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When calculating effective dynamical properties of a material, inertia on the microscale is usually neglected. Here, contrary
to these approaches, inertia effects are taken into account, leading to a frequency dependent microscopic behavior. Thus, a
frequency dependent macroscopic constitutive equation is required. Therefore, a viscoelastic constitutive equation is applied
on the macroscale. The material parameters are found using an Evolutionary Strategy. In the 1-D case, system responses
on the micro- and macroscale show a good agreement in a frequency range from 0 up to the first eigenfrequency of the
microstructure.

1 Introduction

Nearly all common materials exhibit a certain heterogeneous microstructure. The determination of macroscopic, effective
properties of such microstructured materials is referred to as homogenization. There are many different approaches to calculate
the effective mechanical properties of a material. A comprehensive overview is given in [1] or [2]. Most publications on
homogenization, however, only concentrate on the calculation of statically loaded microstructures where in some cases an
analytical solution of the problem is possible.

It is assumed that the structures to be considered are made up of identical unit cells. When assuming periodicity of the
microstructure, no effort has to be put on the choice of a Representative Volume Element (RVE) because the smallest repetitive
unit of the material is representative. A special interest lies on auxetic materials, i.e., materials that exhibit negative Poissons
ratios. The microstructure of such a material usually has re-entrant corners. The calculation of the unit cell is performed in
frequency domain due to a harmonic excitation. A frequency domain calculation is preferred against a time domain calculation
because periodic boundary conditions can easily be applied. Moreover, the Boundary Element Method is used because it
provides analytical exact results [3].

Contrary to other approaches, inertia effects on the microscale are taken into account. Thus, in a frequency domain
calculation, the response of the unit cell is frequency-dependent which requires the macroscopic constitutive equation also
to be frequency-dependent. Here, the viscoelastic constitutive equation

F{σ}
N∑

k=0

pk(iω)k = F{ε}
M∑

k=0

qk(iω)k (1)

is chosen (1-D case). In (1),F{ } denotes the Fourier transformation,σ andε denote the stress and strain andpk andqk are
the viscoelastic material parameters [4]. The number of parametersN andM depends on the application. Furthermore,N
andM in (1) are chosen as a whole number parameters, i.e., no use of fractional derivatives is made until now.

2 Homogenization using an Evolutionary Strategy

The homogenization is formulated as an optimization problem, i.e., ’Find material parameters on the macroscale which de-
scribe the micromechanical behavior as good as possible’. The consideration of dynamic effects on the microscale makes
it necessary to use an optimization algorithm. As optimization function, the square difference between the microscopic and
macroscopic system response is used. The differences are summed up over the considered frequency range. If a harmonic
stress is applied on the unit cell, the minimizaion function reads

f =
ωmax∑
ω=0

(
εmicro(ω)− εmacro(ω, pk, qk)

)2 → 0 . (2)

In (2), εmicro(ω) is calculated from the unit cell, whereasεmacro(ω) is obtained from the macroscopic constitutive equation
which contains the unknown material parameters.

An Evolutionary Strategy is used to minimize (2). The advantage of this procedure is that local minima do not cause the
optimization to fail. In the present application, one gene of the Evolutionary Stategy corresponds to one material parameter
pk or qk of the macroscopic constitutive equation. The values of different parameter sets ofpk, qk (’individuals’) are modified
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(’mutated’) and recombined in one iteration step (’generation’) of the algorithm (for details on Evolutionary Stategies, see
[5]).

3 Numerical example

The prescribed procedure is applied on the auxetic cell depicted in Fig. 1. See also [6] for an extended version of this
example. The cell consists of steel beams with a quadratic cross section ofA = 10−8m2 and a Young’s modulus ofE =
2.1·1011N/m2. The frequency response for an applied load ofF = 100kN is calculated over the freqency range including the

Fig. 1 Unit cell geometry and boundary conditions

first eigenfrequency of the system. Due to the symmetry of the system, the periodicity of the boundary condtions is fulfilled.
In this example, a number ofpk = qk = 7 material parameters is chosen. Since in the Evolutionary Strategy the starting
population is chosen randomly, three optimization runs were performed. Fig. 2 shows the results of the optimization. On the
left hand side the history of three performed optimization runs are plotted. The fitness valuef is plotted over the number of
performed iterations. On the right hand side the corresponding results are given. The strain of the system is plotted over the
considered frequency range. As can be seen, the Evolutionary Strategy has found appropriate material parameters in all three
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Fig. 2 Homogenization using an Evolutionary Strategy: Fitness value versus generation and resulting strain versus frequency
for different optimization runs

optimization runs. The choice of an Evolutionary Strategy is well justified because a gradient based optimization procedure
may fail due to the existence of local minima. Further research on the proposed homogenization method will include a larger
frequency range and a generalization for the 2-D case.
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