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Abstract

SrCu2O3 is a prominent representative of a class of materials with intriguing quasi-1-
dimensional properties. It consists of weakly coupled CuO ladders and is closely related
to high temperature superconductors. The discovery of a spin-gap in this material
has triggered a large amount of experimental and theoretical research. Most magnetic
properties have been successfully described by a simple spin-1/2 Heisenberg model on
a single ladder. Experiments with doping of a small amount of nonmagnetic Zn atoms
in place of Cu have however observed surprisingly large changes in magnetic properties,
including a phase transition to an ordered system at low temperature.
In this thesis, the physics of the Zn-doped material is examined with the help of Quantum
Monte Carlo (QMC) calculations and with the Density Matrix Renormalization Group
(DMRG). The material is described by an extended Heisenberg model with vacancies
at the location of the Zn atoms. They induce e�ective non-local spin-1/2 degrees of
freedom. The analysis of magnetization pro�les, excitation spectra, and correlations
delivers information about doping e�ects. Simulation of NMR spectra shows that the
drastic broadening observed experimentally at small temperatures is caused by physics
beyond the Heisenberg model studied.
By including the coupling between stacked ladders, a quantum phase transition is in-
duced. The quantum critical properties of this transition are studied and shown to be
compatible with the O(3) Heisenberg model.





Zusammenfassung

SrCu2O3 ist ein Vertreter einer Klasse von Materialien, die so genannte quasi-1-dimensi-
onale quantenmechanische Eigenschaften besitzen. Es besteht aus schwach gekoppelten
CuO-Leitern und ist nahe verwandt mit einigen Hochtemperatur-Supraleitern. Nach
Entdeckung eines Spingaps in dem Material rückte es in den Mittelpunkt des Interes-
ses vieler experimenteller und theoretischer Arbeiten. Die meisten magnetischen Eigen-
schaften konnten erfolgreich mit einem einfachen Spin-1/2 Heisenberg-Modell einfacher
Leitern beschrieben werden. Doch die Dotierung des Materials mit Zn Atomen anstelle
von Cu zeigte in den Experimenten eine überraschend groÿe Änderung der magneti-
schen Eigenschaften, einschlieÿlich eines Phasenübergangs zu einem geordneten System
bei niedrigen Temperaturen.
In der vorliegenden Arbeit wird die Physik des Zn-dotierten Materials mit Hilfe von
Quanten-Monte-Carlo (QMC) sowie der Dichtematrix-Renormierungsgruppe (DMRG)
untersucht. Das Material wird dabei mit einem erweiterten Heisenberg-Modell mit Leer-
stellen an den Positionen der Zn-Atome beschrieben, welche e�ektive, nicht-lokale Spin-
1/2 Freiheitsgrade induzieren. Die Auswertung von Magnetisierungspro�len, Anregungs-
spektren und Korrelationen liefert Einblick in die Auswirkungen der Dotierung. Simu-
lationen von NMR-Spektren zeigen, dass die in den Experimenten beobachtete starke
Verbreiterung des Spektrums bei kleinen Temperaturen nur mit Physik erklärt werden
kann, die über das Heisenberg-Modell hinausgeht.
Bei zusätzlicher Beachtung der Kopplungen der Leitern untereinander taucht ein Quan-
tenphasenübergang auf. Dessen quantenkritische Eigenschaften werden untersucht und
es wird gezeigt, dass er einem Phasenübergang des O(3)-Heisenberg-Modells entspricht.
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1 Basics

1.1 Introduction

1.1.1 The Material SrCu2O3

An investigation of SrCu2O3 may lead to better understanding of e�ects in a whole class
of materials. Many representatives of the so-called cuprates exhibit superconducting
behavior, which is connected to intriguing quantum-mechanical e�ects also seen in the
material at hand.
It is known that SrCu2O3 crystallizes in a ladder-type form, where the Cu-atoms rep-
resent the elements constructing the ladders (�g. 1.1). The O-atoms mediate the elec-
tron exchange between the Cu-atoms, while the Sr-atoms are located between the Cu-
layers. In literature ladders are usually denoted as quasi-1-dimensional objects, which
expresses the appearance of interesting quantum e�ects at the cross-over of one- and
two-dimensionality.
Although the interaction along the legs and rungs are widely considered to be dominating
the behavior of the system, further couplings in directions inside and connecting the
ladders may have large in�uence on the material's properties.

1.1.2 Spin-Ladders

The dominating part of the magnetic e�ects in the material are the unpaired electrons
in the valence shell of the Cu-atoms. So a possible simulation of magnetic properties
can rely on a model where each of these atoms is replaced by a single spin-1/2. Together
with the speci�c crystallization pattern of SrCu2O3 this leads to a possible description
with the help of spin-ladders.
Such simple systems of spins have been the focus of many works in the past years
and were examined using many di�erent techniques. A prominent representative is
the Heisenberg chain which is a line of consecutive sites with couplings only between
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Figure 1.1: 3D picture of SrCu2O3 crystallization (from [7]). Red: Cu, light blue: O,
dark blue: Sr. The ladder structure can be seen inside the planes which are
stacked above another. The Cu-atoms form the ladders and the O-atoms
mediate the interaction between them.

neighbouring spins (see sec. 1.2.1). This rather simple quantum mechanical system
exhibits critical behaviour, expressing itself in a polynomial decay of correlations along
the chain, referred to as anti-ferromagnetic long range order (ALRO). Accordingly, the
correlation length is in�nite.

G(r) ∝ 1

r
, ξ = ∞ (1.1)

It is possible to treat such a problem analytically with the so-called Bethe ansatz [8].
The Heisenberg ladder can be seen as two coupled chains with an additional parameter
J⊥ determining the inter-chain interaction. For large values of J⊥ the spins on each rung
of the ladder form a singlet (see sec. 1.3). This leads to a �nite singlet-triplet spin-gap
and a �nite correlation length. It came as a surprise that even at very small inter-chain
couplings J⊥ a �nite spin-gap exists (∝ J⊥) [9, 10].

G(r) ∝ e−r/ξ, ξ = 3.1(1) (1.2)

Here the correlation length for the spatially isotropic ladder was given as an example
for �nite values of the characteristic length. The Heisenberg ladder is said to be in a
dimerized phase with tendency to build dimers (see sec. 1.3).
Furthermore it is known that ladders with an even number of legs have �nite correlation
lengths and a spin-gap, but odd-legged ones have neither. The �nite spin-gap of even-
legged ladders decreases exponentially with the number of legs [1].
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Figure 1.2: Left: The Cu-planes of SrCu2O3, red: Cu, blue: O. Right: The trellis lattice.

1.1.3 The Spin-Gap

The spin-gap is a physical measurable quantity describing the dynamics of a system.
It is simply de�ned as the lowest energy needed to realise an elementary excitation.
In those systems considered here these excitations are spin-waves, generally comprised
of two so-called spinons. A spinon is essentially a moving domain wall, beyond it the
anti-ferromagnetic spin con�guration is reverted. The spinon carries a spin-1/2 and can
be associated with a velocity and a dispersion relation [11].

1.1.4 Lattice Structure

There are di�erent lattice types which may re�ect the properties of the material SrCu2O3.
The �rst approximation to nature is a simple ladder, whereas including inter-ladder
couplings leads to more expensive numerical e�orts. The two di�erent couplings to
neighboring ladders to be considered are the in-plane couplings and the couplings in
the stacking direction. The in-plane couplings of SrCu2O3 are known to build a so-
called trellis lattice where the inter-ladder bonds form a triangular con�guration (see
�g. 1.2). For the stacked interaction the ladders can simply be put site-by-site on top of
each other (see �g. 1.3). This also has in�uence on possible numerical strategies because
trellis lattices of anti-ferromagnetic systems give rise to the sign-problem in Monte Carlo
simulations [12]. So this system can only be treated with other methods (e.g. DMRG,
see sec. 1.8).

For each of these lattice types di�erent coupling strengths for the interactions have to
be de�ned (eg. J‖, J⊥, Jtr, and J3; see �g. 1.2 and 1.3).
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Figure 1.3: Stacked ladders.
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Figure 1.4: Stacked ladders with vacancy.

1.1.5 Doping with Non-Magnetic Impurities

A possibility of doping is replacing the Cu atoms by Zn atoms. This means inserting a
vacancy into our naive model because all electrons in Zn are paired and no spin can be
noticed from outside (see �g. 1.4). An unpaired spin is distributed in the surroundings
of the vacancy according to the resonating valence-bond picture (see sec. 1.3). The
spatial decay of the e�ect is strongly connected to the correlation length in the material
[13].

1.1.6 Phase Transitions

In statistical mechanics phase transitions [14] are characterized by a singularity in one
of the derivatives of the free energy. Phase transitions with singularities in the second
derivatives only are said to be continuous phase transitions. They exhibit critical be-



1.2 The Model 5

haviour which means that the asymptotic conduct of important physical properties is
de�ned by a small set of critical exponents alone. Also the asymptotic behaviour is
said to be of polynomial style which expresses another important fact about phase tran-
sitions: self-similarity on all length scales. As a consequence many di�erent systems
can be classi�ed in a few universality classes which all have the same set of critical
exponents.
These critical exponents exist in �avours describing quantities such as speci�c heat (α),
order parameter (β), susceptibility (γ), critical isotherm (δ), correlation length (ν), and
greens function (η).
Quantum critical points are also characterized by a diverging amount of �uctuations, but
in contrast to thermodynamics these �uctuations are not driven by the temperature but
by a major property of quantum mechanics itself: the Heisenberg uncertainty principle.
This leads to the important fact, that quantum critical phenomena occur at T = 0.
Although strictly speaking phase transitions are prerogatives of in�nite systems not
existing in nature or, in case of quantum critical points, de�ned for zero temperature
not reachable in nature, the e�ects on observable systems are quite large and considerable
changes in physical quantities deliver proof of their existence.
An important observable for characterizing two di�erent phases is the order parameter.
The magnitude of spatial �uctuations of the order parameter is expressed with the corre-
lation length, which diverges at the critical point. In this thesis the physical observable
describing the ordered phase is the magnetization.

1.2 The Model

1.2.1 The Heisenberg Model

The Heisenberg model describes the bulk material solely via interactions of spins on
�xed sites. These quantum-mechanical spins are believed to be an accurate enough
representation of the material's magnetic properties.
Starting from the Schrödinger equation of the bulk material some approximations have
to be applied to be able to calculate the band-structure of the material as well as mag-
netic properties. A common approach uses the local density approximation (LDA), which
usually neglects the e�ects of correlations and therefore corresponds largely to the lo-
cal interactions of atoms. In the next step, the bands closest to the Fermi energy are
approximated by a tight-binding model, i.e. an electron model that contains only hop-
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pings but no other interactions. The resulting hopping amplitudes ∆ij, together with
estimates of Coulomb repulsions Uij, provide an e�ective Hubbard type model. If there
is exactly one interacting electron on the outer shell of each relevant atom the system
is called half-�lled. It can then be mapped perturbatively from a Hubbard model with
hopping electrons to the Heisenberg model.
The Hamiltonian reads as follows:

H = J
∑
〈i,j〉

(
1

2

(
S+

i S−
j + S−

i S+
j

)
+ Sz

i S
z
j

)
+ h

∑
i

Sz
i (1.3)

where J denotes the coupling strength, Si the spin operators at site i and h a magnetic
�eld. The triangle brackets 〈i, j〉 symbolize a sum over neighbouring sites only. With
positive coupling constants this Hamiltonian describes an anti-ferromagnetic system with
tendency to alternating signs of neighbouring spins. Note that the couplings of spin
components in all three internal directions are equal. Within this thesis no anisotropy
is introduced to the Heisenberg model if not stated otherwise.
Another interesting matter is the origin of anti-ferromagnetic couplings in the materi-
als considered [15]. This can be understood by considering the Hubbard model which
includes possible hoppings of electrons to neighbouring sites. In the latter it is easy
to understand that a con�guration of spins with di�erent signs is favoured due to the
possible hopping of one electron to the other's site which of course is only allowed for
opposite signs. This consideration of Pauli's principle gives rise to anti-ferromagnetic
couplings in the simpler Heisenberg model.

1.2.2 The Ring Exchange

The cyclic exchange or 4-spin ring exchange term can be de�ned for plaquettes of four
spins. It can be seen as the next order perturbation theory by considering possible e�ects
of the exchange potential and it mediates a spin hopping clockwise or counter-clockwise
around the plaquette. Mathematically expressed:

Hcycl = Jcycl

∑
plaquettes

4
[(

~S1 · ~S2

)(
~S3 · ~S4

)
+
(

~S1 · ~S4

)(
~S2 · ~S3

)
−

(
~S1 · ~S3

)(
~S2 · ~S4

)]
+ ~S1 · ~S2 + ~S2 · ~S3 + ~S3 · ~S4

+ ~S4 · ~S1 + ~S1 · ~S3 + ~S2 · ~S4 +
1

4
(1.4)

where the spins 1 . . . 4 are arranged (anti-)clockwise around a plaquette [16].
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Figure 1.5: The resonating valence-bond (RVB) picture for the Heisenberg chain. Here
the unperturbed chain has a doubly degenerate ground state (above), while
the insertion of a vacancy leads to a �xation of dimers (below).

1.3 The Resonating Valence-Bond Picture (RVB)

A key picture for better understanding of the e�ects of doping onto a spin system is the
resonating valence-bond description. It states that despite the long range correlations
the local behavior of the spins is dominated by the formation of short spin singlets.

In a Heisenberg chain applying this picture leads to a doubly degenerate ground state
where in the chain ABCDEF either A couples to B and C to D or B to C and D to E and
so on (see �g. 1.5). Taking one spin out of the system means disturbing this degeneracy.
Considering that in this simple picture one site resonates only with one of its neighbours
the singlet states to the right and to the left side of the impurity are spatially �xed.
Therefore it is not di�cult to imagine that the correlations nearby are enhanced.

The Heisenberg ladder allows in principle for several possible dimerization patterns (�g.
1.6). While a strong coupling along the two chains of the ladder increases the building
of singlets on the chains, strong rung-couplings lead to a preferred state of rung dimers.
This ladder-typical spin-gapped state [17] is a property of the system for all �nite inter-
chain coupling strengths.

The insertion of vacancies on the ladder leaves an unpaired spin in the surroundings of
the vacant site (see �g. 1.7). This picture will become handy to describe many e�ects
of vacancy insertion.
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Figure 1.6: The resonating valence-bond (RVB) picture for the Heisenberg ladder. In
principle several di�erent dimerizations are possible, but some are preferred
depending on the coupling anisotropy.

Figure 1.7: The resonating valence-bond (RVB) picture for the Heisenberg ladder with
vacancy. One of the surrounding spins is clearly unpaired which has quite
an impact on the microscopic properties of the material.
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Figure 1.8: Di�erent �ts by Johnston et al. to experimental data using a model function
(see eq. 1.5) for the susceptibility.

1.4 Theoretical Studies

1.4.1 DC. Johnston et al.: Magnetic Susceptibilities of Spin-1/2

Anti-Ferromagnetic Heisenberg Ladders and Applications

to Ladder Oxide Compounds [1]

Johnston et al. carried out numerous QMC-simulations of the magnetic susceptibility
of undoped SrCu2O3 and tried to �t them to experimental results. They basically �tted
their simulations with the following model function:

χ(T ) = χ0 +
Cimp

T − θ
+ χspin(T ) (1.5)

with
χ0 = χcore + χV V (1.6)

where χcore is the orbital diamagnetic core contribution, χV V is the paramagnetic Van
Vleck contribution (both are assumed to be temperature-independent), Cimp/(T−θ) is a
Curie-Weiss term originating from impurities, and χspin is the intrinsic spin susceptibility.
This leaves quite a few �tting parameters which makes accurate �ttings even more
di�cult.
They also used di�erent types of couplings additionally to the ones along the legs and
rungs. E.g., they introduced a diagonal ferromagnetic coupling inside a plaquette of the



10 1 Basics

J‖/kB J⊥/J‖ Jdiag/J‖ Jtr/J‖ J3/J‖

1905(5) 0.488(3)
1890(40) 0.482(13) -0.10(5)
2000(60) 0.465(13) -0.1(1)
1894(8) 0.5 0.009(4)

Table 1.1: Exchange constants for SrCu2O3 obtained by Johnston et al. [1] by �tting
of susceptibilities χ for di�erent models. Jdiag: Intra-ladder diagonal, Jtr:
Inter-ladder trellis, J3: Inter-ladder stacked.
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Figure 1.9: The di�erent models used by Johnston at al. to �t susceptibility curves. See
table 1.1 for results.

ladder which they found out not to exhibit any noticeable changes to the behavior of
the spin system. Furthermore they assumed inter-ladder couplings both in the plane of
the ladder and perpendicular to it. The coupling strengths they obtained are listed in
table 1.1.
Johnston et al. also varied the Landé factor g but came to the conclusion that a value of
about 2.1 is the correct one. For the anomaly of the non-isotropic coupling on the ladder
itself, which cannot be described by the underlying chemistry of the C-O bonds, they
call to account higher order exchange paths of the material. Furthermore they implied
that the anisotropy of the bond strengths has its origin in the spatial asymmetry of
the crystal. The lack of inclusion of the inter-ladder couplings in the ladder plane and
perpendicular to it cannot be made responsible for the anisotropy in the material (see
table 1.1).
Another possibility for a more accurate description is the introduction of a cyclic ex-
change term which depicts a hopping exchange in circles (see sec. 1.2.2). Johnston cites
Mizuno, Tohyama and Maekawa [18] who found couplings including cyclic exchange of
J‖/kB = 2260(60)K, J⊥/J‖ = 0.77(12), Jdiag/J‖ = 0.015(10), Jcycl/J‖ = 0.092.
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1.4.2 Enhancement of Anti-ferromagnetic Correlations due to

Vacancies

Laukamp et al. [19] observed an enhancement of real-space correlations near vacancies
for Heisenberg chains as well as for ladder systems. They performed DMRG (see sec. 1.8)
simulations for systems of size 32× 2 and stated that this e�ect does not depend on the
gapped or non-gapped characteristic. Furthermore they analysed the local susceptibility
and found a staggered contribution in the vicinity of the vacancy.

1.4.3 Appearance of E�ective Spin-1/2 Degrees of Freedom

around Vacancies

Schollwöck et al. [13] have shown that an e�ective model using unpaired spins which
are induced around vacancies on a spin-ladder can be used to successfully derive low-
energy spectra using DMRG (see sec 1.8) methods. This model relies on the appearance
of a spin-1/2 around such a distortion and on a secondary interaction between them.
Additionally they described an anti-ferromagnetic component of the local magnetization
on sites in an exponentially limited domain around the vacancy.

1.4.4 C. Calzado, C. de Graaf et al.: Four-spin Cyclic Exchange

in Spin Ladder Cuprates [2]

Ab-initio calculations done by Calzado, de Graaf et al. support the idea of a necessary
inclusion of a 4-spin-cyclic exchange term into the model (see sec. 1.2.2). They argue
that an anisotropic spatial coupling on the ladders is not consistent with chemical and
geometrical considerations of the material. Often inter-ladder interactions are made
responsible for this but so far no further inclusion of these couplings indicated a reduction
of the anisotropy. On the basis of quantum mechanical calculations they obtain a fraction
of 30% coupling strength for a cyclic exchange.
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1.5 Experimental Methods

1.5.1 Nuclear Magnetic Resonance (NMR)

Nuclear magnetic resonance (NMR) is a powerful non-destructive experimental method
which relies on the existence of a core-spin in certain elements and allows direct visual-
ization of the magnetic moment of the nucleus. Additionally due to the couplings with
other spins it delivers insight in the whole spectrum of magnetic properties of a material
[20].
In the nowadays widely con�rmed standard model of elementary particle physics the
proton as well as the neutron are associated with a spin of one half. This means that
under some circumstances the spin of a core consisting of these particles can sum up
to a �nite value. As known from quantum mechanics this spin can orient di�erently
with di�erent energies to an external magnetic �eld in a quantized way. A conversion
between these states can be induced by a second external high-frequency magnetic �eld.
The observed quantity by stimulating either the primary constant magnetic �eld or the
frequency of the secondary �eld is the absorption of the material.
Furthermore it can be imagined that the local spins of the electrons nearby the core
alter the local magnetic �eld. The NMR resonance condition reads as follows [21]:

νRF =
γ

2π

(
H0 +

(∑
i

Âij〈~Si〉

)z)
(1.7)

where γ/2π is the gyromagnetic ratio of the nucleus, H0 is the static magnetic �eld,
Â is the hyper�ne coupling tensor, ~Si is the spin operator at the site i and νRF is the
resonance frequency. ()z denotes the z-component of a given vector.
Here it is su�cient to collapse the sum over several sites to one single site because the
dominant coupling of the nuclear magnetic moment is certainly the one with the core's
own electron's spin. The formula simpli�es to:

νRF =
γ

2π
(H0 + A〈S〉) (1.8)

It is assumed that the local spin is proportional to the magnetic �eld:

〈S〉(H0) = 〈S〉(Href)
H0

Href
(1.9)

where Href is a reference magnetic �eld. Inserting and rearranging of eq. 1.8 gives

H0 =
νRF

γ
2π

1

1 + A
Href 〈S〉(Href)

(1.10)



1.6 Experiments 13

So for constant resonance frequency this delivers a condition for each single electron
magnetization, which adds up to the shape of the gained NMR-spectrum.

1.5.2 Neutron Scattering

Neutron Scattering became an important tool for examining magnetic properties of
solid-state bodies. The neutron is a charge-less particle, which makes it ideal for non-
destructive experiments, and it has spin, which allows direct interaction with the mag-
netic particles of the sample. Inelastic scattering allows to excite the specimen with
spin-waves which are collective excitations in many materials. The most important
physical quantity obtained is the spin-gap, which describes the energy of the lowest
lying excitation compared to the ground state (see sec. 1.1.3).

1.6 Experiments

1.6.1 Fujiwara, Yasuoka: NMR Study of Zn Doping E�ect in

Spin Ladder System SrCu2O3 [3]

Samples of powdered SrCu2O3 were investigated by Fujiwara et al. by measuring nuclear
magnetic resonance (NMR) spectra of 63Cu and 65Cu. They used specimens of the
material doped with 0.25% and 0.5% Zn replacing the Cu atoms and carried out the
NMR experiments at a frequency of 83.55 MHz.
They con�rmed experiments done before with pure samples. The NMR spectrum has
resonance peaks with a temperature-independent line-width of about 200G which can
for the most part be identi�ed with the minimum experimentally achievable width. On
the other hand they observed a spectacular increase of the line-width with decreasing
temperature for the doped samples (see �g. 1.10). The remarkable feature of Fujiwara's
�ndings is the broadening not only for doping concentrations larger than 1% but for
smaller concentrations, too. They tried to understand their experimental �ndings with
a simple model consisting of an exponential decay of the local magnetic moments around
the impurities Sz

i = (−1)iS0exp (−i/ξ). Using this they came to the conclusion, that
the correlation length ξ is of the order of 100 in the doped samples.
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Figure 1.10: NMR spectra produced by Fujiwara et al. [3]. The 65Cu central peak for
the core-spin transition −1

2
→ +1

2
at ν = 83.55MHz is plotted for 0% and

0.25% doping density, respectively.

1.6.2 Oshugi et al.: Impurity Induced Staggered Polarization

and Anti-Ferromagnet Order in Spin 1/2 Heisenberg

Two-Leg Ladder Compound SrCu2O3: Extensive Cu NMR

and NQR Studies [4]

It is reported that plotting the Neél-Temperature TN of the material vs. doping concen-
tration x leads to a broad maximum around x = 0.04. In the pure samples a spin-gap
at k = π is evident for even legged ladders while in the doped material a new excitation
branch appears at zero energy.
The authors introduce a new picture called impurity-induced staggered polarization
(IISP), which incorporates a correlation of these unpaired spins surrounding the dopants.
They establish a second characteristic length, determining these correlations which ap-
pears to be much longer than the original correlation length according to the authors.
Their �tting formula reads

Sl = (−1)lS0exp
(
− la

ξs

)
+ (−1)L−lS0exp

(
−(L− l)a

ξs

)
(1.11)

where l and L − l denote the distances from the impurities. The used as S0 a value
of 1

2
which emphasizes the fact, that they describe a correlation between the induced

spin-1/2.
The enhancement of AF correlations near vacancies have been the focus of Laukamp et
al. [19].
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In their NMR experiments Oshugi et al. also saw the line-width-broadening at lower
temperatures. They could reduce this phenomenon to the following formula

∆H =
W

T
+ ∆Hc

where ∆H is the line-width, W and ∆Hc are constants.
However, in their simulations they used an uniform distribution of dopants on the ladder.
In conclusion they present a formula connecting the correlation length and the vacancy
distribution:

ξ = A + BDAV

where ξ is the correlation length, A and B are constants, and DAV is the mean distance
between vacancies.

1.6.3 M. Azuma and M. Takano: Disappearance of the

Spin-Gap in a Zn Doped 2-Leg Ladder Compound Sr(Cu1-x

Znx)2O3 [5]

Azuma and Takano performed a series of inelastic neutron scattering studies on SrCu2O3
with impurity concentrations x = 0, x = 0.003, x = 0.006, x = 0.01, x = 0.02, and
x = 0.04. They con�rmed the widely believed spin-gap of about 400K [22, 23, 24] not
only for the undoped material but also for the samples with impurities. Furthermore
they discovered that the integrated intensity of the neutron scattering just above the
spin-gap energy decreases towards a concentration of x = 0.04, where it vanishes. This
intensity corresponds to the gapped singlet-triplet excitation.

1.6.4 M. Azuma et al.: Switching of the Gapped Single

Spin-Liquid State to an Anti-Ferromagnetically Ordered

State in Sr(Cu1-x Znx)2O3 [6]

A series of experiments was done by M. Azuma et al. by measuring speci�c heat and
magnetic susceptibility for SrCu2O3 with impurity content of up to 8%. They referred
to the resonating valence-bond (RVB) picture (see sec. 1.3) and con�rmed the inducing
of spin-1/2 near the dopants on the ladder in the low impurity limit. They found
evidence for an onset of magnetic ordering for doping densities starting from x = 0.01

by observing anomalous cusps in speci�c heat and susceptibility vs. temperature plots
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peaking at x = 0.04. For higher concentrations the correlations decrease due to break-
ups by the impurities.

1.7 Monte Carlo

Monte Carlo methods (MC) [25] are powerful tools to examine solid state bodies. As a
numerical method they simulate e.g. the magnetic behavior of materials. Many di�erent
kinds of MC have been developed. In Quantum Monte Carlo the representation in SSE
(Stochastic Series Expansion, see sec. 1.7.3) has been very successful. This section can
only be seen as a short introduction into the large topic of Monte Carlo and its di�erent
types.
In principle Monte Carlo methods approximate the partition function and thermody-
namical averages of other physical observables. The simple form of the average is

〈Ô〉 =

∑
φ 〈φ| Ôexp

(
−βĤ

)
|φ〉∑

φ 〈φ|exp
(
−βĤ

)
|φ〉

(1.12)

where Ô denotes any observable and exp
(
−βĤ

)
is the usual Boltzmann weight with

the Hamilton operator Ĥ and the inverse temperature β. The sum spans over all pos-
sible states |φ〉 of the Hilbert space. Treating this sum directly in a numerical way is
quite unpractical because it would produce a necessary e�ort far too much for present
computers. Therefore the sum has to be replaced by

〈Ô〉 ≈ 1

N

N∑
i=1

O[φi] (1.13)

which sums measurements O[φi] over states out of a Markov chain produced by a suitable
Monte Carlo algorithm. These states are sampled according to the probability distribu-
tions in equation 1.12 and give an estimator for the thermal average of the observable
for large enough N . Because Markov chains are a succession of con�gurations correlated
with each other, sophisticated error checks have to be made. The number describing the
amount of correlation is called the auto-correlation time.
Two major requirements have to be ful�lled for every Monte Carlo algorithm:

• Ergodicity makes sure that every possible state in the Hilbert space can be reached
in �nite time. Ensuring this is not always a trivial task, even in simple systems.
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• Stationarity provides for the correct probability distribution of the obtained states.
It essentially says that a correct distribution is a �xed point of the Monte Carlo
update.

1.7.1 The Sign Problem

The sign-problem is caused by the appearance of negative weights for some Monte Carlo
con�gurations under special circumstances. For Heisenberg models this applies to ge-
ometrically frustrated lattices with anti-ferromagnetic coupling. In principle, such sys-
tems are treatable with Monte Carlo algorithms but they become exponentially slow
which essentially makes usage impossible in many cases.

1.7.2 Error Management in Monte Carlo

Assuming independent values in eq. 1.13 the statistical error is: [26]

∆O =

√
σ2

O

N
with σ2

O = 〈O2〉 − 〈O〉2 (1.14)

As stated above the values Oi are not independent, which makes it necessary to apply
a correction:

∆O =

√
σ2

O

N
2τint (1.15)

where τint is the integrated correlation time which is a measure of correlations of con-
secutive observable values in the Markov chain.
Further sophisticated methods of analyzing existing Markov chains after performing the
simulation are:

• Binning segments the chain into smaller blocks which are examined separately.
The amount of values per block is increased continuously and the variance of the
means of each block is calculated. It can be shown that it converges to the exact
value of the error, when the range of a single block exceeds the correlation time.

• Jackknife partitions the chain into blocks of �xed length and then calculates the
variance of means of the chain NB times, each time leaving out one block. The
total variance is the mean of this values multiplied by a factor NB − 1.
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1.7.3 The SSE Representation

The treatment of quantum mechanical systems with Monte Carlo algorithms is realized
by the use of an additional dimension in order to project it onto a classical system.
There are di�erent ways of doing so, a fairly simple method used here is the stochastic
series expansion (SSE) [27].
Its foundation is an expansion of the partition function.

Z = tr (exp (−βH)) =
∞∑

n=0

βn

n!
tr (−H)n (1.16)

=
∞∑

n=0

βn

n!

∑
φ1...φn

∑
b1...bn

〈φ1| − hb1 |φ2〉 〈φ2| − hb2 |φ3〉 ... 〈φn| − hbn |φ1〉

=
∞∑

n=0

βn

n!

∑
φ1...φn

∑
b1...bn

n∏
i=1

〈φi| − hbi
|φi+1〉 (1.17)

In the second line the Hamiltonian H =
∑

Hbi
was decomposed into parts Hbi

which act
on speci�c bonds bi of the system. It is easy to understand that the Heisenberg model's
bond terms are indeed in this form, whereas the site terms can be transformed to bond
terms distributing their action on a speci�c site to neighbouring bonds. The state of the
system as well as the operators are usually written in the Sz-eigenbasis.
Writing the partition function in this form enables us to formulate a scheme similar
to world lines in continuous imaginary time [26]. The major di�erence is that in SSE
there is a discrete index i = 1...n compared to the continuous time in the world-line
representations.
A composition of states φi and operators Hbi

is denoted as an elementary con�guration
of the algorithm. For a one-dimensional system these con�gurations can be pictured as
a bunch of lines on a rectangular lattice, where one direction denotes the site index and
the other the SSE-index (see �g. 1.11). Two di�erent site states are then represented as
existence or absence of the line at the speci�c site. These lines are able to hop from one
site to a neighbouring one which occurs at SSE-indices where non-diagonal operators
exist. A possible local update scheme is the alteration of the world line at speci�c points
on the described plane.
Monte Carlo simulations are used to update the operators and sites as well as the
expansion order n. This allows to treat the exact Hamiltonian in the simulation, no
other approximations than those of the Monte Carlo method are used.



1.7 Monte Carlo 19
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Figure 1.11: The SSE representation. In the upper part the corresponding spin con�gu-
rations are depicted additionally.

1.7.4 The Loop Algorithm in SSE Representation

Local updates of the SSE con�gurations described above su�er from critical slowing
down at second order phase transitions. Furthermore updates of some observables like
the winding number which is used to measure the spin-sti�ness have an exponentially
small acceptance rate [28].
In the loop operator representation loop lines are introduced, which run along SSE-index
direction and represent the actual spin state up or down by their direction they have at
a particular site. It can be shown [26] that all possible hoppings of one site to another in
the world-line picture (see �g. 1.11) can be represented as a single horizontal break-up
operator in the loop representation. These operators then de�ne the shape of the loops
by acting as guides for building them (see �g. 1.12).
These operators can simply be inserted on the plaquettes of the checkerboard-like lattice
with rather simple Metropolis probabilities. Consecutively a new con�guration of loops
is built �tting to the spin con�guration at the bottom of the lattice. Now an actual
update may be performed on the built loops, which means changing their direction and
therefore reverting the spins. Afterwards the whole process can be repeated by starting
to update the operators again.
The actual implementation of this algorithm is a little di�erent. First of all a maximal
string length is introduced, which allows for the limitations in computational simulations.
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x

i

Figure 1.12: The Loop Algorithm in SSE representation.

The so-called operator string has therefore a �xed size and the change of expansion order
is realized by insertion or taking out of unit operators. Furthermore the loops are realized
by double-linked lists, which allows easy handling with the loops.

1.7.5 The Directed Loop Algorithm

The directed loop algorithm alters mainly the way the loops are built compared to
the loop algorithm described above. Additionally it allows the loop to self-intersect and
backtrack [29]. Similar to the Worm algorithm it starts at a source term which is either a
creation (S+) or annihilation (S−) operator and crawls its way through the con�guration
until it reaches the mentioned source term again. The direction it takes is decided locally
at each plaquette, according to probabilistic rules ensuring detailed balance. The spins
are reverted immediately during the process of construction. It su�ces to build only one
loop and then start with the operator update again.
The advantages are the possibility of e�ciently handling a more general class of Hamil-
tonians including ones with extensive magnetic �elds.

1.7.6 The ALPS Library

The ALPS project (algorithms and libraries for physics simulations) [30] is building
collection of open source libraries and applications. Its goal is to provide a standardized
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pool of such programs for all sectors of physics and related sciences.
In the course of this diploma thesis code from this project has been used and many
alterations to it have been made.

1.7.7 Modi�cations to the ALPS Program

Alterations to the ALPS library: A handling for multiple vacancies was added in a
rather primitive but e�ective way. The couplings of the vacant site as well as the local
magnetic �eld were simply set to zero.

Alterations to the ALPS applications: Several Observables have been added to the
implementation of the QMC program in SSE representation. These are e.g. the staggered
structure factor, the staggered susceptibility, and the staggered local magnetization for
each site, which has been implemented not only for one time slice but as an average over
the whole SSE representation string. Furthermore a class for measuring the imaginary
time correlations has been added by using proper observable de�nitions from the ALPS
library in order to be able to compute errors for all observables as well. This has been
done to measure correlations mainly in momentum space, but for some tests also a
method for real space correlations was implemented. A proper treatment of the winding
number in each dimension, which delivers an improved estimator for the spin sti�ness
was added, too.

Additions to the model and lattice library: Additional lattice types were pro-
grammed for trellis lattices, stacked lattices and additional model Hamiltonians were
built for vacancy treatment and spatial diagonal terms.

1.7.8 Spin-Gap and Correlations

1.7.8.1 Correlations in SSE

In order to obtain the imaginary time correlations a conversion from the discrete SSE
index to imaginary time has to be made [31]. This is done the following way.
For each SSE index consecutive numbers between 0 and β are cast and compared to a
given set of equally distributed imaginary times in the same interval. This allows to �nd
a spin con�guration for each of these time slices.
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The Green's functions obtained this way can be used to plot an excitation spectrum of
the system using the maximum entropy algorithm (see sec. 1.10).

1.7.8.2 Imaginary Correlation Length and Spin-Gap

The spectral theorem states [32]:

Gτ =

∫ ∞

−∞

A(ω)exp (−ωτ)

exp (−βω) + 1
dω (1.18)

where A(ω) is the spectral function. Introducing the dynamical structure factor S(ω) =

A(ω)/(1 + exp (−βω)) leads to

Gτ =

∫ ∞

−∞
S(ω)exp (−ωτ) dω (1.19)

Moreover assuming that there is no excitation below a speci�c energy value (the spin-gap)
and that the edge of the domain with excitation can be expressed as a Dirac-δ-functional
gives

Gτ =

∫ ∞

−∞
δ(ω − ω0)exp (−ωτ) dω = exp (−ω0τ) (1.20)

The Green's function decays in an exponential way. Therefore the excitations with larger
energies than the actual spin-gap deliver faster decaying modes of the imaginary time
correlation function. The result

ω0
∼=

1

ξτ

(1.21)

states that the spin-gap is the inverse of the correlation length in imaginary time direc-
tion.

1.7.8.3 The Dynamical Critical Exponent

In addition to the critical exponents stated in sec. 1.1.6 the dynamical critical exponent
is de�ned as follows.

ξ ∝ ξz
τ (1.22)

where ξ is the (spatial) correlation length, ξτ is the correlation length in imaginary time
direction, and z is the dynamical critical exponent. Like the other critical exponents it
describes the limit behaviour at a phase transition and it expresses the proportionality
of the two characteristic lengths.
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1.7.9 Finite Size Scaling (FSS)

An important tool to analyse data of critical phenomena obtained by numerical simula-
tions is �nite size scaling (FSS) [14]. It relies on the theory of critical exponents (see sec.
1.1.6) and on the assumption that the properties determined by the size of the system
are functions of the ratio L/ξ alone. Here, L is the linear size of the system and ξ is the
correlation length.
Bearing this in mind one can write:

A(L, j) = j−γf1

(
L

ξ

)
(1.23)

where A is a measured observable, j is a parameter (e.g. a reduced coupling strength
which vanishes at the critical point i.e. j = (J − J crit)/J crit) and γ is some critical
exponent. Using ξ = jν and multiplying the equation by L− γ

ν leads to:

L− γ
ν A(L, j) = (L

1
ν j)−γf2

(
L

1
ν j
)

= f3

(
L

1
ν j
)

(1.24)

f1, f2 and f3 are any functions. Plotting L− γ
ν A(L, j) over L

1
ν j for di�erent values of

L and j results for correct critical exponents in a single curve. This can be used to
determine the critical exponents themselves by altering them successively.

1.8 The Density Matrix Renormalization Group

(DMRG)

The main advantages of the density matrix renormalization group method [33] are the
absence of the negative sign problem and the possibility of examining fairly large systems
with high precision at zero temperature. Some tricks make it even possible to �nd the
�rst excited states in addition to the ground state. Disadvantages are mainly the strong
dimensional limitations as well as the treatment of periodic boundary conditions (pbc),
which is much slower than using open boundary conditions due to the density matrix
representation [34].
The DMRG method relies on a consecutive build-up of a wave function in a reduced
Hilbert-space which is created by alternatingly building tensor products of quantum
mechanical states and truncating the amount of states kept.
The usage of the so-called real-space renormalization group, which discards all states but
the ones with the lowest energies, leads to problems. It assumes that the ground state
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Figure 1.13: The DMRG method. There is a system block to the right and an environ-
ment block to the left. The two sites in the center are added at a particular
step.

of a combined system can be produced as a linear combination of the lowest eigenstates
of the smaller systems. That this can't reproduce a variety of systems can be seen by
considering the primitive particle in a box model. Combining two of these boxes to one
large box leads to a problem in the center of the new box because all eigenstates of the
smaller boxes vanish there and no �nite value for the wave function can be constructed
which certainly would have to be done for the new ground state.

The way out is using a so-called environment block which mimics the surroundings of
the actual system. So the outline of the whole process is that starting form a Block S

with size l it is expanded by a new site to size l + 1. Furthermore an environment block
with the same size together with the expanding site is used to simulate the surroundings
(see �g. 1.13).

The next step after adding the site is to truncate the Hilbert-space in order to remain
able to calculate with reasonable numerical e�ort. The utilisation of density matrices
allows to take the states with the largest weights in the density matrix eigenbasis. This
does not only reduce the error for expectation values of arbitrary operators but it also
optimizes the remaining wave function.

1.8.1 Finite-System DMRG

In order to simulate a �nite system the system block is increased at the cost of the
environment block after it has reached the desired size. Afterwards the direction of
growing is changed and the former environment block is increased at the cost of the
former system block (see �g. 1.14). This can be repeated several times to achieve
better results. These considerations show that periodic boundary conditions are indeed
a problem for DMRG because some sites of the system always remain unique.
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Figure 1.14: Finite system DMRG. The system block is increased at the cost of the
environment block. After reaching the boundary the roles are switched.

1.8.2 DMRG Program by Noack and White

The DMRG program used in this thesis was designed by Reinhard M. Noack, Steven R.
White and Eric Jeckelmann, although it was altered consecutively by several users. It
was written in C++ and relies on a object oriented programming style.

1.8.3 Alterations to the DMRG Program

The trellis lattice type was added to the program as well as a proper handling of va-
cancies. Furthermore additional terms for the Hamiltonian were added for the diagonal
terms on the plaquettes and for the cyclic exchange term.

1.9 The NMR Program

The program for simulations of nuclear magnetic resonance (see sec. 1.5.1) experiments
was built from scratch in C++ in an object oriented style. This leads to e�cient using
of e.g. magnetic pro�les which can be merged, added and generally dealt with in a self-
explaining way. The program is able to distribute vacancies with speci�ed probability in
an arbitrary way on a given system and calculates magnetic pro�les either accordingly
to a given data set of magnetic behavior near a vacancy or using a simple exponential
decay. Furthermore it is possible to input entire collections of magnetic pro�les of nearby
vacancies, which are used to reproduce e�ects which might occur due to neighbouring
vacancies. Also a fairly simple Monte Carlo algorithm to pay tribute to possible di�erent
weights of con�gurations was implemented.
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Eq. 1.10 delivers the following method for sampling using the expression:
νRF

γ
2π

1

1 + A
Href

Sm(Href )
(1.25)

for many characteristic spin values Sm, distributed as in the material itself. This can be
plotted as a histogram. To simulate real world experiments an additional line-width is
added to smear out the resulting resonance peaks.

1.9.1 Parameters

For the simulations in this thesis the following parameters according to the experiments
by Fujiwara et al. [3] have been used:

• A = −120kOe/µB ≡ −12T/µB

• Href = 23.824T ≡ 0.01J‖

• γ/(2π) = 12.0985MHz/T

• νRF = 83.55MHz

1.10 Maximum Entropy Program

The maximum entropy algorithm [35] was used to reconstruct the spectral function A(ω)

from given greens functions and relation 1.18:

G(τ) =

∫ ∞

0

S(ω)exp (−ωτ) dω (1.26)

where S(ω) = A(ω)/(1 + exp (−βω)) is the dynamic structure factor [36]. This is
essentially an inverse Laplace transformation. The method relies on applying theory of
probabilities onto this equation. The Bayes theorem states:

p(S(ω)|G(τ),B) =
1

Z
p(G(τ)|S(ω),B)p(S(ω)|B) (1.27)

The Prior p(S(ω)|B) is essentially a Poisson distribution, assuming that after discretising
the S(ω) the addition of a quantum ∆S is independent of already added values:

P (~n|~µ,B) = exp
(
−
∑

i

µi

)
N∏

i=1

µni
i

ni!
(1.28)
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where ni is a discrete index for the S(ω) (S(ωi) = ni∆S) and the µi are expectation
values. Applying Stirling's formula:

P (~n|~µ,B) =
1

Z

1∏
i

√
ni

exp
(∑

i

(ni − µi − nilog (ni/µi)

)
(1.29)

This leads to a generalization of the Shannon-entropy:

S =
N∑

i=1

ni − µi − nilog (ni/µi) (1.30)

De�ning α ≡ 1/∆S and rediscretising one obtains:

P (S(ωi),B) =
1

Z(α)

1∏
i

√
S(ωi)

exp
(

α
∑

i

(S(ωi)−mi − S(ωi)log (S(ωi)/mi))

)
(1.31)

where mi = µi∆S.
For calculation of the norm a steepest descent approximation has to be used, assuming
that the entropy is dominated by a small peak. Generally the steepest descent approxi-
mation reads:∫ ∞

0

exp (f(x)) g(x)dx ≈ (2π)
N
2 g(x∗)exp (f(x∗))

1√
det
(
− ∂2

∂xi∂xj
f(x)

∣∣∣
x∗

) (1.32)

where exp (f(x)) is peaked around x∗ and − ∂2

∂xi∂xj
f(x) is the Hessian. Applying this one

easily calculates for the prior:

P (S(ωi),B) = (2π)−
N
2 α

N
2

1∏
i

√
S(ωi)

exp
(

α
∑

i

(S(ωi)−mi − S(ωi)log (S(ωi)/mi))

)
(1.33)

The likelihood P (G(τ)|S(ω)B) is calculated by assuming an additive noise and therefore
is a multivariate normal distribution:

P (G(τ)|S(ω)B) ∝ |C|−1/2 exp
(
−1/2

∑
i,j

∆S(ωi)
(
C−1

)
ij

∆S(ωj)

)
(1.34)

where ∆S(ωi) is the di�erence to the theoretical value of S(ωi). The posterior probability
is then �nally

P (S(ω)|G(τ)B) =
1

Z
exp

(
−1

2
χ2 + αS

)
(1.35)
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where χ2 is the miss-�t, the quadratic form in the exponent of eq. 1.34.
The program used in this thesis was implemented by Wolfgang von der Linden and
advanced by Danilo Neuber and Martin Hohenadler.



2 Results: Single Ladder

It has been shown by Johnston et al. (see sec. 1.4.1) that the dominating couplings in
the material SrCu2O3 are along the legs and rungs of the ladders which emerge from
the crystallization (see sec. 1.1.4). In this chapter magnetization pro�les, NMR spectra,
excitation spectra and correlation plots will demonstrate the e�ects of the insertion of
vacancies on the ladder. Further considerations will include interactions beyond the sim-
ple ladder, e.g. diagonal and cyclic couplings. Also a spin-anisotropy will be introduced
to the Heisenberg model.

2.1 The Isotropic Ladder

First of all the isotropic ladder was examined by DMRG methods. The term isotropic
refers in this case to equal coupling strengths in di�erent spatial directions.
A �rst plot is presented in �g. 2.1. The system size is 40 in x- and 2 in y-direction, no
magnetic �eld was implemented, and the overall magnetization was set to zero. Due to
symmetry considerations one clearly sees that all magnetic moments of each site have
to vanish. Furthermore the plot shows correlations from a point (19, 0), which evidently
show staggered exponential decay. An estimate for the correlation length of the isotropic
ladder is ξ = 3.1(2). Note: indexing in every direction is always starting from 0, see �g.
2.2 for convention.
Applying a small magnetic �eld would lead to a constant magnetic moment for all spins.
This is mimicked in �g. 2.3 by setting the target magnetization to 1. In this �gure one
can notice the imperfect convergence (pbc, see sec. 1.8). Although the states kept have
been increased to 300 one clearly sees in the graph for the local magnetic moments that
the sites are not equal.
Obviously, the insertion of a vacancy into the ladder removes the spatial symmetry of
the system. In �gures 2.4 and 2.5 one can see how the magnetization pro�le reacts to
the vacancy. Notably a total spin-1/2 for the magnetization was required by the DMRG
program because of an odd amount of spins. This total spin-1/2 is distributed around
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Figure 2.1: Staggered correlations and absolute magnetizations of an isotropic 40 × 2

ladder system for each site. Correlations were measured from site (19, 0).
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Figure 2.3: Correlations and magnetizations of an isotropic 40 × 2 ladder system for
each site with overall magnetization 1 and periodic boundary conditions.
Correlations were measured from site (19, 0).

the vacancy, as one can see in the �gures. This can be understood by remembering
the resonating valence-bond picture of sec. 1.3. The single unpaired spin introduced
there is re�ected in this spin-cloud around the vacancy. Furthermore the exponentially
decreasing magnetic moment of the spins with alternating sign is evident. Here, periodic
boundary conditions were applied, too.
A typical plot for the appearance of 2 vacancies is given in �g. 2.6. This plot also shows
the same decrease of correlations and magnetic moments as �g. 2.1.

2.2 The Anisotropic Ladder

2.2.1 DMRG

In contrast to the examples above it is widely believed that the material SrCu2O3 is best
approximated by a ladder with di�erent coupling strengths along and perpendicular to
the major ladder axis. Many sources predict a ratio of J⊥/J‖ = 0.5 [1]. Figure 2.7 is a
plot of the same system as in �g. 2.6, revealing that the increasing coupling strength
along the chain increases the correlation length and boosts the chain characteristics of
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Figure 2.4: Magnetizations of an isotropic 40 × 2 ladder system with vacancy at (5, 0)
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Figure 2.5: Absolute magnetizations of an isotropic 40 × 2 ladder system with vacancy
at (5, 0) and periodic boundary conditions, plotted with logarithmic scale.
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Figure 2.6: 2 Vacancies at sites (0, 0) and (24, 0) on the 100× 2 isotropic ladder (pbc).

the system. As stated in sec. 1.1.2, the chain exhibits critical behavior which corresponds
to an in�nite correlation length.
The correlation length increases to ξ = 7.2(2).

2.2.2 QMC

To produce similar plots with the QMC program in SSE representation an adaptation
had to be made. In order to calculate the magnetic moments of the individual sites
with a justi�able error margin an approach di�erent to that one already implemented
in the used program had to be adopted. Whereas for the summation of spins (e.g. for
magnetization and structure factor) considerations of not only one time slice at τ = 0

are redundant, for the individual spin it is necessary to get a reasonable error. Therefore
means of the local moments over all times are used. Fig. 2.8 shows a magnetization
pro�le similar the the ones obtained by DMRG. Here, an additional magnetic �eld
h = 0.01 was applied.

2.2.3 NMR-Spectra

NMR experiments are used in solid state physics to examine magnetic properties of
materials (see sec. 1.5.1). Simulations of such procedures and comparisons with the real
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Figure 2.7: 2 Vacancies at (0, 0) and (24, 0) on the 100× 2 ladder. (pbc)
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Figure 2.8: 2 Vacancies at (0, 0) and (52, 0) on the 100 × 2 ladder, obtained by QMC.
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experiment could lead to con�rmation or decline of a theoretical model.
One has to either simulate the magnetization pro�les or calculate them by assuming a
theoretical characteristic. These magnetization values of the individual sites have then
to ful�l the resonance condition 1.25 separately. A NMR spectrum can be drawn by
plotting the relative frequency of resonance for each speci�c magnetic �eld strength.
The simplest way to get the needed distribution of magnetization values is to assume
a staggered exponential decay using only two parameters, the correlation length and
an absolute value of the magnetization next to the vacancy. To mimic real solid-state
bodies it is necessary to sum over many con�gurations of vacancies on a given system
and use the above data to calculate magnetization pro�les for each of them.
The NMR spectra produced can be seen in �gures 2.9 and 2.10. The �rst plot shows the
direct output from the NMR program. The distinct resonance peaks around the main
peak re�ect clearly the discrete amounts of magnetic moments which appear in the
material around the vacancy. The main peak itself results from the many sites which
are not primarily in�uenced and have a magnetic moment close to zero. The second
�gure shows setup but with an additional Gaussian smearing which should re�ect the
actual shape of an experimentally achieved picture. The main reason for the broadening
is the natural line-width and experimental imprecision.
Alternatively magnetic pro�les can be taken directly from the QMC or DMRG simula-
tions which should give a more accurate description of the magnetic conditions around
vacancies. To reproduce many di�erent vacancy con�gurations the program is able to
use the single-vacancy pro�le, reproduce it for each vacancy location, and add them all
up to arrive at a proper magnetic pro�le for the actual con�guration.
Additionally another approach was used. In order to avoid the massive �uctuations of
the pro�les obtained by QMC far away from the vacancies but on the other hand in
order not to have to abandon the unique magnetic structure around the vacancies, a
domain around the vacancy was taken directly from the simulation whereas the other
values were approximated by a simple exponential decrease (see �g. 2.11).
The resulting NMR spectra are shown in �g. 2.12 which leads to the conclusion that
actually the di�erent approaches don't lead to di�erent results.

2.2.4 Vacancy Con�guration Weights

The system may favour the positioning of vacancies at small distances, so some con�g-
urations would have to be sampled with larger weights. To examine the in�uence on
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Figure 2.9: Calculated NMR-spectrum with assumed correlation length of ξ = 7.38 and
S0 = 0.15, 20000 runs and a vacancy density of 0.25%. It has been plotted
with logarithmic scale to point out the distinct resonance peaks at equidistant
magnetic �elds, which show the discrete distribution of magnetization values
in the sample.
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Figure 2.10: Calculated NMR-spectrum with assumed correlation length of ξ = 7.38

and S0 = 0.15, 20000 runs and a vacancy density of 0.25%. An additional
smearing of 200G was applied in order to mimic the natural line-width.
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Figure 2.11: Magnetic pro�le with theoretical assumed behavior outside of a domain
35 < x < 65 around the vacancy.
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Figure 2.12: NMR spectrum, obtained by using the magnetization pro�le directly and
by using a magnetization pro�le as pictured in �g. 2.11. Additionally the
natural line-width is plotted.

the NMR pro�le the energy densities of some arrangements of nearby vacant spins were
calculated. They were used to determine a weight which was then used to either accept
or decline a given vacancy con�guration within the NMR-run. Although the energies
show signi�cant changes for two neighboring vacancies (see �g. 2.13), no impact on the
resulting NMR spectrum was detected for small vacancy densities.

2.2.5 Systematic Approach to Nearby Vacancies

To examine e�ects of nearby vacancies three major test series were performed for di�erent
temperatures. The temperatures T = 0.025, 0.0625, 0.175 were chosen to re�ect the given
measurements of Fujiwara et al., 40K, 100K, and 280K, respectively [3]. Monte Carlo
simulations were done for single vacancies and for two vacancies on a 100 × 2 ladder
system with varying distances. They lay up to 40 sites apart on alternating chains.
A total of 108 magnetization pro�les were produced, a few samples are shown in �gures
2.14, 2.15, 2.16, and 2.17. The di�erence of the �rst two pictures is that in the �rst the
two sites lie on the same sub-lattice but they do not in the second. The vacancies are in
both cases 8 rungs apart, but on alternating chains. One can clearly see that lying on
di�erent sub-lattices destroys the magnetic pro�le. The e�ect can be seen by looking at
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Figure 2.13: System energy depending on the distance of 2 inserted vacancies. The
system size was 100× 2 and the couplings were J⊥/J‖ = 0.5.

the whole set of pro�les for vacancy distances up to the order of 1.5 correlation lengths.
This has of course large in�uence on the NMR spectra, meaning that the central peak
originating from the zeros in the magnetic pro�le is dominating and the broadening is
diminished. Comparing �gures 2.16 and 2.17 shows the dependence on the temperature.
Higher temperatures also destroy the magnetic pro�le which is in accordance with the
expectations.
So the reduction of the line-width for larger temperatures can be explained (see sec.
1.6.1).

2.2.6 NMR-Spectra

An additional feature of the NMR program was implemented for nearby vacancies. If
any two of the random chosen sites for vacancies fell within a certain distance, the
spectrum in this area would not be composed by the two single-vacancy spectra but
by the respective spectrum for the two vacancies. This allows for possible e�ects like a
strengthening of correlations e.g. between close-by neighboring vacancies. For this test
20.000 vacancy con�gurations were sampled.
Very little broadening of the NMR spectral line-width could be detected as can be seen
in �g. 2.18-2.20 for di�erent temperatures.
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Figure 2.14: Magnetization pro�le at T = 0.025 of a system 100 × 2 with two nearby
vacancies on the same sub-lattice at (19, 0) and (27, 0). The couplings were
set to J⊥/J‖ = 0.5 and the magnetic �eld was h = 0.01.
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Figure 2.15: Magnetization pro�le at T = 0.025 of a system 100 × 2 with two nearby
vacancies on di�erent sub-lattices at (19, 0) and (27, 1). The couplings were
set to J⊥/J‖ = 0.5 and the magnetic �eld was h = 0.01.
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Figure 2.16: Magnetization pro�le at T = 0.025 of a system 100× 2 with two vacancies
on the same sub-lattice at (19, 0) and (39, 0). The couplings were set to
J⊥/J‖ = 0.5 and the magnetic �eld was h = 0.01.
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Figure 2.17: Magnetization pro�le at T = 0.175 of a system 100 × 2 with two nearby
vacancies on the same sub-lattice at (19, 0) and (39, 0). The couplings were
set to J⊥/J‖ = 0.5 and the magnetic �eld was h = 0.01.
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Figure 2.18: NMR spectrum with consideration of nearby vacancies at T = 0.025. The
vacancy density was set to 0.25 % and 20000 con�gurations were sampled.
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Figure 2.19: NMR spectrum with consideration of nearby vacancies at T = 0.0625. The
vacancy density was set to 0.25 % and 20000 con�gurations were sampled.
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Figure 2.20: NMR spectrum with consideration of nearby vacancies at T = 0.175. The
vacancy density was set to 0.25 % and 20000 con�gurations were sampled.
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Figure 2.21: Additional spatial diagonal term.

2.3 Diagonal Couplings

An additional ferromagnetic spatial diagonal term (�g. 2.21) on the plaquettes of the
ladder was proposed by Johnston et al. (see sec. 1.4.1) to give a more accurate descrip-
tion of the system without considering inter-ladder couplings. Typical values for the
interaction strengths are J⊥/J‖ = 0.5 and Jdiag/J‖ = −0.1.
To determine the in�uence of such a term on the magnetic pro�les and consequently on
the NMR pro�les, DMRG was used. First, extensive comparisons between small system
results obtained from DMRG and from exact diagonalization were performed to ensure
accurate implementation. After simulating a series of systems no e�ects on the magnetic
pro�les could be detected for diagonal coupling strengths up to Jdiag = −0.5.
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Figure 2.22: Magnetization pro�le obtained by DMRG of a system with 2 vacancies
19 rungs apart on a ladder with cyclic exchange couplings J⊥/J‖ = 0.77,
Jdiag/J‖ = 0.015, and Jcycl/J‖ = 0.08. Additional the magnetization for
the system without cyclic exchange term and J⊥/J‖ = 0.5 is plotted for
comparison.

2.4 Cyclic Exchange Term

Another possible origin of enhanced correlations needed to explain experimental data
is a possible cyclic exchange term (see sec. 1.2.2). Comparing the results of small
system experiments with exact treatment of the Hamiltonian ensured correct imple-
mentation. Further tests were done with a parameter set proposed by Johnston [1]:
J‖/kB = 2260(60)K, J⊥/J‖ = 0.77(12), Jdiag/J‖ = 0.015(10), and Jcycl/J‖ = 0.092(13).
As can be seen in pro�le 2.22 an enlargement of the correlation length is being achieved.
It increased up to values of ξ = 15(1) which almost doubles the correlation length from
prior systems.
The drawback is that the spin-gap of the system does not �t to the experimental data,
in contradiction to the suggested behavior by Johnston.
Although the enlargement is necessary to get broader NMR spectra this does not explain
the discrepancy of experimental e�ects on the unperturbed ladders and on doped ladders
(see sec.1.6.1).
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Figure 2.23: Magnetization pro�le and correlations obtained by DMRG of a system with
2 vacancies 14 rungs apart on a ladder with cyclic exchange couplings.

Another possible way out of this contradiction was detected in �g. 2.23. As can be seen
the magnetization is stabilized between the vacancies on an almost constant level. If
this e�ect leads to a larger amount of sites with large magnetization values this would
broaden the NMR spectrum. So again a series of simulations for di�erent distances was
performed and the NMR program was fed with this data, but no additional broadening
could be detected (see �g. 2.24). The phenomenon could be reduced to a very local
e�ect and the presence of a larger correlation length.

2.5 Excitation Spectra

In order to get a good overview of the dynamics of a given system, some excitation
spectra were produced representing many typical cases. This was achieved by measuring
the imaginary time correlations and then decomposing the Green's function into the
dynamic structure factor (see eq. 1.19).

G(τ) =

∫ ∞

0

S(ω)exp (−ωτ) dω (2.1)

The dynamic structure factor was plotted in (k, ω)-space where k represents the mo-
mentum and ω the real-space frequency.
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Figure 2.24: NMR spectrum obtained by using DMRG magnetization pro�les of nearby
vacancies including a cyclic exchange term.

The plot for the basic ladder system is shown in �g. 2.25. The spectrum shows typical
ladder-like properties, mainly the �nite spin-gap at k = π. Furthermore it exhibits
a sinusoidal behavior which corresponds to the dispersion relations of the elementary
excitations, the spinons. The continuity of the spectrum can be explained by the creation
of two spinons for each excitation. The energy is then distributed among those [11].

A single vacancy on the ladder changes the spectrum in a way as can be seen in �g.
2.26. A new mode is introduced at zero frequency and momentum π. See �g. 2.27 for
the relative intensity of the new mode plotted vs. momentum. Roughly speaking, this
re�ects the behavior of the induced spin by the vacancy, which can be �ipped without
energy cost.

Further tests included the insertion of more than one vacancy. As can be seen in �gure
2.28 the spectrum is relatively unchanged by adding a vacancy next to the �rst one. For
two vacancies of distance up to 20 the excitation mode at ω = 0 is clearly visible, too
(see �g. 2.29).

Also some spectra with small magnetic �eld were produced, but no more results with
substantial di�erences were achieved.
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Figure 2.25: Excitation spectrum of a 100 × 2 ladder system. k = 50 corresponds to
momentum π.
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Figure 2.26: Excitation spectrum of a 100×2 ladder system including 1 vacancy. k = 50

corresponds to momentum π. Note the additional mode at ω = 0 originating
from the insertion of the vacancy.
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Figure 2.27: Relative intensity of the excitation mode originating from the insertion of
the vacancy (see �g. 2.26).
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Figure 2.28: Excitation spectrum of a 100 × 2 ladder system with 2 vacancies next to
another on di�erent sub-lattices. k = 50 corresponds to momentum π.
Note the additional mode at ω = 0 originating from the insertion of the
vacancies.
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Figure 2.29: Excitation spectrum of a 100 × 2 ladder system with 2 vacancies on the
same sub-lattice of distance 20 apart from each other. k = 50 corresponds
to momentum π. Note the additional mode at ω = 0 originating from the
insertion of the vacancies.
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Figure 2.30: Correlations for each site r in imaginary time τ for a 100×2 ladder system.

2.6 Correlation Analysis

To learn more about the correlations in the material in momentum and frequency space
as well as in real space some plots were produced. The emphasis lied on comparing
systems with and without vacancies, concluding that their existence has quite an impact
on the outcoming picture.
Figure 2.30 shows the correlations in imaginary time for each site for a simple ladder
system, whereas �g. 2.31 is the same plot with an additional vacancy at site 50. The
correlations in imaginary time have a non-vanishing part. This is a further indication for
the free spin because this feature is exactly expected from an unpaired spin. Also one
sees the distribution of the spin-cloud around the vacancy in a de�nite, exponentially
limited area.
The whole extension of the impact of the vacancy insertion on the entire system can
be seen in the following plots. Figure 2.32 shows a simple retransformation of the
correlations in momentum space back into real space, which means that the spatial axis
denotes the distance of each site to another. This �gure shows the output not only
for the simple system without vacancy but also the system with one vacancy and so a
comparison can be made. The correlations break clearly the symmetry of space-time.
This is not surprising since the insertion of a vacancy also breaks this symmetry: it is
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Figure 2.31: Correlations for each site r in imaginary time τ for a 100× 2 ladder system
with a single vacancy at x = 50.

on one single site for all times.
The same comparison for the system with two neighboring vacancies on one chain of
the ladder shows rather surprising results. As can be seen in �g. 2.33 the addition of
a second vacant site annihilates the presence of the �rst one. The plot looks perfectly
like the plot of the simple ladder. One could probably say that the two induced spins
annihilate themselves.

2.7 Susceptibility

The temperature-behavior of the susceptibility indicates the nature of an interaction
[37]. Recalling the resonating valence-bond picture of sec. 1.3 and the picture of a spin
distributed around a vacancy one is able to determine an e�ective interaction between
such induced spins by observing the susceptibility.
Uniform and staggered susceptibilities were calculated for a 100 × 2-sized system with
no, one and two vacancies on the same and di�erent sub-lattices, respectively.
To eliminate the in�uence of the lattice itself the value for the pure lattice was subtracted.
The susceptibilities were calculated for temperatures from T = 0.001 up to T = 50.
Fig. 2.34 shows the clearly di�erent behavior of the system with vacancies on di�erent
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Figure 2.32: Correlations as a function of distance r − r′ in real space and in imaginary
time τ . A simple 100× 2 ladder system and the same system with a single
vacancy are compared.

Figure 2.33: Correlations as a function of distance r − r′ in real space and in imaginary
time τ . A simple 100 × 2 ladder system and the same system with two
nearby vacancies on di�erent sub-lattices are compared.



54 2 Results: Single Ladder

0 100 200 300 400 500 600 700 800 900 1000
−100

0

100

200

300

400

500

600

700

β

χ

 

 
same sub−lattice
different sub−lattices

Figure 2.34: Part of the uniform susceptibility originating from the vacancies for a system
with two vacancies 14 rungs apart lying on the same sub-lattice and on
di�erent sub-lattices plotted versus the inverse temperature β.

sub-lattices compared with vacancies on the same sub-lattice. The values were �tted
with the theoretical behavior of the uniform susceptibility of two spins coupled with an
e�ective coupling Je�:

χ =
2β

3 + eβJe�
(2.2)

The e�ective coupling between vacancies on the same sub-lattice turned out to be of
ferromagnetic nature (Je� = −0.028(5)) while for the system with vacancies on di�erent
sub-lattices it turned out to be anti-ferromagnetic (Je� = 0.045(5)).
This con�rms previous results of magnetization pro�les of systems with two vacancies
which add-up to another for lying on same and destroy each other for lying on di�erent
sub-lattices.

2.8 Spin Anisotropy

Another possibility of altering the model to get a more accurate description of the
material is the introduction of a spin-anisotropy. In contrast to the Heisenberg model
of sec. 1.2.1 the coupling strength connecting the z-component and the x− and y−
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Figure 2.35: In�uence of introducing a spin anisotropy to the Heisenberg model on the
correlation length (ξ) and spin-gap (∆) of a ladder system for vacancy
densities x = 0% and x = 0.25%.

components of the spin operators are di�erent:

H = J
∑
〈i,j〉

(
1

2

(
S+

i S−
j + S−

i S+
j

)
+ ∆anS

z
i S

z
j

)
+ h

∑
i

Sz
i (2.3)

with ∆an 6= 1.
Some calculations were done for a ladder system (100 × 2) without vacancies and the
usual J⊥/J‖ = 0.5 coupling ratio for the inter-ladder interactions. Measuring the same-
time correlations as well as the imaginary time correlations at momentum k = π at
temperature T = 0.025 and �tting them with the appropriate model function led to
�gure 2.35. Also shown are the according plots with a vacancy density of x = 0.25%.
The values for the spin-gap and the correlation length of this system are means over 40
independent vacancy con�gurations.
As can be seen in this table the spin-gap decreases in the same way the correlation
length increases. Additionally the in�uence of low vacancy concentration is quite small,
actually it falls within error margins. Therefore this particular model cannot be used
to describe a system with the same gap but larger spatial correlations and a substantial
change when inducing vacancies.
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2.9 Conclusions

A series of simulations have been done on a single ladder using the Heisenberg model
including diagonal and cyclic exchange terms. The excitation spectra and the correlation
plots show the impact of vacancies on the ladder system. But the broadening of the NMR
spectrum shown in experiments by Fujiwara et al. (see sec. 1.6.1) cannot be described
with the above indicated model.



3 Results: Stacked Ladders

The major topic of this chapter is to examine the in�uence of the inter-ladder coupling
perpendicular to the ladder planes. A way of looking at the system is that of two
anisotropic coupled planes. Work has been done on this system before although focus
was not laid on the coupling strengths necessary for the system described here.
Sandvik and Scalapino [38] studied the anti-ferromagnetic order-disorder transition in a
two-layer Heisenberg anti-ferromagnet by stimulating the inter-plane coupling strength.
While the single 2D Heisenberg plane is in an ordered phase at T = 0 the coupled planes
undergo a phase-transition at a critical inter-plane coupling of Jc/Jin-plane = 2.51(2).
The transition is consistent with the classical 3D Heisenberg universality class. The
disordered phase above the critical point has an excitation gap and a �nite correlation
length.
Sengupta et al. [39] examined two coupled planes with anisotropic interactions inside
the layers. They found a square-root dependence of the critical inter-layer coupling on
the anisotropy of the couplings in the planes.
The presence of a phase transition with critical couplings close to the actual couplings
in the sample could lead to e�ects which stimulate the magnetization of the system. At
�rst, this chapter deals with e�orts to �nd and classify the transition. Then the in�uence
of vacancies on the magnetization and on NMR spectra is examined.

3.1 The Quantum Critical Point

3.1.1 QMC Calculations

For an extensive analysis of the the quantum critical point (QCP) of the stacked ladder
system the ideas of Sengupta et al. [39] were followed.
System sizes of 32 × 2 × 8, 40 × 2 × 10, 48 × 2 × 12, and 56 × 2 × 14 were used. The
relative extensions in x- and z-direction which correspond to the ladder and stacking
direction were chosen to re�ect the spin-wave velocities in both directions, which gives
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Figure 3.1: Excitation spectrum of a 60× 2× 6 stacked ladder system with inter-ladder
coupling strength J3/J‖ = 0.02. k = 30 corresponds to momentum π.

the possibility of avoiding e�ects described by Sandvik [40], which may lead to false
conclusions performing a FSS analysis (see sec. 1.7.9).

3.1.2 Excitation Spectra

For the stacked ladder system the excitation spectra re�ect the appearance of a phase
transition to an ordered phase at a critical coupling in stacking direction of about J3/J‖ =

0.05 when choosing J⊥/J‖ = 0.5 accordingly to sec. 1.4.1. In �gures 3.1, 3.2, and 3.3
this behavior is clearly visible as a part of the spectral weight at k = π emerges from
the main peak and moves towards ω = 0 for increasing coupling. The remaining part,
which stays almost constant for all couplings at the value of the spin-gap of the pure
ladder indicates a further time scale originating from the dynamics of the ladder itself
(see �g. 3.4).
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Figure 3.2: Excitation spectrum of a 60× 2× 6 stacked ladder system with inter-ladder
coupling strength J3/J‖ = 0.04. k = 30 corresponds to momentum π.
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Figure 3.3: Excitation spectrum of a 60× 2× 6 stacked ladder system with inter-ladder
coupling strength J3/J‖ = 0.06. k = 30 corresponds to momentum π.
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Figure 3.4: Excitation spectrum of a 60 × 2 × 6 stacked ladder system at momentum
(π, π, π) for di�erent couplings J3/J‖.

3.1.3 The Critical Coupling

A convenient method of determining the exact coupling strength at the critical point is
the usage of the spin sti�ness. It is de�ned as

ρ =
∂2F (φ)

∂φ2
(3.1)

where F (φ) is the free energy per site and φ determines a twist acting on the spins.
There is an improved estimator for this value, which relates the sti�ness to the world-
line winding number [41]. For each dimension the relation reads

ρx(T ) =
L2

x

Nβ
〈W 2

x 〉 (3.2)

where Wx is the winding number in x-direction, Lx denotes the number of sites in this
direction, and N the number of all sites. A �nite size scaling analysis (see sec. 1.7.9)
reveals a scaling law for this observable

ρ(L) ∝ Ld−2−z (3.3)

where d is the dimension and z the dynamical critical exponent which is set to 1 according
to the classical 3D Heisenberg universality class. So plots of Lρ versus the coupling
strength for di�erent system sizes should intersect exactly at the quantum critical point.
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Figure 3.5: Scaling plot for the spin sti�ness in ladder direction to determine the critical
coupling.

Following the argumentation of Sengupta et al. [39] an analysis of this kind for both
spatial directions gives rise to the possibility of an error estimation because of opposite
directions of convergence.
This method was used to get the critical coupling of a stacked ladder system without
vacancies. The results given in �g 3.5 and 3.6 lead to a critical coupling of J crit

3 =

0.0495(5).

3.1.4 The Order Parameter

A suitable order parameter for the ordered phase above the critical coupling was found
in the staggered structure factor, which is de�ned as follows [38]:

Sπ =
1

N

∑
i,j

〈Sz
i S

z
i+j〉 (−1)xi+yi+zi+xj+yj+zj (3.4)

where the parity factor includes the coordinates (xi, yi, zi) of a given site and N is the
number of all sites. The magnetization is connected to the structure factor by

m(L) =

√
3Sπ(L)

2L2
(3.5)
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Figure 3.6: Scaling plot for the spin sti�ness in stacking direction to determine the crit-
ical coupling.

where L is the linear system size. This relation relies on neglecting the short-range
�uctuations of spin-spin correlations and is therefore only valid in the thermodynamic
limit. But it can be seen as a de�nition for �nite size systems.
A possible way to study the behavior of the magnetization near the critical point is an
extrapolation of the �nite size magnetizations to the in�nite system size. The extrapo-
lation can be seen in �g. 3.7. One can obtain the relation by looking at the theoretical
form of the spin-spin correlation function [38]:

m2(L) = m2(∞) + c
1

L1−η
for m2(∞) > 0 (3.6)

where m2(L) is the magnetization for linear size L, c is a constant, and the critical
exponent η of the correlation function was set to η = 0.03 according to the 3D-AF
Heisenberg universality class. Plotting the magnetizations versus the couplings leads to
�g. 3.8, which shows the known power-law behavior near the critical point:

m(j) = jβ (3.7)

where j is a reduced coupling strength of the form j = (J − J crit)/J crit.
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Figure 3.7: Extrapolation of the Magnetization up to in�nite size for di�erent coupling
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Figure 3.9: FSS-plot for the critical exponents γs = 0.66 and ν = 0.71.

3.1.5 Critical Exponents

For extracting the critical exponents a more sophisticated method exists: the �nite
size scaling analysis (see sec. 1.7.9). Fig. 3.9 shows such an analysis by plotting
L−γs/νS(π, π, π) versus L1/νj where j is the reduced coupling strength and γs and ν are
the critical exponents for the structure factor and the correlation length, respectively.
Although there is a constant part in the correlation function above the critical coupling,
the dominating e�ect is that of the staggered structure factor, due to limited system
sizes. So a �nite size scaling plot delivers an estimator for the critical exponent γs only.
Furthermore it is insensitive to the exponent ν. The resulting value γs = 0.66 is in good
accordance with the one obtained by using the scaling law eq. 3.8 and the exponents of
the classical 3D-Heisenberg AF of ν = 0.71 and η = 0.03.
Some scaling laws show the di�erences in critical behaviour of physical observables [14]:

γs = ν(1− η) Structure Factor (3.8)
γξ = ν(2− η) Susceptibility (3.9)
2β = ν(1 + η) Magnetization (3.10)
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Figure 3.10: Absolute magnetization for coupling strength in stacking direction J3/J‖ =

0.01 and J3/J‖ = 0.04. The system sizes were 100× 2× 10 and 120× 2× 8,
respectively. The increasing correlation length is clearly visible.

3.2 Vacancies

Johnston et al. [1] predicted a coupling strength of J3/J‖ = 0.01(2) in stacking direction
and the usual J⊥/J‖ = 0.5 for the intra-ladder couplings for SrCu2O3. Bearing this
in mind a series of Monte Carlo simulations was performed partly on a 100 × 2 × 3,
100 × 2 × 10, 120 × 2 × 8 and on a 200 × 2 × 3 system with third dimension couplings
of J3/J‖ = 0.01, J3/J‖ = 0.02, J3/J‖ = 0.03, J3/J‖ = 0.05, and J3/J‖ = 0.1. The
temperature was �xed to T = 0.025 which corresponds to about 40K in order to focus
on the possible broadening at lower temperatures. One vacancy was introduced to
analyze possible in�uence as well on the ladder as on neighboring ones.
Magnetic Pro�les for J3/J‖ = 0.01 and J3/J‖ = 0.04 are depicted in �g. 3.10.
The e�ect on the NMR pro�les is rather small. The pro�les don't show the experimen-
tally observed peak broadening (see �g. 3.11).
Additionally some test were done with 2 vacancies on neighboring ladders (see �g. 3.12).
It was suggested that additional stabilization of the AF phase between the vacancies
would be introduced. No such e�ect was detected in the corresponding NMR spectrum,
either (�g. 3.13).
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Figure 3.11: NMR pro�les for J3/J‖ = 0.01, 0.02, 0.03.

The measured correlation length for the 3D system (J3/J‖ = 0.01) doesn't exceed ξ =

8.5(5).

3.2.1 Correlation Length

Greven and Birgeneau [42] performed an analysis of the correlations in diluted spin
ladders for di�erent degrees of dilution. They measured the correlation length via the
correlation functions in quantum Monte Carlo simulations. This approach is preferable
because it can easily be done for many di�erent vacancy con�gurations which can be
averaged over. Greven et al. chose a number of con�gurations of 40 for each set of
parameters.
A similar approach for the stacked ladder system was used here to determine correlation
lengths in this system. For each determination 40 di�erent vacancy con�gurations were
chosen randomly. The equal time correlations in real space were calculated by Fourier
transformation of the k-space correlations.
Systems of size 60× 2× 10 with vacancy concentrations of 2% up to 7% were calculated
at a temperature of T = 0.015 to compare it with the simple ladder system. The
coupling strengths were set to the values proposed by Johnston et al. [1]: J⊥/J‖ = 0.5,
J3/J‖ = 0.01.
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Figure 3.12: 2 vacancies on neighboring ladders, each picture corresponds to one of the
stacked ladders. The coordinates of the vacancies are (30, 0, 0) and (70, 0, 1),
J3/J‖ = 0.03. For comparison magnetizations of a system with a single
vacancy at (30, 0, 0) are plotted, too.
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Figure 3.13: NMR spectrum of speci�c pro�le in �g. 3.12

Fig. 3.14 shows the real-space correlations in ladder-direction for a stacked ladder system
as a function of distance. They are plotted for 40 di�erent vacancy con�gurations. One
can see the signi�cant impact of the individual con�gurations primarily at the center of
the picture.
To understand this behavior particularly for the center at distances of 30, the individual
correlations of every lattice point with its corresponding lattice point of distance 30 in
ladder direction have been calculated and are depicted in �g. 3.15 and 3.16. Each picture
shows one of the coupled planes and the color code re�ects the correlation strength.
The large amount of correlations seen in the second picture emerges from the favorable
positions of the vacancies in the lower half. Especially vacant sites on the same sub-
lattice of distance 30 boost the correlations.
Every graph has been �tted with cosh-like model function to obtain the correlation
lengths. The variance of the values is quite large due to the described strong dependence
on the vacancy distribution. Figure 3.17 shows the resulting average correlation lengths
for di�erent vacancy densities.
The correlations might be increased by the presence of inter-ladder interactions. Unfor-
tunately the quantity of the enlargement can't be told due to the large statistical error
originating in computing limitations.
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Figure 3.14: Real-space correlations as a function of distance for a 60 × 2 × 10 system
with 2% vacancy density. Shown are 40 di�erent vacancy con�gurations.
Additionally the cosh-�ts for obtaining the correlation length are depicted.
The resulting value ξ = 9.75(78) is an average over all �tted correlation
lengths.
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Figure 3.15: Correlations of each point of one of the coupled planes (y = 0) to its corre-
sponding point of distance 30 in x-direction on a 60 × 2 × 10-system with
2% vacancy density. The correlation strength is color-coded. Additionally
the locations of the vacancies are shown and each of them is labeled with
its corresponding sub-lattice (A or B). The con�guration is the one with
the lowest correlation strength in �g. 3.14.
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Figure 3.16: Correlations of each point of one of the coupled planes (y = 0) to its corre-
sponding point of distance 30 in x-direction on a 60 × 2 × 10-system with
2% vacancy density. The correlation strength is color-coded. Additionally
the locations of the vacancies are shown and each of them is labeled with
its corresponding sub-lattice (A or B). The con�guration is the one with
the largest correlation strength in �g. 3.14.
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Figure 3.17: Correlation lengths as a function of vacancy density for the ladder system
and the stacked ladder system.

3.3 Broadening Requirements

Putting the cart before the horse this section deals with the needs for correlation lengths
to explain the broadening in the NMR experiments for stacked ladders (see sec. 1.6.1).
By doing simple NMR simulations with exponential decay of local magnetizations and
inputting di�erent sets of correlation lengths in both ladder and stacking directions these
requirements were estimated. An area-normalized plot turns out to be unfavorable
compared to a maximum-normalized plot (see �g. 3.18). It includes re�ning of the
parameters to approximate the experimental behavior of a line-width of about 800G.
One already sees that the needed correlation lengths for describing the experiments
exceed the ones obtained in the simulations.
The corresponding domain of required values on the (ξ, ξ3) plane is sketched in �g. 3.19.
Furthermore some systems already calculated are drawn to get an overview over required
coupling strengths. The values do not only exceed the values proposed by Johnston et al.
(see sec. 1.4.1) by far, but one has to bear in mind, that some of the parameters de�ne
systems well inside the domain of the ordered phase. Furthermore the experimental data
shows broadening only for samples with vacancies.
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Figure 3.19: The required correlation lengths are depicted in shaded form. Additionally
some simulations are drawn in with the coupling strengths used.





4 Conclusions

This thesis examined the in�uence of vacancies on spin-ladder systems with and with-
out inter-ladder couplings, inspired by the material SrCu2O3. It was shown that near
a vacancy a virtual spin is induced which is distributed in an area determined by the
correlation length in the material (see sec. 2.1). This e�ect was con�rmed observing the
magnetization, excitation spectra (2.5), and correlational behaviour (2.6). The in�uence
on simulations of NMR-spectra (2.2.3, 2.2.6) does not reproduce the drastic broadening
seen at low temperatures in SrCu2O3. A proper description of this intriguing experi-
mental observation will apparently require to go beyond the class of Heisenberg models
employed in this thesis.
Also the e�ective interaction between the induced spins was examined with the help
of the susceptibility (2.7). Further inter-ladder interactions like the diagonal (2.3) or
cyclic exchange (2.4) terms were introduced. Their in�uence was either hardly existent
or it changed the dynamics of the system in a way which is not consistent with the
experiments. This is also true for the introduction of a spin anisotropy (2.8).
The system of stacked ladders exhibits a quantum phase transition, which was investi-
gated by determining the critical coupling (3.1.3) as well as the critical exponents (3.1.5).
The in�uence of vacancies on the stacked ladder system was shown by simulations for
di�erent impurity densities (3.2). Simulations of NMR spectra show the in�uence of
vacancies on this system.
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