for
the variants of the specification of the generalized buffer. The two tables have the same columns. The
first two columns give an idea of the size of the examined specification variants by listing the number of
signals and the number of properties. Column 3 presents the time needed for the satisfiability check with
the algorithm of Listing 4.1. Column 4 and Column 5 list the time for the computation of the winning
region for the environment and the system, respectively. The times needed for the computation of a
winning strategy for the environment are presented in Column 6. Column 7 gives the time needed for the
computation of a winning strategy for the system in the game that was constructed from the unmodified
and thus realizable specification. Column 8 lists the number of vertices in the graph G that summarizes
all possible plays, and Column 9 shows the time needed for the computation of the DOT description
of this graph. The computation of the graph was aborted if it exceeded 1 000 vertices. Such cases are
indicated with > 1 k in Column 8. Column 10 indicates if our heuristic was able to find a countertrace.
If so, the last two columns of the Tables 6.1 and 6.2 give the length of the finite stem and the length of the
infinite loop of the lasso-shaped countertrace. The time needed for the computation of the countertrace
when given a counterstrategy, or the time until this computation aborts without success, is negligible
(< 1 second in all cases) and thus not included in the tables. Entries preceded with a > indicate time-
outs. As a consequence of such time-outs, data for other columns may be missing. This is indicated
with “?” in the tables.

The Tables 6.3 and 6.4 summarize the results when the minimization step is performed for the vari-
ants of the two specifications. Column 1 lists the number of realizability checks needed when using the
minimization method of Cimatti et al. [21], which we reimplemented for comparison. Column 2 gives
the number of realizability checks when Delta Debugging is used. Column 3 relates the first two columns
with each other by listing the reduction in the number of checks due to the use of Delta Debugging. The
Columns 4 and 5 give the times for minimization with the algorithm of Cimatti et al. [21] and with Delta
Debugging, respectively. The time savings when Delta Debugging is used are shown as speed-up factor
in Column 6. The Columns 7 and 8 present the number of guarantees and output variables before and

63

Chapter 6. Experimental Results 64

Table 6.1: Performance results for the mutants of the AMBA AHB bus arbiter [7] specification
when the minimization step is skipped.

column 1 2 3 4 5 6 7 8 9 10 11 12

#
si

gn
al

s

#
pr

op
er

tie
s

tim
e:

SA
T-

ch
ec

k

tim
e:
W

en
v

tim
e:
W

sy
s

tim
e:
ρ

en
v

tim
e:
ρ

sy
s

#
ve

rt
ic

es
in

G

tim
e:

G
ra

ph
G

τ
fo

un
d

|s
te
m

(τ
)|

|lo
op

(τ
)|

[-] [-] [sec] [sec] [sec] [sec] [sec] [-] [sec] [-] [-] [-]

A2woef1 22 90 0.1 0.3 0.4 0.5 2.6 27 0.6 yes 3 1
A3woef1 28 121 0.3 1.8 1.8 2.2 118 43 1.9 yes 3 1
A4woef1 34 152 1.1 39 25 9.0 2.6 k 75 8.0 yes 3 1
A5woef1 40 183 7.2 307 146 288 12 k 139 43 yes 3 1
A6woef1 50 213 4.7 439 147 212 53 k 267 320 yes 3 1

A2wsf1 22 92 0.1 0.4 0.9 0.2 2.6 59 1.0 yes 5 2
A3wsf1 28 123 0.3 3.4 5.5 2.3 118 251 12 yes 5 2
A4wsf1 34 154 0.9 57 96 7.2 2.6 k 171 7.6 yes 5 2
A5wsf1 40 185 4.0 389 520 104 12 k 683 205 yes 5 2
A6wsf1 50 215 4.0 640 569 297 53 k 715 181 yes 5 2

A2wsf2 22 92 0.1 0.5 1.2 0.2 2.6 9 0.1 yes 3 2
A3wsf2 28 123 0.2 3.5 6.3 2.4 118 9 0.2 yes 3 2
A4wsf2 34 154 0.8 35 128 25 2.6 k 35 0.9 yes 5 2
A5wsf2 40 185 3.4 391 579 159 12 k 9 0.2 yes 3 2
A6wsf2 50 215 3.4 669 629 316 53 k 9 0.3 yes 3 2

A2wst1 22 92 0.1 0.3 0.3 0.4 2.6 51 0.6 yes 5 2
A3wst1 28 123 0.2 0.8 1.1 1.8 118 211 8.0 yes 5 2
A4wst1 34 154 1.4 3.9 5.0 3.6 2.6 k 139 4.8 yes 5 2
A5wst1 40 185 20 41 582 55 12 k >1 k 241 yes 5 2
A6wst1 50 215 10 116 70 110 53 k 683 142 yes 5 2

A2wst2 22 92 0.1 0.2 0.2 0.1 2.6 7 0.1 yes 3 2
A3wst2 28 123 0.1 0.5 0.8 0.3 118 7 0.1 yes 3 2
A4wst2 34 154 0.4 13 5.9 1.7 2.6 k 7 0.1 yes 3 2
A5wst2 40 185 0.4 22 15 4.3 12 k 7 0.1 yes 3 2
A6wst2 50 215 0.7 41 84 6.8 53 k 7 0.1 yes 3 2

total 64 3.2 k 3.6 k 1.6 k 339 k 1.2 k

after Delta Debugging has been applied. The reduction in this number is shown in Column 9. The mini-
mization method of Cimatti et al. approximately leads to the same reduction. Hence, the exact values are
not included in the tables. Whether or not a countertrace could be found is indicated in Column 10. If a
countertrace was found, the length of its finite stem as well as the length of its infinite loop are listed in
the Columns 11 and 12. The last column finally contains the number of vertices in the summarizing graph
G. The times needed for the computation of this graph, for the computation of the winning region of the
environment, for the computation of the counterstrategy, and for the computation of the countertrace are
negligible after minimization. All these times are therefore not listed in the Tables 6.3 and 6.4. Again,
entries preceded with a > indicate time-outs and missing data due to time-outs is marked with “?”.

Chapter 6. Experimental Results 65

Table 6.2: Performance results for the mutants of the generalized buffer [7] specification when the
minimization step is skipped. Time-outs are preceded with > and missing data due to a
time-out is marked with “?”.

column 1 2 3 4 5 6 7 8 9 10 11 12

#
si

gn
al

s

#
pr

op
er

tie
s

tim
e:

SA
T-

ch
ec

k

tim
e:
W

en
v

tim
e:
W

sy
s

tim
e:
ρ

en
v

tim
e:
ρ

sy
s

#
ve

rt
ic

es
in

G

tim
e:

G
ra

ph
G

τ
fo

un
d

|s
te
m

(τ
)|

|lo
op

(τ
)|

[-] [-] [sec] [sec] [sec] [sec] [sec] [-] [sec] [-] [-] [-]

G5woef1 24 108 0.04 0.2 0.1 0.3 0.2 192 10 no - -
G20woef1 56 440 0.3 1.4 0.6 3.4 7.0 >1 k 653 no - -
G40woef1 97 1 231 1.2 6.0 1.5 18 71 >1 k 4.3 k no - -
G60woef1 137 2 421 2.8 15 3.4 53 516 >1 k 632 no - -
G80woef1 178 4 012 5.9 52 6.3 216 1.7 k ? >10 k no - -
G100woef1 218 6 002 9.2 62 8.0 255 3.1 k ? >10 k no - -

G5wsf1 24 110 0.04 0.1 0.4 0.1 0.2 249 15 no - -
G20wsf1 56 442 0.2 0.8 5.0 0.6 7.0 789 911 no - -
G40wsf1 97 1 233 0.7 3.2 20 2.2 71 >1 k 4.8 k no - -
G60wsf1 137 2 423 1.9 7.1 49 4.5 516 309 175 no - -
G80wsf1 178 4 014 3.4 18 195 10 1.7 k ? >10 k no - -
G100wsf1 218 6 004 4.7 27 228 14 3.1 k ? >10 k no - -

G5wsf2 24 110 0.02 0.1 0.1 0.1 0.2 >1 k 216 no - -
G20wsf2 56 442 0.1 1.0 0.1 0.6 7.0 >1 k 2.1 k no - -
G40wsf2 97 1 233 0.5 5.0 0.3 2.0 71 >1 k 3.2 k no - -
G60wsf2 137 2 423 0.9 11 0.6 4.6 516 >1 k 7.2 k no - -
G80wsf2 178 4 014 2.6 34 1.0 11 1.7 k ? >10 k no - -
G100wsf2 218 6 004 3.6 41 1.6 13 3.1 k ? >10 k no - -

G5wst1 24 110 0.02 0.1 0.1 0.1 0.2 7 0.1 yes 3 2
G20wst1 56 442 0.1 0.5 0.2 0.9 7.0 22 1.5 yes 3 2
G40wst1 97 1 233 0.3 1.6 0.6 3.5 71 40 8.7 yes 3 2
G60wst1 137 2 423 0.7 4.6 1.0 9.7 516 10 1.0 yes 3 2
G80wst1 178 4 014 1.3 7.6 1.9 27 1.7 k 76 77 yes 3 2
G100wst1 218 6 004 2.0 16 1.7 36 3.1 k 46 32 yes 3 2

G5wst2 24 110 0.02 0.1 0.1 0.1 0.2 37 0.9 no - -
G20wst2 56 442 0.1 0.5 0.2 0.9 7.0 118 28 no - -
G40wst2 97 1 233 0.4 1.8 0.5 4.8 71 226 297 no - -
G60wst2 137 2 423 0.7 3.9 1.1 12 516 46 9.8 no - -
G80wst2 178 4 014 1.2 9.6 1.8 24 1.7 k 442 5.2 k no - -
G100wst2 218 6 004 1.8 18 1.7 47 3.1 k 262 1.1 k no - -

total 47 349 532 774 27 k 31 ka

aNot including G80woef1, G100woef1, G80wsf1, G100wsf1, G80wsf2, and G100wsf2.

Chapter 6. Experimental Results 66

Table 6.3: Performance results for the mutants of the AMBA AHB bus arbiter [7] specification
when the minimization step is carried out. DD is short for Delta Debugging.

column 1 2 3 4 5 6 7 8 9 10 11 12 13

#
ch

ec
ks

in
[2

1]

#
ch

ec
ks

du
ri

ng
D

D

re
du

ct
io

n
of

ch
ec

ks

tim
e:
ϕ̂

in
[2

1]

tim
e:
ϕ̂

w
ith

D
D

sp
ee

d-
up

fa
ct

or

|G
∪
Y
|

|Ĝ
∪
Ŷ
|

re
du

ct
io

n
of
|G
∪
Y
|

τ
fo

un
d

|s
te
m

(τ
)|

|lo
op

(τ
)|

#
ve

rt
ic

es
in

G

[-] [-] [%] [sec] [sec] [-] [-] [-] [%] [-] [-] [-] [-]

A2woef1 80 47 41 7.6 1.3 5.8 80 9 89 yes 3 1 5
A3woef1 108 52 52 36 2.4 15 108 10 91 yes 3 1 13
A4woef1 136 56 59 165 3.5 47 136 11 92 yes 3 1 13
A5woef1 164 52 68 2.6 k 5.3 499 164 12 93 yes 3 1 5
A6woef1 191 58 70 1.4 k 7.8 179 191 12 94 yes 3 1 29

A2wsf1 81 37 54 11 1.2 9.2 81 8 90 yes 2 2 5
A3wsf1 109 40 63 63 2.3 27 109 8 93 yes 2 2 5
A4wsf1 137 46 66 617 3.5 176 137 9 93 yes 2 2 5
A5wsf1 165 48 71 17 k 8.0 2 181 165 9 95 yes 2 2 5
A6wsf1 192 47 76 5.2 k 11 473 192 9 95 yes 2 2 5

A2wsf2 81 53 35 11 2.7 4.1 81 12 85 yes 2 2 7
A3wsf2 109 59 46 63 9.4 6.7 109 11 90 yes 2 2 17
A4wsf2 137 77 44 649 40 16 137 20 85 yes 2 2 13
A5wsf2 165 65 61 16 k 225 73 165 12 93 yes 2 2 17
A6wsf2 192 69 64 5.0 k 303 17 192 12 94 yes 2 2 17

A2wst1 81 41 49 6.0 1.4 4.3 81 9 89 yes 3 2 7
A3wst1 109 47 57 27 3.2 8.4 109 10 91 yes 3 2 19
A4wst1 137 52 62 120 4.3 28 137 11 92 yes 3 2 19
A5wst1 165 51 69 1.1 k 12 92 165 12 93 yes 3 2 43
A6wst1 192 55 71 3.5 k 9.3 371 192 12 94 yes 3 2 43

A2wst2 81 46 43 6.9 1.9 3.6 81 10 88 yes 3 2 7
A3wst2 109 51 53 28 3.7 7.6 109 11 90 yes 3 2 31
A4wst2 137 57 58 79 5.2 15 137 12 91 yes 3 2 19
A5wst2 165 56 66 166 6.8 24 165 13 92 yes 3 2 63
A6wst2 192 62 68 267 9.7 28 192 13 93 yes 3 2 63

total 3.4 k 1.3 k 61 55 k 684 80 3.4 k 277 92

6.1.2 Discussion

Results without minimization

Computation Times: The SAT-check is very fast compared to all other computations. The times
needed for the computation of a winning region for the environment are approximately equal to the times
needed for the computation of the winning region for the system, which is not surprising. Fortunately,
the computation of a counterstrategy is faster than the computation of a winning strategy for the system

Chapter 6. Experimental Results 67

Table 6.4: Performance results for the mutants of the generalized buffer [7] specification when
the minimization step is carried out. DD is short for Delta Debugging, time-outs are
preceded with >, and missing data due to a time-out is marked with “?”.

column 1 2 3 4 5 6 7 8 9 10 11 12 13

#
ch

ec
ks

in
[2

1]

#
ch

ec
ks

du
ri

ng
D

D

re
du

ct
io

n
of

ch
ec

ks

tim
e:
ϕ̂

in
[2

1]

tim
e:
ϕ̂

w
ith

D
D

sp
ee

d-
up

fa
ct

or

|G
∪
Y
|

|Ĝ
∪
Ŷ
|

re
du

ct
io

n
of
|G
∪
Y
|

τ
fo

un
d

|s
te
m

(τ
)|

|lo
op

(τ
)|

#
ve

rt
ic

es
in

G

[-] [-] [%] [sec] [sec] [-] [-] [-] [%] [-] [-] [-] [-]

G5woef1 81 50 38 3.5 2.4 1.5 81 15 81 no - - 52
G20woef1 368 70 81 61 14 4.4 368 15 96 no - - 52
G40woef1 1.1 k 83 92 715 35 20 1.1 k 15 99 no - - 52
G60woef1 2.2 k 82 96 4.4 k 94 47 2.2 k 15 99 no - - 52
G80woef1 3.8 k 85 98 19 k 206 93 3.8 k 15 99 no - - 52
G100woef1 5.7 k 89 98 60 k 253 236 5.7 k 15 99 no - - 52

G5wsf1 82 76 7.3 3.7 5.0 0.7 82 19 77 yes 2 2 3
G20wsf1 369 220 40 97 409 0.2 369 49 87 yes 2 2 3
G40wsf1 1.1 k ? ? 1.2 k >70 k ? 1.1 k 90a 92a yesa 2a 2a 5a

G60wsf1 2.2 k ? ? 6.6 k >70 k ? 2.3 k 130a 94a yesa 2a 2a 5a

G80wsf1 3.8 k ? ? 25 k >70 k ? 3.8 k 170a 95a yesa 2a 2a 5a

G100wsf1 ? ? ? >70 k >70 k ? 5.7 k ? ? ? ? ? ?

G5wsf2 82 32 61 2.1 0.8 2.6 82 6 93 no - - 36
G20wsf2 369 52 86 37 4.7 7.9 369 13 96 no - - 58
G40wsf2 1.1 k 40 96 556 16 35 1.1 k 5 99 no - - 36
G60wsf2 2.2 k 57 97 3.8 k 60 64 2.3 k 6 99 no - - 36
G80wsf2 3.8 k 53 99 17 k 108 155 3.8 k 6 99 no - - 36
G100wsf2 5.7 k 55 99 56 k 181 309 5.7 k 6 99 no - - 36

G5wst1 82 34 59 2.6 1.1 2.4 82 7 91 yes 3 2 4
G20wst1 369 42 89 50 5.7 8.8 369 7 98 yes 3 2 4
G40wst1 1.1 k 55 95 641 19 34 1.1 k 7 99 yes 3 2 4
G60wst1 2.2 k 55 98 4.1 k 57 72 2.3 k 7 99 yes 3 2 4
G80wst1 3.8 k 60 98 18 k 111 161 3.8 k 7 99 yes 3 2 4
G100wst1 5.7 k 59 99 57 k 238 240 5.7 k 7 99 yes 3 2 4

G5wst2 82 43 48 2.9 1.7 1.7 82 9 89 yes 3 2 4
G20wst2 369 54 85 51 7.5 6.8 369 9 98 yes 3 2 4
G40wst2 1.1 k 65 94 651 22 30 1.1 k 9 99 yes 3 2 4
G60wst2 2.2 k 68 97 4.1 k 68 61 2.3 k 9 99 yes 3 2 4
G80wst2 3.8 k 69 98 18 k 125 141 3.8 k 9 99 yes 3 2 4
G100wst2 5.7 k 73 99 57 k 263 215 5.7 k 9 99 yes 3 2 4

total 53 kb 1.7 kb 97b 312 kb 2.3 kb 139b 53 kb 334b 99b

aComputed for the minimized specification obtained by the algorithm of Cimatti et al. [21].
bNot including G40wsf1, G60wsf1, G80wsf1, and G100wsf1.

Chapter 6. Experimental Results 68

in most cases, especially for larger specification variants. A possible reason is that the inputs dictated by
the counterstrategy depend on the current state and the current memory content of the counterstrategy
only. The outputs dictated by a strategy for the system additionally depend on the given inputs. That is,
the strategy for the system additionally has to be able to react to the moves of the environment, since the
system acts like a Mealy machine while the environment acts like a Moore machine (cf. Section 2.4).

Graphs: The size of the graph G which summarizes all possible plays is a good indicator for how
simple it is for the user to understand the cause of unrealizability when playing the interactive game
against the counterstrategy. Without minimization, the number of vertices in this graph is rather high
in most cases. The graph is often way too complex to be visualized or even analyzed by the user. The
computation of the DOT description of the graph is fast if the graph does not contain too many vertices.
For large graphs, the computation time is rather high. However, as such large graphs are typically no
help for the user, their computation can be aborted much earlier than done in our experiments. The
circumstance that a lot of time is sometimes spent on graph computation until this computation aborts
without success is annoying. The root of this problem is that the depth first search algorithm looking for
new graph nodes has often collected huge amounts of backtracking possibilities until the limit of graph
nodes is reached. See Section 8.3.2 for a solution to this problem.

Countertraces: For the mutants of the AMBA AHB bus arbiter specification, our heuristic for com-
puting countertraces performs well: It is able to find a countertrace in all cases. For the specification
variants of the generalized buffer, a countertrace is found for only one kind of modification, at least with-
out minimization. The time for the computation of a countertrace is negligible when a counterstrategy is
given. The length of the finite stems and the infinite loops of the countertraces are quite low. The overall
length (stem plus loop) corresponds to the number of iterations performed by our heuristic. In theory,
this number of iterations is exponential in the number of states in the worst case. Much to our pleasure,
this number is rather low in our experiments. Hence, the quantity of iterations to perform can be limited
to a relatively low value without making the heuristic fail in significantly more cases.

Improvements due to Minimization

Reduction in the Number of Checks due to Delta Debugging: Compared to the simple minimization
algorithm of Cimatti et al. [21], the number of realizability checks which are necessary in order to
compute an unrealizable core are reduced with the use of the Delta Debugging algorithm by about 95 %
in total. Additionally, there is a trend to higher reduction rates for larger specifications. Although no
such case is contained in our experimental results, Delta Debugging can also require more checks for
realizability than the simple algorithm. This is in particular the case if the specification that should be
minimized is already nearly an unrealizable core, i.e., if only a few guarantees or output signals can
be removed while preserving unrealizability. In such a case, Delta Debugging wastes a lot of checks
not removing anything and only increasing its granularity until it finally behaves similar to the simple
minimization algorithm (see also Section 2.7).

Reduction in the Computation Time due to Delta Debugging: Although one could presume so, there
is not always a strong correlation between the number of checks and the time needed for minimization.
The reason is that the time per check is not constant. As a consequence, the reduction in the computation
time is even higher than the reduction in the number of checks in most of our experiments. All in all, the
time needed for minimization is reduced by a factor of 125 when using Delta Debugging instead of the
simple minimization algorithm. Figure 6.1 illustrates the reduction in the form of a scatter plot. Delta
Debugging needs more time only for the specification variants Gnwsf1. For these mutants, there is a
reduction in the number of checks due to Delta Debugging, but there is an increase in the computation
time. This circumstance is investigated in the next subsection. For all other specification variants, Delta

Chapter 6. Experimental Results 69

Figure 6.1: The reduction in the computation time due to the use of Delta Debugging instead of
the simple minimization algorithm as a scatter plot. In most cases, Delta Debugging is
much faster.

Debugging is much faster. Note that the axes are scaled logarithmically. With a linear scaling, all points
would be located close to the abscissa and one could not distinguish them clearly.

Amount of Reduction: The number of guarantees and output signals is reduced greatly due to mini-
mization. In average, a reduction of about 95 % can be achieved. The high reductions are not specific to
Delta Debugging, the method of Cimatti et al. leads to similar results.

Countertraces: Minimization also increases the chances of finding a countertrace. Without minimiza-
tion, our heuristic is able to find a countertrace in about 55 % of the cases. When minimization is applied,
our heuristic succeeds for about 80 % of the specification variants. Also, the found countertraces are often
shorter in their representation than the countertraces found without minimization.

Graphs: Finally, minimization greatly reduces the size of the graphs G which summarize all possible
plays. Figure 6.2 illustrates this reduction as a scatter plot. The graph size slightly increases only in a few
cases (Anwst2 and Anwsf2 for some n) in which the graph is rather small anyway. It is dramatically
reduced in most cases. Note that the axes are scaled logarithmically. With a linear scaling, all points
would be located close to the abscissa and one could not distinguish single points clearly. The significant
reductions indicate that the underlying game is greatly simplified and that it is way easier to understand
the cause of unrealizability in the interactive game played on the minimized specification.

Chapter 6. Experimental Results 70

Figure 6.2: The reduction in the graph size due to minimization as a scatter plot. The graph size
slightly increases only in a few cases while it is dramatically reduced in the most cases.
Note that the axes are scaled logarithmically.

Discorrelation between the Number of Checks and the Time needed for Minimization

This section analyzes the gap between the reduction in the number of realizability checks and the re-
duction in the time needed for minimization due to Delta Debugging. This is done by examining the
minimization process on the two specification variants G20wsf1 and G20wst1. The first one is ex-
amined because for this specification, Delta Debugging needs fewer realizability checks but more time.
This is surprising and needs to be investigated. For the second specification mutant, Delta Debugging
performs well. This mutant therefore serves as object of comparison in our analysis.

Figure 6.3 gives details to the minimization process in case of G20wsf1 for both, the Delta De-
bugging algorithm as well as for the simple minimization algorithm of Cimatti et al. [21]. Figure 6.3a
shows how the size of the set of guarantees and output signals decreases with the realizability checks.
Figure 6.3b contains the time per realizability check. Note that the ordinate is scaled logarithmically.
Figure 6.3c finally illustrates how the size of the set to be minimized decreases with the elapsed time.
Figure 6.4 illustrates the same information for the specification G20wst1. Two effects can be observed
in these figures.

First, the time per realizability check tends to decrease with decreasing size of the specification (see
Figure 6.3b and Figure 6.4b), which is not surprising. This explains why the time savings due to Delta
Debugging are often slightly higher than the savings in the number of checks. As it can be seen in
Figure 6.4a, significant reductions of the size often occur early when using Delta Debugging, so that

Chapter 6. Experimental Results 71

(a) The reduction in the size of the set of guarantees and output signals over the already
undertaken amount of realizability checks.

(b) The times needed per realizability check.

(c) The reduction in the size of the set of guarantees and output signals over the elapsed
time.

Figure 6.3: Analysis of the minimization process in case of G20wsf1.

Chapter 6. Experimental Results 72

(a) The reduction in the size of the set of guarantees and output signals over the already
undertaken amount of realizability checks.

(b) The times needed per realizability check.

(c) The reduction in the size of the set of guarantees and output signals over the elapsed
time.

Figure 6.4: Analysis of the minimization process in case of G20wst1.

Chapter 6. Experimental Results 73

the algorithm mostly triggers checks on rather small and simple specifications. The correlation between
the time per realizability check and the size of the specification does, however, not explain the bad
performance of the Delta Debugging algorithm on G20wsf1. Figure 6.3a shows that, except for the
first 26 checks, the simple minimization algorithm has to deal with larger specifications throughout the
minimization process.

Second, the time needed for one realizability check is often significantly higher when the spec-
ification is realizable, compared to the cases where the specification is unrealizable. Every spike in
Figure 6.3a corresponds to a case where the examined specification is realizable. When the simple min-
imization algorithm is applied to G20wsf1, only 50 of the 369 checks give the verdict of having a
realizable specification. In case of Delta Debugging, 134 of the 220 checks are performed on a realizable
specification. That is, although the overall number of checks is smaller when using Delta Debugging, the
amount of checks on realizable specifications is higher. Considering the higher time needed for checking
a realizable specification, this explains the higher computation time needed by Delta Debugging in case
of G20wsf1.

Performing a realizability check on an unrealizable specification is often faster because of the per-
formance improvement (see Section 4.2) applied to our implementation: The algorithm computing the
winning region Wsys for the system aborts, signaling that the specification is unrealizable, if the initial
state is not contained in some iterate of the outermost fixpoint. If the specification is realizable, the
computation of the winning region has to be performed completely. Unfortunately, this situation would
not change if realizability was decided by computing the winning region Wenv of the environment and
checking if q0 6∈ Wenv instead of checking if q0 ∈ Wsys. Just as the computation of Wsys, the com-
putation of Wenv could only be aborted before completion in case of unrealizability, but not in case of
realizability.

The simple minimization algorithm requires exactly |Ĝ ∪ Ŷ | checks on realizable specifications. No
minimization algorithm can require fewer checks on realizable specifications, since the minimality of the
solution can only be guaranteed if there has been an attempt to take every single element out of the set. In
fact, given an unrealizable core, its minimality cannot even be verified with fewer than |Ĝ∪ Ŷ | checks on
realizable specifications. Hence, Delta Debugging cannot outperform the simple minimization algorithm
regarding the amount of the more expensive checks on realizable specifications. Delta Debugging can
only outperform the simple minimization algorithm by reducing the overall number of checks.

For G20wst1, Delta Debugging encounters much more unrealizable intermediate specifications than
the simple minimization algorithm as well. However, Delta Debugging is able to remove big parts of the
specification early (see Figure 6.4a and Figure 6.4c), thus requiring only a few checks for realizability
at all. This compensates the higher amount of the (often more expensive) checks on realizable specifi-
cations. Also, the differences between the times needed for testing realizable and unrealizable specifi-
cations are quite low for G20wst1. A manual inspection of some other mutants suggests that this is
also the case for many other specification variants. The big differences between the times for checking
realizable and unrealizable specification that occur in the specification variants Gnwsf1 seem to be the
exception.

6.2 Evaluation of the given Explanations

This section evaluates the usefulness of the diagnostic information given by our tool. It investigates an
unrealizable specification as well as a specification that is in conflict with the design intent. It illus-
trates that the given explanations are indeed easy to understand and of great help to find fixes, even for
industrial-size specifications.

Chapter 6. Experimental Results 74

6.2.1 Debugging Unrealizability

We investigate the explanations given for unrealizability by debugging the unrealizable specification
G5wst2. This specification defines a generalized buffer, which is used by 5 senders and 2 receivers.
Some signals and properties of the specification, which are relevant for this example, will now be ex-
plained briefly. The inputs will be written with lower case letters and the outputs will be typed with upper
case letters in the following. With the inputs stob_reqi, where 0 ≤ i < 5, the senders can signal a
request to send data. The outputs BTOS_ACKi, again with 0 ≤ i < 5, are used to acknowledge to the
senders that they can send data. The generalized buffer does not only communicate with the senders,
but also with a FIFO (First In, First Out) storage unit. The output ENQ is set whenever data should be
enqueued in this storage unit. The specification G5wst2 contains an additional guarantee G(ENQ=0)
which forbids the buffer to put any data into this storage unit. This guarantee makes the specification
unrealizable, as the buffer is no longer able to handle requests of senders.

SAT-check and Minimization

In our approach (see Figure 3.2), a check for satisfiability is performed first. It shows that the unrealizable
specification G5wst2 is still satisfiable. Thus, we cannot use SAT-solving techniques to explain the
problem. Next, the specification is minimized in order to obtain an unrealizable core. From the 67
formulas specifying the system, the following remain:

BTOS_ACK4=0 ∧ ENQ=0 ∧ DEQ=0 (6.1)

G((BTOS_ACK4=0 ∧ XBTOS_ACK4=1)⇒ XENQ=1) (6.2)

G(ENQ=0) (6.3)

G F(stob_req4=1⇔ BTOS_ACK4=1) (6.4)

G((rtob_ack0=1 ∧ Xrtob_ack0=0)⇒ XDEQ=1) (6.5)

G((rtob_ack1=1 ∧ Xrtob_ack1=0)⇒ XDEQ=1) (6.6)

G(empty=1⇒ DEQ=0) (6.7)

Furthermore, the minimization algorithm keeps only 3 of the 15 output signals, namely

BTOS_ACK4, ENQ, and DEQ.

All other formulas specifying the behavior of the system, and all other outputs, are irrelevant for the
unrealizability problem. That is, even if the specification would require the system to fulfill only the enu-
merated guarantees with respect to the listed outputs, the system would not be able to behave conforming
to this specification.

The minimization result is so simple that the problem can be seen at one glance: The output signal
BTOS_ACK4 is initially set to 0 (Equation 6.1). It cannot change its value from 0 to 1 without ENQ
being set (Equation 6.2). The output ENQ must not be set ever (Equation 6.3, which was added to make
the specification unrealizable), so BTOS_ACK4 can never be set, i.e., Sender 4 will never receive an
acknowledgement to be allowed to send data. When Sender 4 forever requests to send data by setting
stob_req4=1, the guarantee in Equation 6.4 cannot be fulfilled. This guarantee states that every
request of Sender 4 to send data must finally be acknowledged by the generalized buffer.

The guarantees stated in the Equations 6.5, 6.6, and 6.7 are part of the unrealizable core, because they
are necessary for the environment to fulfill all assumptions. Without these guarantees, the system could
enforce a situation from which the environment could not meet all assumptions. We omit the details of
how the system could do so, because this information would also be of little interest for the user, who
only wants to find out why the specification is unrealizable.

Chapter 6. Experimental Results 75

Figure 6.5: The countertrace for the specification G5wst2. The infinite loop is marked in gray.
The traces for stob req0 to stob req4 are equal and thus printed only once in the
waveform labeled with stob reqi. The only possible value sequences for the output
signals ENQ and BTOS ACK4 are included in this figure as well.

By now, we can also comprehend why the specification is still satisfiable. Remember that a specifi-
cation is satisfiable if one trace of inputs and outputs exists, so that the specification is fulfilled. In our
example, we have such traces. One possibility is that none of the senders requests to send data. In this
case, the system does not have to give any acknowledgements.

Counterstrategy and Countertrace

Next, following our debugging approach, a counterstrategy is computed. This counterstrategy is then
used to heuristically search for a countertrace. Our heuristic is able to find a countertrace which exploits
the discussed problem. It is depicted in Figure 6.5 together with the only possible trace (conforming
to the safety guarantees in Equations 6.1, 6.2, and 6.3) for the output signals ENQ and BTOS_ACK4.
The infinite loop is marked with gray background. The relevant part of the countertrace is that the input
stob_req4 is set to 1 forever. To comply with the safety constraints, the system must set ENQ=0 and
BTOS_ACK4=0 forever. The fairness constraint stated in Equation 6.4 is not fulfilled.

Interactive Game and Summarizing Graph

In order to explore possible responses to the countertrace, the user can play the interactive game against
the environment. Figure 6.6 shows the graph G that summarizes all plays which are possible in this
game when the environment uses the countertrace of Figure 6.5. Refer to Section 5.2.3 for a detailed
description of the elements of the graph.

The graph is very simple. There is no way for the user to prevent the play from getting stuck in S2
and S3. The states of these vertices are not part of the set Js0 of accepting state of the system1. The
set Js0 represents all states in which the condition of Equation 6.4 is fulfilled. Hence, there is no way to
fulfill this guarantee when the countertrace of Figure 6.5 is used as input.

1Remember that the indices start at 0 in our implementation while they start at 1 in our theoretical framework.

Chapter 6. Experimental Results 76

Explanation

NodeName (see graph.info)

all i such
that Je[i]

is fulfilled

the ix such
that Je[ix]
is met next

all j such
that Js[j]

is fulfilled

the jx such
that Js[jx]
is evaded

the k, so that jx changes at
most k times in the future

changing next input values

S0

0,1 0

0 ?

1

S1

0,1 0

 ?

0

Constant next input values:
 stob_req0=1
 stob_req1=1
 stob_req2=1
 stob_req3=1
 stob_req4=1
 rtob_ack0=1
 rtob_ack1=1

 full=0
 empty=1

S2

0,1 0

 0

0

S3

0,1 1

 0

0

Figure 6.6: The graph G computed for the specification G5wst2 after minimization. It summa-
rizes all plays that are possible when the environment uses the countertrace. Vertices
correspond to situations in the game, edges to choices of the user. All plays start in S0.
Refer to Section 5.2.3 for a more detailed description.

Solution

Once the user has understood the conflict that makes the specification unrealizable, it is up to her to
resolve it. There are multiple ways of doing so. The user could add environment assumptions that
prevent the requests from the senders to be pending indefinitely. Another possibility would be to remove
one of the guarantees which are remaining after minimization. (Remember that we added the guarantee
stated in Equation 6.3 in order to make the specification unrealizable.) Selecting the best solution is up
to the user.

6.2.2 Debugging Undesired Behavior

In this section, our approach for debugging undesired behavior will be investigated on an industrial-size
example. This is done by debugging the unmodified bus arbiter specification A2 for two masters with
respect to a fictive design intent. Again, we use lower case letters for input signals and upper case letters
for output signals. The relevant signals for this example are briefly introduced as follows. The output
signal HMASTER states which master currently owns the bus. It is set to 0 whenever the bus is owned
by Master 0, and set to 1 whenever the bus is occupied by Master 1. The output signal START must be
raised when the bus ownership changes. The inputs hbusreq0 and hbusreq1 are used to request the
bus by Master 0 and Master 1, respectively.

Chapter 6. Experimental Results 77

Figure 6.7: A possible simulation trace of the unmodified bus arbiter specification A2. It is re-
stricted to signals that are relevant for this example. The infinite loop is colored in
gray.

Figure 6.8: The desired behavior as specified by the user: Start must be 0 as long as the input keeps
on changing. Question marks stand for the special value “don’t care”. The infinite loop
is colored in gray.

Excluding Undesired Behavior

Figure 6.7 depicts a possible simulation run. It contains only signals which are of interest for this ex-
ample. The time steps in the infinite loop have a gray background. Suppose the design intent was that
START=0 as long as the input hburst0 keeps on changing. This behavior cannot be observed in the
simulation run shown in Figure 6.7. In such a situation, our debugging approach (see Figure 3.7) requires
the user to specify the design intent. This is done by changing signal values in the simulation trace to
the desired values. Figure 6.8 shows the result. This trace, specifying the desired behavior, is turned into
a guarantee by the tool. The guarantee is then added to the specification. The result is the specification
A2wst1, which is unrealizable. This means that no system can implement the original specification and
at the same time show the desired behavior of Figure 6.8. The desired behavior is in conflict with the rest
of the specification.

SAT-check and Minimization

In order to explain this conflict, our approach proceeds as depicted in Figure 3.2. The SAT-check re-
ports that the specification is satisfiable. As the next step, an unrealizable core is computed. From the
65 formulas that specify the system, only the following ones are in conflict with the design intent of

Chapter 6. Experimental Results 78

Figure 6.9: The countertrace for the specification A2wst1. It keeps hburst0 changing and
sets hbusreq1=1 forever. The only possible value sequences for the output signals
START and HMASTER are included in this figure as well. The infinite loop is marked
in gray.

Figure 6.8:

A0=0 ∧ A1=0 ∧ START=1 ∧ HMLOCK=0 ∧ HMASTER=0 (6.8)

G((A0=0 ∧ A1=0 ∧ (HMLOCK=0 ∨ hburst0=1 ∨ hburst1=1))⇒ X(A0=0 ∧ A1=0)) (6.9)

G((XSTART=0)⇒ (HMASTER=1⇔ XHMASTER=1)) (6.10)

G F(HMASTER=1 ∨ hbusreq1=0) (6.11)

From the 15 output signals, only the 5 signals

HMASTER, HMLOCK, START, A0, and A1

are involved in the conflict with the design intent. Analyzing this minimization result, the conflict can
be explained as following. With HMASTER=0, the bus is initially granted to Master 0 (Equation 6.8).
According to the design intent specified in Figure 6.8, the output START cannot be raised as long as
the input hburst0 keeps on changing. The guarantee in Equation 6.10 ensures that the bus ownership
cannot change without START being raised. Hence, the bus will remain granted to Master 0 as long
as hburst0 keeps on changing. When the bus is additionally requested by Master 1 (hbusreq1=1)
forever, the guarantee stated in Equation 6.11 is not fulfilled. This guarantee affirms that every request
of Master 1 for the bus is finally acknowledged.

Equation 6.9 is necessary for the specification to be unrealizable, because there is an environment
assumption G F(A0=0 ∧ A1=0). This assumption requires the environment to visit the state encoded
with A0=0 and A1=0 infinitely often. The environment needs Equation 6.9 in order to be able to enforce
that.

Counterstrategy and Countertrace

The tool computes a counterstrategy and therefrom a countertrace. The resulting countertrace is il-
lustrated in Figure 6.9. It again contains only the inputs that are relevant for this example. It ex-
ploits the already discussed problem by keeping the input hburst0 changing, and by setting the input
hbusreq1=1 forever. Figure 6.9 also shows the only sequence of the outputs START and HMASTER
which fulfills the remaining safety guarantees, i.e., the Equations 6.8 to 6.10. The fairness guarantee of
Equation 6.11 is not fulfilled.

Chapter 6. Experimental Results 79

Interactive Game and Summarizing Graph

If neither the minimization result nor the countertrace make the conflict between the specification and
the design intent clear for the user, the interactive game can be played. Figure 6.10 shows the graph that
summarizes all plays that are possible when the environment uses the countertrace. It is organized as
described in Section 5.2.3. There is only one set Js0 of accepting states for the system. This set contains
all states that fulfill the condition in Equation 6.11. There are two sets Je0 and Je1 of accepting states of
the environment. After two steps, the play is in one of the vertices S2 to S5 of the graph. This set of
vertices cannot be left any more. The states in this set are all elements of Je0 and Je1 , but no elements of
Js0 . Hence, all assumptions are fulfilled but the system cannot fulfill all guarantees when the environment
uses the countertrace.

Solution

Resolving the conflict is again up to the user. The user might allow the bus ownership to change with-
out raising the signal START, she might remove the guarantee that every request for the bus is finally
acknowledged, etc. Which solution is most suitable cannot be decided automatically.

Chapter 6. Experimental Results 80

E
xp

la
na

tio
n

N
od

eN
am

e
(s

ee
 g

ra
ph

.in
fo

)

al
l i

 s
uc

h
th

at
 J

e[
i]

is
 f

ul
fi

lle
d

th
e

ix
 s

uc
h

th
at

 J
e[

ix
]

is
 m

et
 n

ex
t

al
l j

 s
uc

h
th

at
 J

s[
j]

is
 f

ul
fi

lle
d

th
e

jx
 s

uc
h

th
at

 J
s[

jx
]

is
 e

va
de

d

th
e

k,
 s

o
th

at
 jx

 c
ha

ng
es

 a
t

m
os

t k
 ti

m
es

 in
 th

e
fu

tu
re

ch
an

gi
ng

 n
ex

t i
np

ut
 v

al
ue

s

S0

0
0

0
?

1

hb
ur

st
0=

1

S1

0,
1

0

?

0

hb
ur

st
0=

0

H
M

A
ST

L
O

C
K

=0

S6

0,
1

0

?

0

hb
ur

st
0=

0

H
M

A
ST

L
O

C
K

=1

C
on

st
an

t n
ex

t i
np

ut
 v

al
ue

s:
 h

re
ad

y=
1

 h
bu

sr
eq

0=
1

 h
lo

ck
0=

1
 h

bu
sr

eq
1=

1
 h

lo
ck

1=
1

 h
bu

rs
t1

=1

S2

0,
1

0

0

0

hb
ur

st
0=

1

H
M

A
ST

L
O

C
K

=0

S4

0,
1

0

0

0

hb
ur

st
0=

1

H
M

A
ST

L
O

C
K

=1

H
M

A
ST

L
O

C
K

=0

H
M

A
ST

L
O

C
K

=1

S3

0,
1

1

0

0

hb
ur

st
0=

0

H
M

A
ST

L
O

C
K

=0

S5

0,
1

1

0

0

hb
ur

st
0=

0

H
M

A
ST

L
O

C
K

=1

H
M

A
ST

L
O

C
K

=0
H

M
A

ST
L

O
C

K
=1

H
M

A
ST

L
O

C
K

=0

H
M

A
ST

L
O

C
K

=1

H
M

A
ST

L
O

C
K

=0

H
M

A
ST

L
O

C
K

=1

Fi
gu

re
6.

10
:

T
he

gr
ap

h
G

co
m

pu
te

d
fo

r
th

e
sp

ec
ifi

ca
tio

n
A
2
w
s
t
1

af
te

r
m

in
im

iz
at

io
n.

It
su

m
m

ar
iz

es
al

lp
la

ys
th

at
ar

e
po

ss
ib

le
w

he
n

th
e

en
vi

ro
nm

en
tu

se
s

th
e

co
un

te
rt

ra
ce

.
V

er
tic

es
co

rr
es

po
nd

to
si

tu
at

io
ns

in
th

e
ga

m
e,

ed
ge

s
to

ch
oi

ce
s

of
th

e
us

er
.

A
ll

pl
ay

s
st

ar
ti

n
S
0

.
R

ef
er

to
Se

ct
io

n
5.

2.
3

fo
r

a
m

or
e

de
ta

ile
d

de
sc

ri
pt

io
n.

7 Related Work

7.1 Debugging Incomplete Specifications

The matters of incomplete specifications and coverage measures to detect incompleteness have been
addressed before in various ways.

On the one hand, there is work that checks the completeness of a specification regarding a given im-
plementation. Katz et al. [60] define different comparison criteria, each revealing a certain dissimilarity
between the implementation and the specification. The criteria are based on comparisons between the
implementation and the tableau of the specification. Hoskote et al. [56] propose a coverage metric that
identifies the part of the state space of the implementation that is covered by the specification. In this
metric, a state is covered with respect to a certain signal if modifying the value of the signal in that state
violates the specification. The idea of introducing modifications into the model of the implementation
and checking if they violate the specification is also used by Chockler et al. [17; 18]. All these papers are
strongly motivated by model-checking as there is always an implementation available in such a setting.

On the other hand, there are coverage measures that do not rely on any particular implementation.
Claessen [23] introduces a notion of “forgotten cases”, which are situations where a certain output at
a certain point in time is not constrained. They also define a concept of “freeness” that allows the
user to distinguish between intentionally and unintentionally underspecified signals. The specification
is assumed to be given as a list of safety properties. Fisman et al. [45] try to detect what they call
“inherent vacuity”. They define a specification to be inherently vacuous if it can be mutated into a
simpler equivalent specification. This is in turn the case if the specification is satisfied vacuously in
all systems. The method works for sets of linear temporal properties. Das et al. [34] propose to test
the specification against a high-level fault model. They use a single stuck-at fault model on inputs and
outputs. The idea is to check whether an implementation that contains a stuck-at fault can still conform
to the specification. If so, then the signal that is allowed to be stuck is underconstrained.

The focus of our work is not on detecting incompleteness in a specification. We only show how
a specification that is incomplete can be distinguished from a specification that is in conflict with the
design intent, given a situation where undesired behavior has been observed during the simulation of a
system. In addition, we show how the specification can be refined in case of incompleteness.

7.2 Debugging Specifications which are not Sound

7.2.1 Counterstrategies as Debugging Aids

The idea of using counterstrategies as aids for debugging unrealizable specifications has already been
used in various settings.

Tripakis et al. [96] consider game graphs with controllable and uncontrollable edges with respect
to invariance and reachability properties. They attempt to compute a strategy and a counterstrategy
simultaneously, mentioning that the counterstrategy can be used as diagnostics if no winning strategy
could be found.

Bontemps et al. [10] present an algorithm to compute a counterstrategy for an unrealizable specifica-
tion of a reactive system that is given as a Live Sequence Chart [32]. They also mention that a user could
utilize this counterstrategy in a play-out engine to illustrate the flaws in the specification.

Behrmann et al. [5] present the tool UPPAAL-Tiga, which works with a network of timed automata
that defines a game. The objective in the game can be given as a safety property or as a liveness property.
If no controller can achieve the objective, a counterstrategy is computed. The counterstrategy can be
output as a decision graph, and it can be used in a game against the user.

81

Chapter 7. Related Work 82

Stevens and Stirling [92; 91] consider the problem of model-checking the modal µ-calculus. If the
µ-calculus formula does not hold, they use a counterstrategy to explain the reason. They assume that
the user has some path through the system in his mind that makes the formula hold. Just like we do,
they use the counterstrategy in an interactive game to demonstrate that the imagined path does not fulfill
the formula. Counterstrategy computation as well as the interactive game have been implemented in
the Edinburg Concurrency Workbench [74]. Even some usability issues are addressed, but they are all
related to the (textual) user interface. Leucker and Noll extend the work of Stevens and Stirling by
presenting a more efficient algorithm [70] and by integrating it into the tool Truth/SLC [71], where the
diagnostic game can be played utilizing a graphical user interface. Tan [93] introduces another tool called
PlayGame, implementing the same approach. The core feature of PlayGame compared to Truth/SLC is
that it implements diagnostic games independent of a specific model checker.

Although all of these papers at least mention the use of counterstrategies for diagnostic purposes,
none addresses the simplification of a counterstrategy in order to present helpful information to the user.
This simplification is the main contribution of our work. In particular, we are not aware of any previous
work on finding countertraces. Finally, the use of counterstrategies to explain conflicts between the
formal specification and the informal design intent is also new to the best of our knowledge.

7.2.2 Other Debugging Techniques

Yoshiura [100] addresses the problem of explaining unrealizability. He proposes several heuristics for
the localization of the cause of unrealizability in a temporal specification of a reactive system. The
heuristics are based on the tableau of the specification and on a classification of the specification regard-
ing three properties a specification might have. These three properties are strong satisfiability, stepwise
satisfiability, and stepwise strong satisfiability, as introduced by Mori and Yoshiura [75].

Cimatti et al. [21] suggest to explain unrealizability by presenting an unrealizable core. They also
state that such an unrealizable core can be used to obtain a more focused counterstrategy. To the best of
our knowledge, this is the only work that is concerned with giving simple explanations. Our work utilizes
their ideas with severals improvements. First, we do not minimize environment assumptions because this
step is computationally expensive and because it would confuse the user in the game. Second, we remove
not only properties but also signals from the specification. Third, we use a more advanced minimization
algorithm that is faster in most of our experiments.

8 Conclusion and Outlook

8.1 Summary

In this work, we presented aids for debugging specifications that are unrealizable or in conflict with the
design intent. We introduced a generic approach and concretized it for the class of GR(1) specifica-
tions. We presented an implementation of our method for this class of specifications and finally provided
experimental results.

8.1.1 Debugging Approach

In our approach for debugging conflicts with the design intent, the user has to specify the desired be-
havior by modifying a simulation trace that surfaces undesired behavior. The tool then augments the
specification with a guarantee that enforces the desired behavior. If the augmented specification is real-
izable, the original specification has been incomplete and the augmented specification is a valid fix. If
the augmented specification is unrealizable, no system can implement the specification and at the same
time exhibit the desired behavior. The desired behavior is in conflict with the rest of the specification.
Explaining this conflict is done by explaining the unrealizability of the augmented specification.

Our approach for explaining unrealizability is based on the presentation of a counterstrategy. When
the environment adheres to it, no behavior of the system can fulfill the specification. The counterstrategy
is presented in two ways. First, the user can play an interactive game in the role of the system against the
counterstrategy. The goal of the user in this game is to fulfill the specification. Failing to do so, she will
learn where the specification is too restrictive to be realizable. Second, the counterstrategy is presented as
a graph that summarizes all plays that are possible in the interactive game when the environment adheres
the counterstrategy.

8.1.2 Simplification of Counterstrategies

Counterstrategies may become complex and thus hard to understand for the user, so we presented two
methods to simplify them. These simplification methods are the main contribution of this work.

First, we simplify the specification itself, by computing an unrealizable core as suggested by Cimatti
et al. [21]. This gives a simpler specification that still contains the conflict. We improve the work of
Cimatti et al. in three points: (1) we also minimize the output signals, (2) we do not minimize environ-
ment assumptions as this step is computationally expensive, and (3) we use Delta Debugging as a (more
advanced) minimization algorithm.

Second, we suggest to present a countertrace instead of a counterstrategy. The inputs dictated by the
counterstrategy depend on the previous output values. To the contrary, a countertrace is a fixed sequence
of inputs so that no behavior of the system can fulfill the specification. A countertrace does not always
exist. Additionally, its computation is expensive. We therefore presented a heuristic algorithm that
searches for a countertrace. It does not always find a countertrace, even if one exists, but it performs well
in our experiments.

8.2 Discussion

8.2.1 Debugging Undesired Behavior

Our approach and the corresponding implementation to debug undesired behavior let the user eliminate
faulty behavior of the system with a high usability. The feature that the user can simply change signal

83

Chapter 8. Conclusion and Outlook 84

values in the faulty trace obtained during simulation in order to define the desired behavior is very
convenient. It is easy to use even for non-experts and for users which are not familiar with the underlying
specification language. As a shortcoming, one could mention that the manual inspection and correction
of simulation traces becomes the more laborious the larger the specification is. For specifications with
hundreds or thousands of signals, one would have to think of ways to automate parts of these processes.

8.2.2 Countertraces

Judging from experience, we consider the countertraces as the most useful information given by our tool
in order to make the user understand conflicts within the specification or between the specification and the
design intent. Countertraces are independent of the system’s moves and thus much easier to understand
than conventional counterstrategies. Additionally, the user knows in advance how the environment will
behave in the interactive game when given the countertrace used by the environment. This makes it easier
for the user to localize the problem. Sometimes, a glimpse onto the countertrace is enough to understand
the problem, and the interactive game even does not have to be played at all. Think of a situation where
the user has simply forgotten to exclude the environment behavior dictated by the countertrace with
environment assumptions, for example. The CPU time needed for the computation of a countertrace is
negligible when using our heuristic. Thus, countertraces give simpler explanations at low costs in many
cases. To the best of our knowledge, countertraces have not been mentioned before in the literature.

8.2.3 Summarizing Graphs

The graph that summarizes all possible plays of the interactive game is useful if no countertrace could be
found. In such a situation, this graph allows the user to see already in advance how the environment will
react to her choices on the output values. In a sense, it is therefore something like a “cheat sheet” for the
interactive game. The graph does not provide more information than the interactive game, but it provides
information in a more dense form by showing all possible plays simultaneously. As a downside, it can
become huge and thus impossible to analyze by the user.

8.2.4 Minimization

Minimization greatly reduces not only the size of the specification but also the complexity of the cor-
responding game structure. In order to achieve a simple game structure, it is important that not only
guarantees but also output signals are removed. Carried out this way, minimization decreases the size of
the graph G, which summarizes all possible plays, significantly. Remember that the size of this graph is
also a good indicator of how simple it is for the user to understand the conflict when playing the interac-
tive game. Furthermore, minimization increases the chance to find a countertrace with our heuristic. The
amount of time needed to perform the minimization step is often much lower than the time needed for
the computation of a counterstrategy for the original specification. The times needed for all subsequent
steps are negligible when minimization has been performed. Hence, minimization does not only lead to
simpler explanations, it often even speeds up the whole computation.

8.3 Future Work

Although we think that we have defined a quite useful approach for debugging unrealizability and con-
flicts with design intents, there is still a lot of work to be done in the future.

Chapter 8. Conclusion and Outlook 85

8.3.1 Evaluation

In this work, the introduced debugging approach has been concretized and evaluated for the class of
GR(1) specifications only. This could be done for other kinds of specification languages as well. It
would be interesting to see for which other languages the approach works better or worse.

In Section 6, we evaluated our debugging approach on artificially constructed bugs, inserted into
two parametrized GR(1) specifications. More significant results would be obtained if the evaluation was
done on bugs that occurred in real specification development processes. This would require some sort of
database of buggy specifications. The expressiveness of the evaluation could also be increased if further
specifications were used.

8.3.2 Graph Computation

As can be seen from Table 6.2, a lot of time is often spent on the computation of the graph G until this
computation aborts as the number of graph nodes exceeds some threshold value. To overcome that, the
graph nodes could be computed symbolically in a first step. Remember that the graph nodes are simply
the pairs of state and memory content that might occur during a play when the environment adheres to
the counterstrategy. Thus, the symbolic computation of the graph can be done similar to Listing 4.4, in
which the set of reachable states is computed symbolically. Checking if the number of graph nodes is
larger than the threshold value could be done using the symbolic representation of the set of graph nodes.
Finally, the computation of the explicit representation of the graph G is only performed if the graph is
not too large. The symbolic computation of the set of graph nodes is likely to be very fast compared to
an explicit computation. Hence, the high graph computation times could be avoided in cases where this
computation is aborted anyway.

The graph G often contains nodes which are equivalent in the sense that exactly the same moves are
possible from these nodes. For example, in the graph depicted in Figure 6.10, S1 is equivalent to S6,
S2 is equivalent to S4, and S3 is equivalent to S5 in this sense. Such equivalent nodes could be merged
into one node. This would reduce the size of the graph, making it easier for the user to analyze it. On
the other hand, one graph node would then no longer represent one state-memory pair of the play, but a
set of such pairs. Hence, the direct connection between a graph node and the states in the automata of
the game would be lost. Thus, computing the graphs in two versions, one in which equivalent nodes are
merged and one in which they are not, would probably be the best solution.

8.3.3 Countertraces

The countertraces produced by our heuristic are often not as short in their representation as they could be.
For instance, in Figure 6.5, the steps 1, 2, 3, and 4 contain exactly the same values for all inputs. The steps
1 to 3 could be removed to obtain a shorter representation of the same trace. As a general solution, the
infinite loop could be analyzed for patterns that repeat, at first. After the repetitions have been removed
in the loop, all occurrences of the loop pattern at the end of the finite stem could be removed from the
stem. This gives a shorter representation of the same countertrace.

The heuristic that searches for countertraces itself could be improved as well. Currently, an input
letter τi is chosen arbitrarily from the set Ti. If Ti = ∅ for some i, our heuristic aborts without success.
The sets Si and Ti depend on all previously chosen input letters τj with j < i. Hence, when encountering
an empty set Ti in some step i, the heuristic could pick a different input letter τj ∈ Tj in some previous
time step j, in the hope that this letter does not lead to an empty set. In the question of how often the
heuristic should pick a different τj until it aborts without success, one would have to find a trade-off
between the computation time and the success rate. Another direction into which one could go in order
to improve the heuristic would be to pick the input letters τi ∈ Ti not arbitrarily but following some
metric that reflects the chances for success. A first idea would be to choose τi such that Si+1 has the
lowest possible cardinality.

Chapter 8. Conclusion and Outlook 86

If no countertrace could be found from the initial state, the tool could use a combination of a counter-
strategy with countertraces during the interactive game. It could start the game using a counterstrategy.
From every state-memory pair that is encountered during a play, it could then on-the-fly try to find a
countertrace using our heuristic. If a countertrace is found from a certain situation, this countertrace is
used instead of the counterstrategy from that point on.

8.3.4 Minimization

The minimization step would need further investigation concerning its performance as well. In the cur-
rent version of the implementation, output signals are minimized simultaneously with guarantees. An-
other possibility would be to minimize only the guarantees in a first step, and the output signals in a
second step, or vice versa. Maybe this improves the performance in the average case.

It could also improve the performance if realizability was decided by checking if q0 6∈ Wenv instead
of checking if q0 ∈ Wsys. Both methods are equivalent since Wenv and Wsys are complementary sets
of states, i.e., Wenv = Q \Wsys. An optimization similar to the one mentioned in Section 4.2 could be
applied: the computation of Wenv could be aborted, signaling that the specification is unrealizable, as
soon as q0 ∈ Za for some iterate Za of the outermost fixpoint according to Equation 4.1. It is not to be
expected that the optimization has a greater impact on the performance in case of computing Wenv but
maybe the performance increases for some other reason.

A maybe more promising approach to reduce the effort for deciding realizability would be to define
criteria that are on the one hand sufficient for a specification to be unrealizable or realizable, and on
the other hand easy to check. Realizability would then have to be computed only if none of the criteria
applies. The challenge is to find criteria that apply to as many cases as possible while still being efficient
to check.

As it can be seen from the Tables 6.3 and 6.4, Delta Debugging performs much better than the simple
minimization algorithm of Cimatti et al. [21] in most cases. However, there are also cases in which
Delta Debugging is worse. One could try to define a heuristic that picks one of the algorithms based
on some properties of the specification which are easy to observe. One could also try to combine the
algorithms, e.g, by starting with Delta Debugging and switching to the simple minimization algorithm
if the performance of Delta Debugging goes below a certain mean reduction-per-check value. Finally,
other minimization algorithms could be tried as well.

All in all, we can conclude that writing correct formal specifications is hard, and that it is difficult
to provide the user with meaningful diagnostic information in case of an incorrect specification. The
debugging approach presented in this work supports the user in the task of localizing bugs in a formal
specification, but there is still a lot of work to be done in the future.

Appendices

87

Appendix A: A session with Marduk

1 −−−−−−−−−−−−−−−−− Satisfiability −−−−−−−−−−−−−−−−
2 GF (guarantee [j]) can be satisfied for all j
3 The specification IS satisfiable (took 0 . 0 1 seconds)
4 −−−−−−−−−−−−−−−−−− Minimization −−−−−−−−−−−−−−−−−
5 Applying DD to find a smaller spec that is still unrealizable . . .
6 guarantees : 5 formulas −−reduced to−−> 3 formulas
7 outputs : 6 formulas −−reduced to−−> 4 formulas
8 All in all : 11 formulas −−reduced to−−> 7 formulas
9 83 checks for realizability had to be done

10 64 checks could be omitted , because a superset was already realizable
11 −> only 19 checks were actually carried out (took 0 . 1 4 seconds)
12 The minimal spec that is still unrealizable was written to . / delta .xml .
13 A log of what the Delta Debugger did was written to . / delta .log .
14 FOR ALL FURTHER ANALYSIS , I WILL USE THE MINIMIZED SPECIFICATION !
15 −−−−−−−−−−−−−−−−− Counterstrategy −−−−−−−−−−−−−−−
16 Calculating the winning region for the environment . . . (0 . 0 1 seconds)
17 Calculating the counterstrategy . . . (took 0 . 0 1 seconds)
18 −−−−−−−−−−−−−−−−−−− Countertrace −−−−−−−−−−−−−−−−
19 Searching heuristically for a countertrace . . . (took 0 . 0 1 seconds)
20 Countertrace FOUND (length loop : 1 length stem : 4)
21 Printing the trace to ’trace .txt ’ . . .
22 FOR ALL FURTHER ANALYSIS , I WILL USE THIS COUNTERTRACE ! ! !
23 −−−−−−−−−−−−−−− Summarizing Graph −−−−−−−−−−−−−−−
24 Computing a graph that summarizes all possible plays . . . (0 . 0 7 seconds)
25 Nr of states in graph : 13
26 Graphs were written to ’graph .dot ’ and ’graph_with_signals .dot ’ .
27 You can produce pictures of the graphs by typing for example :
28 ’dot −Tpdf −o . / graph .pdf . / graph .dot ’
29 Detailed information to the graphs was written to ’graph .info ’ .
30 −−−−−−−−−−−−−−−− Interactive Game −−−−−−−−−−−−−−−
31 Lets play a game . I am the environment and you are the system . I will
32 give you inputs , you have to choose outputs . I will help you by writing
33 possible output values in brackets . A log of all variable values in all
34 time steps will be printed to log .txt after you quit with ’Q ’ . You will
35 see that I will force you to violate your specification !
36 [some things snipped]
37 current req0 is : 1
38 current req1 is : 1
39 current startup_failed is : 1
40 current grant0 is : 0
41 current error is : 1
42 current di_state0 is : 1
43 current di_state1 is : 0
44 The environment tries to fulfill fairness condition nr 0 next
45 I try to keep the system from fulfilling fairness condition nr : 0
46 I reserve the right to change my opinion on that at most 1 times from
47 now
48 next req0 is : 1
49 next req1 is : 1
50 next startup_failed is : 1
51 enter next grant0 (0 , 1) : q

Listing A.1: A session with Marduk using its textual user interface. The output was slightly
shortened to fit onto a page.

88

Bibliography

[1] Martı́n Abadi, Leslie Lamport, and Pierre Wolper. Realizable and unrealizable specifications of
reactive systems. In Giorgio Ausiello, Mariangiola Dezani-Ciancaglini, and Simona Ronchi Della
Rocca, editors, ICALP, volume 372 of Lecture Notes in Computer Science, pages 1–17. Springer,
1989. (Cited on page 5.)

[2] Rajeev Alur and Thomas A. Henzinger, editors. Computer Aided Verification, 8th International
Conference, CAV ’96, New Brunswick, NJ, USA, July 31 - August 3, 1996, Proceedings, volume
1102 of Lecture Notes in Computer Science. Springer, 1996. (Cited on pages 89 and 92.)

[3] Rajeev Alur and Salvatore La Torre. Deterministic generators and games for LTL fragments. In
Joseph Halpern, editor, LICS, pages 291–302. IEEE Computer Society, 2001. (Cited on page 2.)

[4] Ilan Beer, Shoham Ben-David, Cindy Eisner, and Avner Landver. RuleBase: An industry-oriented
formal verification tool. In DAC, pages 655–660, 1996. (Cited on page 1.)

[5] Gerd Behrmann, Agnès Cougnard, Alexandre David, Emmanuel Fleury, Kim Guldstrand Larsen,
and Didier Lime. UPPAAL-Tiga: Time for playing games! In Damm and Hermanns [33], pages
121–125. (Cited on pages 7 and 81.)

[6] Gérard Berry, Hubert Comon, and Alain Finkel, editors. Computer Aided Verification, 13th Inter-
national Conference, CAV 2001, Paris, France, July 18-22, 2001, Proceedings, volume 2102 of
Lecture Notes in Computer Science. Springer, 2001. (Cited on pages 90 and 93.)

[7] Roderick Bloem, Stefan Galler, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Martin Wei-
glhofer. Interactive presentation: Automatic hardware synthesis from specifications: a case study.
In Rudy Lauwereins and Jan Madsen, editors, DATE, pages 1188–1193. ACM, 2007. (Cited on
pages 3, 6, 63, 64, 65, 66 and 67.)

[8] Roderick Bloem, Stefan Galler, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Martin Wei-
glhofer. Specify, compile, run: Hardware from PSL. Electronic Notes in Theoretical Computer
Science, 190(4):3–16, 2007. (Cited on pages 3, 6 and 63.)

[9] Roderick Bloem, Kavita Ravi, and Fabio Somenzi. Efficient decision procedures for model check-
ing of linear time logic properties. In Nicolas Halbwachs and Doron Peled, editors, CAV, volume
1633 of Lecture Notes in Computer Science, pages 222–235. Springer, 1999. (Cited on page 1.)

[10] Yves Bontemps, Pierre-Yves Schobbens, and Christof Löding. Synthesis of open reactive systems
from scenario-based specifications. Fundamenta Informaticae, 62(2):139–169, 2004. (Cited on
pages 3, 7 and 81.)

[11] Robert K. Brayton, Gary D. Hachtel, Alberto L. Sangiovanni-Vincentelli, Fabio Somenzi, Adnan
Aziz, Szu-Tsung Cheng, Stephen A. Edwards, Sunil P. Khatri, Yuji Kukimoto, Abelardo Pardo,
Shaz Qadeer, Rajeev K. Ranjan, Shaker Sarwary, Thomas R. Shiple, Gitanjali Swamy, and Tiziano
Villa. Vis: A system for verification and synthesis. In Alur and Henzinger [2], pages 428–432.
(Cited on page 1.)

[12] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans. Com-
puters, 35(8):677–691, 1986. (Cited on pages 1 and 11.)

[13] J. Richard Büchi. On a decision method in restricted second-order arithmetic. In Proceedings of
the 1960 International Congress of Logic, Methodology, and Philosophy of Science, pages 1–11.
Stanford Univ. Press, 1962. (Cited on page 2.)

89

Bibliography 90

[14] Julius R. Büchi and Lawrence H. Landweber. Solving sequential conditions by finite-state strate-
gies. Transactions of the American Mathematical Society, 138:295–311, April 1969. (Cited on
page 2.)

[15] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. Pattern-
Oriented Software Architecture: A System of Patterns, volume 1 of Wiley Series in Software Design
Patterns. John Wiley & Sons, 1996. (Cited on page 59.)

[16] Roberto Cavada. Model-view-controller and observer patterns for pygtk (version 1.99.0). Avail-
able from http://sourceforge.net/projects/pygtkmvc/files/. Last visit in October
of 2009. (Cited on page 61.)

[17] Hana Chockler, Orna Kupferman, Robert P. Kurshan, and Moshe Y. Vardi. A practical approach
to coverage in model checking. In Berry et al. [6], pages 66–78. (Cited on pages 3 and 81.)

[18] Hana Chockler, Orna Kupferman, and Moshe Y. Vardi. Coverage metrics for temporal logic model
checking. In Tiziana Margaria and Wang Yi, editors, TACAS, volume 2031 of Lecture Notes in
Computer Science, pages 528–542. Springer, 2001. (Cited on pages 3 and 81.)

[19] Alonzo Church. Logic, arithmetic, and automata. In Proceedings of the International Congress of
Mathematicians (Stockholm, 1962), pages 23–35. Institut Mittag-Leffler, Djursholm, 1963. (Cited
on page 2.)

[20] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pistore,
Marco Roveri, Roberto Sebastiani, and Armando Tacchella. Nusmv 2: An opensource tool for
symbolic model checking. In Ed Brinksma and Kim Guldstrand Larsen, editors, CAV, volume
2404 of Lecture Notes in Computer Science, pages 359–364. Springer, 2002. (Cited on page 1.)

[21] Alessandro Cimatti, Marco Roveri, Viktor Schuppan, and Andrei Tchaltsev. Diagnostic informa-
tion for realizability. In Francesco Logozzo, Doron Peled, and Lenore D. Zuck, editors, VMCAI,
volume 4905 of Lecture Notes in Computer Science, pages 52–67. Springer, 2008. (Cited on
pages 7, 20, 21, 22, 58, 63, 66, 67, 68, 70, 82, 83 and 86.)

[22] Alessandro Cimatti, Marco Roveri, Viktor Schuppan, and Stefano Tonetta. Boolean abstraction for
temporal logic satisfiability. In Damm and Hermanns [33], pages 532–546. (Cited on page 20.)

[23] Koen Claessen. A coverage analysis for safety property lists. In FMCAD, pages 139–145. IEEE
Computer Society, 2007. (Cited on pages 3 and 81.)

[24] Edmund M. Clarke. The birth of model checking. In Grumberg and Veith [50], pages 1–26.
(Cited on page 1.)

[25] Edmund M. Clarke and I. A. Draghicescu. Expressibility results for linear-time and branching-
time logics. In J. W. de Bakker, Willem P. de Roever, and Grzegorz Rozenberg, editors, REX
Workshop, volume 354 of Lecture Notes in Computer Science, pages 428–437. Springer, 1988.
(Cited on page 1.)

[26] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Dexter Kozen, editor, Logic of Programs, volume 131 of
Lecture Notes in Computer Science, pages 52–71. Springer, 1981. (Cited on page 1.)

[27] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verification of finite state
concurrent systems using temporal logic specifications: A practical approach. In POPL, pages
117–126, 1983. (Cited on page 1.)

http://sourceforge.net/projects/pygtkmvc/files/

Bibliography 91

[28] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems, 8(2):244–263, 1986. (Cited on page 1.)

[29] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT Press,
January 1999. (Cited on page 1.)

[30] Edmund M. Clarke and Jeannette M. Wing. Formal methods: State of the art and future directions.
ACM Computing Surveys, 28(4):626–643, 1996. (Cited on page 1.)

[31] Holger Cleve and Andreas Zeller. Finding failure causes through automated testing. In AADE-
BUG, 2000. (Cited on page 17.)

[32] Werner Damm and David Harel. Lscs: Breathing life into message sequence charts. Formal
Methods in System Design, 19(1):45–80, 2001. (Cited on pages 3 and 81.)

[33] Werner Damm and Holger Hermanns, editors. Computer Aided Verification, 19th International
Conference, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings, volume 4590 of Lecture
Notes in Computer Science. Springer, 2007. (Cited on pages 89, 90, 92 and 93.)

[34] Sayantan Das, Ansuman Banerjee, Prasenjit Basu, Pallab Dasgupta, P. P. Chakrabarti, Chun-
duri Rama Mohan, and Limor Fix. Formal methods for analyzing the completeness of an assertion
suite against a high-level fault model. In VLSI Design, pages 201–206. IEEE Computer Society,
2005. (Cited on pages 3 and 81.)

[35] Pallab Dasgupta. A Roadmap for Formal Property Verification. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006. (Cited on page 9.)

[36] Mark Dowson. The Ariane 5 software failure. SIGSOFT Software Engineering Notes, 22(2):84,
1997. (Cited on page 1.)

[37] Samuel Eilenberg. Automata, Languages, and Machines. Academic Press, Inc., Orlando, FL,
USA, 1974. (Cited on page 10.)

[38] E. Allen Emerson. Temporal and modal logic. In Handbook of Theoretical Computer Science,
Volume B: Formal Models and Sematics (B), pages 995–1072. MIT Press, Cambridge, MA, USA,
1990. (Cited on page 1.)

[39] E. Allen Emerson. Model checking and the mu-calculus. In Neil Immerman and Phokion G.
Kolaitis, editors, Descriptive Complexity and Finite Models, volume 31 of DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, pages 185–214. American Mathematical
Society, 1996. (Cited on pages 13 and 15.)

[40] E. Allen Emerson. The beginning of model checking: A personal perspective. In Grumberg and
Veith [50], pages 27–45. (Cited on page 1.)

[41] E. Allen Emerson and Chin-Laung Lei. Efficient model checking in fragments of the propositional
mu-calculus (extended abstract). In LICS, pages 267–278. IEEE Computer Society, 1986. (Cited
on pages 36 and 37.)

[42] E. Allen Emerson and A. Prasad Sistla. Deciding full branching time logic. Information and
Control, 61(3):175–201, 1984. (Cited on page 2.)

[43] Berndt Farwer. omega-automata. In Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors,
Automata, Logics, and Infinite Games, volume 2500 of Lecture Notes in Computer Science, pages
3–20. Springer, 2001. (Cited on page 9.)

Bibliography 92

[44] Andrea Ferrara, Paolo Liberatore, and Marco Schaerf. Model checking and preprocessing. In
Roberto Basili and Maria Teresa Pazienza, editors, AI*IA, volume 4733 of Lecture Notes in Com-
puter Science, pages 48–59. Springer, 2007. (Cited on page 1.)

[45] Dana Fisman, Orna Kupferman, Sarai Sheinvald-Faragy, and Moshe Y. Vardi. A framework for
inherent vacuity. In Hana Chockler and Alan J. Hu, editors, Haifa Verification Conference, volume
5394 of Lecture Notes in Computer Science, pages 7–22. Springer, 2008. (Cited on pages 3
and 81.)

[46] Gordon Fraser, Franz Wotawa, and Paul Ammann. Testing with model checkers: a survey. Soft-
ware Testing, Verification & Reliability, 19(3):215–261, 2009. (Cited on page 3.)

[47] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional Computing Series. Addison-
Wesley Publishing Company, New York, NY, 1995. (Cited on pages 58 and 61.)

[48] Simson Garfinkel. History’s worst software bugs. Byte Magazine, November 2005. Available
from http://www.wired.com/software/coolapps/news/2005/11/69355 (Last visit in
October of 2009). (Cited on page 1.)

[49] Karin Greimel, Roderick Bloem, Barbara Jobstmann, and Moshe Y. Vardi. Open implication. In
Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir,
and Igor Walukiewicz, editors, ICALP (2), volume 5126 of Lecture Notes in Computer Science,
pages 361–372. Springer, 2008. (Cited on page 5.)

[50] Orna Grumberg and Helmut Veith, editors. 25 Years of Model Checking - History, Achievements,
Perspectives, volume 5000 of Lecture Notes in Computer Science. Springer, 2008. (Cited on
pages 90, 91 and 95.)

[51] Sankar Gurumurthy, Orna Kupferman, Fabio Somenzi, and Moshe Y. Vardi. On complementing
nondeterministic Büchi automata. In Daniel Geist and Enrico Tronci, editors, CHARME, volume
2860 of Lecture Notes in Computer Science, pages 96–110. Springer, 2003. (Cited on page 2.)

[52] Ronald H. Hardin, Zvi Har’El, and Robert P. Kurshan. Cospan. In Alur and Henzinger [2], pages
423–427. (Cited on page 1.)

[53] David Harel and Amir Pnueli. On the development of reactive systems. Logics and models of
concurrent systems, pages 477–498, 1985. (Cited on page 4.)

[54] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,
23(5):279–295, 1997. (Cited on page 1.)

[55] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and Com-
putation. Addison-Wesley, 1979. (Cited on page 11.)

[56] Yatin Vasant Hoskote, Timothy Kam, Pei-Hsin Ho, and Xudong Zhao. Coverage estimation for
symbolic model checking. In DAC, pages 300–305, 1999. (Cited on pages 3 and 81.)

[57] IEEE Standards Department. IEEE Standard for Verilog Hardware Description Language. Num-
ber 1364-2001 in IEEE Standards. IEEE, 2001. (Cited on page 50.)

[58] Barbara Jobstmann and Roderick Bloem. Optimizations for LTL synthesis. In FMCAD, pages
117–124. IEEE Computer Society, 2006. (Cited on page 2.)

[59] Barbara Jobstmann, Stefan Galler, Martin Weiglhofer, and Roderick Bloem. Anzu: A tool for
property synthesis. In Damm and Hermanns [33], pages 258–262. (Cited on pages 3, 5, 6, 8
and 48.)

http://www.wired.com/software/coolapps/news/2005/11/69355

Bibliography 93

[60] Sagi Katz, Orna Grumberg, and Daniel Geist. ”Have i written enough properties?” - a method
of comparison between specification and implementation. In Laurence Pierre and Thomas Kropf,
editors, CHARME, volume 1703 of Lecture Notes in Computer Science, pages 280–297. Springer,
1999. (Cited on pages 3 and 81.)

[61] Robert Könighofer, Georg Hofferek, and Roderick Bloem. Debugging formal specifications using
simple counterstrategies. In FMCAD. IEEE Computer Society, 2009. To appear. (Cited on
page 3.)

[62] Eleftherios Koutsofios and Stephen C. North. Drawing graphs with Dot. Technical Report 910904-
59113-08TM, AT&T Bell Laboratories, 1991. (Cited on page 31.)

[63] Ron Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems,
2(4):255–299, 1990. (Cited on page 3.)

[64] Dexter Kozen. Results on the propositional mu-calculus. Theoretical Computer Science, 27:333–
354, 1983. (Cited on page 13.)

[65] Thomas Kropf. Introduction to Formal Hardware Verification: Methods and Tools for Designing
Correct Circuits and Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999. (Cited
on page 1.)

[66] Hillel Kugler, Cory Plock, and Amir Pnueli. Controller synthesis from LSC requirements. In
Marsha Chechik and Martin Wirsing, editors, FASE, volume 5503 of Lecture Notes in Computer
Science, pages 79–93. Springer, 2009. (Cited on page 3.)

[67] Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. Safraless compositional synthesis. In
Thomas Ball and Robert B. Jones, editors, CAV, volume 4144 of Lecture Notes in Computer
Science, pages 31–44. Springer, 2006. (Cited on page 2.)

[68] Orna Kupferman and Moshe Y. Vardi. Safraless decision procedures. In FOCS, pages 531–542.
IEEE Computer Society, 2005. (Cited on page 2.)

[69] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: a behavioral
interface specification language for java. ACM SIGSOFT Software Engineering Notes, 31(3):1–
38, 2006. (Cited on page 3.)

[70] Martin Leucker. Model checking games for the alternation-free µ-calculus and alternating au-
tomata. In Harald Ganzinger, David A. McAllester, and Andrei Voronkov, editors, LPAR, volume
1705 of Lecture Notes in Computer Science, pages 77–91. Springer, 1999. (Cited on page 82.)

[71] Martin Leucker and Thomas Noll. Truth/SLC - A parallel verification platform for concurrent
systems. In Berry et al. [6], pages 255–259. (Cited on pages 7 and 82.)

[72] Oded Maler, Dejan Nickovic, and Amir Pnueli. On synthesizing controllers from bounded-
response properties. In Damm and Hermanns [33], pages 95–107. (Cited on page 3.)

[73] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Norwell, MA,
USA, 1993. (Cited on page 1.)

[74] Faron Moller and Perdita Stevens. Edinburgh Concurrency Workbench user manual (version 7.1).
Available from http://homepages.inf.ed.ac.uk/perdita/cwb/. Last visit in October of
2009. (Cited on page 82.)

[75] Ryosei Mori and Naoki Yonezaki. Several realizability concepts in reactive objects. Information
Modeling and Knowledge Bases, 1993. (Cited on pages 26 and 82.)

http://homepages.inf.ed.ac.uk/perdita/cwb/

Bibliography 94

[76] Markus Müller-Olm, David A. Schmidt, and Bernhard Steffen. Model-checking: A tutorial in-
troduction. In Agostino Cortesi and Gilberto Filé, editors, SAS, volume 1694 of Lecture Notes in
Computer Science, pages 330–354. Springer, 1999. (Cited on page 1.)

[77] Glenford J. Myers. The art of software testing. John Wiley & Sons, Inc., New York, NY, USA,
1979. (Cited on page 1.)

[78] Bashar Nuseibeh. Ariane 5: Who dunnit? IEEE Software, 14(3):15–16, 1997. (Cited on page 1.)

[79] Ingo Pill, Simone Semprini, Roberto Cavada, Marco Roveri, Roderick Bloem, and Alessandro
Cimatti. Formal analysis of hardware requirements. In Ellen Sentovich, editor, DAC, pages 821–
826. ACM, 2006. (Cited on pages 3, 6, 20 and 48.)

[80] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1) designs. In E. Allen Emerson
and Kedar S. Namjoshi, editors, VMCAI, volume 3855 of Lecture Notes in Computer Science,
pages 364–380. Springer, 2006. (Cited on pages 3, 6, 10, 11, 12, 13, 14, 15, 17, 36, 37, 38, 39
and 50.)

[81] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE, 1977. (Cited on
pages 1 and 9.)

[82] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In POPL, pages 179–190,
1989. (Cited on pages 2, 5 and 26.)

[83] Vaughan R. Pratt. Anatomy of the pentium bug. In Peter D. Mosses, Mogens Nielsen, and
Michael I. Schwartzbach, editors, TAPSOFT, volume 915 of Lecture Notes in Computer Science,
pages 97–107. Springer, 1995. (Cited on page 1.)

[84] Michael O. Rabin. Decidability of second-order theories and automata on infinite trees. Transac-
tions of the American Mathematical Society, 141:1–35, 1969. (Cited on page 2.)

[85] Michael Oser Rabin. Automata on Infinite Objects and Church’s Problem. American Mathemati-
cal Society, Boston, MA, USA, 1972. (Cited on page 2.)

[86] Roni Rosner. Modular Synthesis of Reactive Systems. PhD thesis, Weizmann Institute of Science,
1992. (Cited on page 2.)

[87] Kristin Y. Rozier and Moshe Y. Vardi. LTL satisfiability checking. In Dragan Bosnacki and Stefan
Edelkamp, editors, SPIN, volume 4595 of Lecture Notes in Computer Science, pages 149–167.
Springer, 2007. (Cited on page 36.)

[88] Shmuel Safra. On the complexity of omega-automata. In FOCS, pages 319–327. IEEE, 1988.
(Cited on page 2.)

[89] A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear temporal logics.
J. ACM, 32(3):733–749, 1985. (Cited on page 1.)

[90] Aravinda Prasad Sistla. Theoretical issues in the design and verification of distributed systems.
PhD thesis, Harvard University, Cambridge, MA, USA, 1983. (Cited on page 9.)

[91] Perdita Stevens and Colin Stirling. Practical model-checking using games. In Bernhard Steffen,
editor, TACAS, volume 1384 of Lecture Notes in Computer Science, pages 85–101. Springer, 1998.
(Cited on pages 7 and 82.)

[92] Colin Stirling. Lokal model checking games. In Insup Lee and Scott A. Smolka, editors, CON-
CUR, volume 962 of Lecture Notes in Computer Science, pages 1–11. Springer, 1995. (Cited on
pages 7 and 82.)

Bibliography 95

[93] Li Tan. Playgame: A platform for diagnostic games. In Rajeev Alur and Doron Peled, editors,
CAV, volume 3114 of Lecture Notes in Computer Science, pages 492–495. Springer, 2004. (Cited
on pages 7 and 82.)

[94] Wolfgang Thomas. Languages, automata and logic. In Arto Salomaa and Grzegorz Rozenberg,
editors, Handbook of Formal Languages, volume 3, Beyond Words. Springer-Verlag, Berlin, 1997.
(Cited on pages 2, 10 and 11.)

[95] Hervé J. Touati, Hamid Savoj, Bill Lin, Robert K. Brayton, and Alberto L. Sangiovanni-
Vincentelli. Implicit state enumeration of finite state machines using BDDs. In ICCAD, pages
130–133, 1990. (Cited on page 44.)

[96] Stavros Tripakis and Karine Altisen. On-the-fly controller synthesis for discrete and dense-time
systems. In Jeannette M. Wing, Jim Woodcock, and Jim Davies, editors, World Congress on
Formal Methods, volume 1708 of Lecture Notes in Computer Science, pages 233–252. Springer,
1999. (Cited on pages 7 and 81.)

[97] Moshe Y. Vardi. From church and prior to PSL. In Grumberg and Veith [50], pages 150–171.
(Cited on page 9.)

[98] Moshe Y. Vardi and Pierre Wolper. Automata-theoretic techniques for modal logics of programs.
Journal of Computer and System Sciences, 32(2):183–221, 1986. (Cited on page 2.)

[99] Nico Wallmeier, Patrick Hütten, and Wolfgang Thomas. Symbolic synthesis of finite-state con-
trollers for request-response specifications. In Oscar H. Ibarra and Zhe Dang, editors, CIAA,
volume 2759 of Lecture Notes in Computer Science, pages 11–22. Springer, 2003. (Cited on
page 3.)

[100] Noriaki Yoshiura. Finding the causes of unrealizability of reactive system formal specifications.
In SEFM, pages 34–43. IEEE Computer Society, 2004. (Cited on page 82.)

[101] Andreas Zeller. Yesterday, my program worked. Today, it does not. Why? In Oscar Nierstrasz
and Michel Lemoine, editors, ESEC / SIGSOFT FSE, volume 1687 of Lecture Notes in Computer
Science, pages 253–267. Springer, 1999. (Cited on page 17.)

[102] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing input. IEEE
Transactions on Software Engineering, 28(2):183–200, 2002. (Cited on pages 17, 18, 20, 22
and 23.)

	Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Background and Motivation
	1.1.1 Model Checking
	1.1.2 Automated Synthesis
	1.1.3 Correct Formal Specifications

	1.2 Problems Addressed in this Thesis
	1.2.1 The Assumed Setting
	1.2.2 The Problem of Unrealizability
	1.2.3 Soundness Problems in General

	1.3 Outline of the Solution
	1.3.1 Explaining Unrealizability
	1.3.2 Resolving the General Case of a Soundness Problem

	1.4 Structure of this Document

	2 Preliminaries
	2.1 Linear Temporal Logic
	2.1.1 Quantified Propositional Temporal Logic

	2.2 Generalized Reactivity
	2.3 Automata
	2.3.1 Finite Omega-Automata
	2.3.2 Finite Omega-Automata with Output

	2.4 Games
	2.4.1 Strategies
	2.4.2 Implementation of a Strategy
	2.4.3 GR(1) Games

	2.5 mu-Calculus
	2.5.1 Syntax
	2.5.2 Semantics

	2.6 Synthesis of GR(1) Specifications
	2.6.1 Computation of the Winning Region for the System
	2.6.2 Computation of the Winning Strategy for the System
	2.6.3 Synthesis from GR(1) Specifications that are Given with LTL Formulas

	2.7 Delta Debugging
	2.7.1 Definition of the Algorithm
	2.7.2 Properties of the Algorithm

	3 Debugging Approach
	3.1 Prerequisites
	3.2 Debugging Unrealizability
	3.2.1 Minimization
	3.2.2 Countertraces
	3.2.3 Interactive Game
	3.2.4 Summarizing Graph

	3.3 Debugging Undesired Behavior
	3.3.1 Our Debugging Procedure
	3.3.2 Formalization of the Desired Behavior
	3.3.3 Example
	3.3.4 Application to Specification Development

	4 Debugging GR(1) Specifications
	4.1 Checking for Satisfiability
	4.1.1 Definition of Satisfiability
	4.1.2 Symbolic Algorithm

	4.2 Minimization
	4.3 Counterstrategies
	4.3.1 Computation of the Winning Region
	4.3.2 Computation of the Counterstrategy

	4.4 Interactive Game and Graph
	4.4.1 Additional Information for the User
	4.4.2 Combining Countertraces with Counterstrategies

	4.5 Debugging Undesired Behavior
	4.5.1 Recap
	4.5.2 Definition of the DBW Representing the Desired Behavior
	4.5.3 The Rationale Behind this Construction
	4.5.4 Analysis of Fundamental Properties

	5 Implementation
	5.1 Differences to the Theoretical Framework
	5.2 Features available from the RATSY GUI
	5.2.1 The Testing Game
	5.2.2 Specifying Desired Behavior
	5.2.3 The Debugging Game

	5.3 Features Available from the Textual User Interface
	5.4 Software Design
	5.4.1 Integration into Marduk
	5.4.2 Integration into RATSY

	6 Experimental Results
	6.1 Performance Evaluation
	6.1.1 Performance Results
	6.1.2 Discussion

	6.2 Evaluation of the given Explanations
	6.2.1 Debugging Unrealizability
	6.2.2 Debugging Undesired Behavior

	7 Related Work
	7.1 Debugging Incomplete Specifications
	7.2 Debugging Specifications which are not Sound
	7.2.1 Counterstrategies as Debugging Aids
	7.2.2 Other Debugging Techniques

	8 Conclusion and Outlook
	8.1 Summary
	8.1.1 Debugging Approach
	8.1.2 Simplification of Counterstrategies

	8.2 Discussion
	8.2.1 Debugging Undesired Behavior
	8.2.2 Countertraces
	8.2.3 Summarizing Graphs
	8.2.4 Minimization

	8.3 Future Work
	8.3.1 Evaluation
	8.3.2 Graph Computation
	8.3.3 Countertraces
	8.3.4 Minimization

	A A session with Marduk
	Bibliography

