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Introduction and notations
Let A be a finite von Neumann algebra with a normal, faithful trace ϕ. Let
u ∈ A be a unitary and x a self–adjoint operator affiliated with A. Then we can
assign a probability measure supported on the unit circle µ ∈ M(T) to u and
one supported on the real line ν ∈M(R) to x . The measures are called spectral
distributions of u or x and determined by

ϕ(f (u)) =

∫
T

f (z) dµ(z), ϕ(g(x)) =

∫
R

g(z) dν(z)

for all bounded Borel functions f , g on the spectrum of u or x , respectively.

We study free multiplicative convolution of unitary operators. Let u, v ∈ A be
unitaries with spectral distributions µ, ν ∈ M(T). If u and v are free in the
sense of D. Voiculescu [9], then the spectral distribution of the product uv is
determined by µ and ν. Hence, we write µ� ν for this measure.

For measures µ ∈ M(T) with non–vanishing expectation value m1(µ) 6= 0 we
define the Ψ- and S–transform

Ψµ(z) :=
∞∑

n=1

mn(µ)zn, Sµ(z) :=
z + 1
z

Ψ
(−1)
µ (z),

where mn(µ) =
∫
zn dµ(z) and Ψ

(−1)
µ denotes the composition inverse of Ψµ.

The spectral distribution of a product of free unitaries can be computed with

Sµ�ν(z) = Sµ(z) · Sν(z).

Let u ∈ U(H) be a unitary on a Hilbert space and (vt)t∈R ⊆ U(H) a one–
parameter group of unitaries, i.e. vsvt = vs+t . If v1 = u, we can define a n-th
root of u by u1/n := v1/n. A theorem of M. H. Stone describes a one–to–one
correspondence

x ↔ (vt = exp(itx))

between self–adjoint operators x and strongly continuous, one–parameter groups
of unitaries (vt)t∈R. Hence, we also consider self–adjoint operators.

If the measure µ ∈ M(R) is the spectral distribution of a self–adjoint x , then
R(µ) ∈M(T) denotes the spectral distribution of exp(ix), i.e.∫

T

f (z) dR(µ)(z) :=

∫
R

f (eit) dµ(t).

We define a right inverse R−1 :M(T)→M([−π, π]) by∫ π

−π
f (eiz) d R−1(µ)(z) :=

∫
T

f (z) dµ(z)

Furthermore, we use the dilatation operator Dc :M(R)→M(R) for c > 0. If
µ is the distribution of X , then Dc(µ) denotes the distribution of cX .

Central Limit Theorem
Let (xk)k∈N be free self–adjoint operators with the same spectral distribution
µ. The unitaries exp(itxk) are also free. We want to study the large n limit of
products

exp
(

i√
n
x1

)
exp
(

i√
n
x2

)
. . . exp

(
i√
n
xn

)
.

The limit distributions of the following CLT were defined by H. Bercovici and D.
V. Voiculescu [2].

Free multiplicative normal distribution

The free multiplicative normal distributions are the unique measures
σt ∈M(T), t ≥ 0, with S–transform

Sσt(z) := exp
(
t
(
z +

1
2

))
.

Central Limit Theorem

Let µ ∈M(R) with vanishing first moment m1(µ) = 0 and variance
t := m2(µ) <∞. Then we have(

R
(
D 1√

n
(µ)
))�n w−→ σt.

For the proof we use a limit theorem of G. P. Chistyakov and F. Götze [5].

Free multiplicative normal distribution σt

The measures σt of the last section appear also in other applications. The key
point is, that σt is the large N limit of the heat kernel measures on matrix unitary
groups U(N) [3, 10]. This leads to many applications like a free multiplicative
Brownian motion [3], and the large N limit of U(N) Yang–Mills theories [1, 10].
The measures were also used for representation theory of symmetric groups [7].
Properties of σt are hard to handle. P. Biane [3] computed the moments of σt .
A new formula using the confluent hypergeometric function

1F1(a, b, z) :=
∞∑

n=0

(a)n
(b)nn!

zn

seems to be advantageous sometimes.

Theorem (moments and cumulants, [3])

The moments and free cumulants are given by

mn(σt) = exp
(
−nt

2

) n−1∑
k=0

(−1)knk−1

k!

(
n

k + 1

)
tk

= exp
(
−nt

2

)
1F1(1− n, 2, nt) and

κn(σt) = exp
(
−nt

2

) (−nt)n−1

n!
.

Remark: The latter formulae are also valid for the free multiplicative normal
distribution on the positive real line, i.e. t < 0. We can deduce from the
cumulants, that σt , t < 0, are �–infinite divisible. See also [8].

Conjecture 1

The characteristic function of the uncoiled measure R−1(σt) for t ≤ 4 is given
by

ϕR−1(σt)(z)
?
= exp

(
−zt

2

)
1F1(1− z , 2, zt).

The following theorem describes the density function of σt . Some aspects have
already been discovered by P. Biane [4].

Theorem (density function, [4])

The uncoiled measure R−1(σt) is absolutely continuous and the density func-
tion is Hölder–continuous, even, and monotone raising on [−π, 0].

supp
(
R−1(σt)

)
=

{
[−c, c] t < 4
[−π, π] t ≥ 4

with c = 2 arctan

(√
t

4− t

)
+

√
t
(
1− t

4

)
.

The density function can be written as a uniform converging Fourier series

dR−1(σt)

dx
(x) =

1
2π

+
1
π

∞∑
n=1

e−
nt
2 1F1(1− n, 2, nt) cos(nx) − π < x < π.

Numerical approximation of the moments of R−1(σt) using Fourier polynomials
led us to the following conjecture.

Conjecture 2

The free cumulants of the uncoiled measure R−1(σt) for t ≤ 4 are

κn

(
R−1(σt)

)
?
=


0 n odd

t − t2

12 n = 2
(it)n

n! Bn n ≥ 4

where Bn denotes the n-th Bernoulli number. In terms of the R-transform this
means

R(z)
?
=

it
1− e−itz −

1
z
− it

2
+ tz .

We have hoped, that the two conjectures would shed some light on the question,
wether there is a nice way to uncoil the measure σt , t > 4, on a larger interval
than [−π, π] or on the whole real line. Maybe this would help to understand
the “shock” of the free unitary Brownian motion, when the spectrum collide at
−1 = e±iπ, i.e. when the time parameter reaches t = 4. Unfortunately, the
conjectures fail for t > 4. The functions are not a characteristic function or a
R–transform, respectively.

The Cauchy distribution and the real
Poisson kernel
The Cauchy distribution plays an important role for additive convolution in non–
commutative probability theory [6]. It has also nice properties for multiplicative
convolution on the unit circle.

Let νt ∈M(R), t > 0, be the Cauchy distribution with density function

dνt(x) =
t

π(t2 + x2)
dx −∞ < x <∞.

The rolled–up measure ρt := R(νt) ∈ M(T) is the real Poisson kernel with
density function

dR−1(ρt)(θ) =
sinh(t)

2π(cosh(t)− cos(θ))
dθ − π < θ < π.

and S–transform Sρt(z) = et .

The free and classical convolution of an arbitrary µ ∈ M(R) and a Cauchy
distribution coincide

R(µ)� ρt = R(µ)~ ρt = R(µ ∗ νt) = R(µ� νt).

In especially, we have

R(Ds(ν1))� R(Dt(ν1)) = R(Ds+t(ν1)).

So we can call the Cauchy distribution 1–stable with respect to the free multi-
plicative convolution on the unit circle. We do not know more stable distribution
in this sense, than δc � νt with c ∈ R and t ≥ 0.

We guess, that there exists also a central limit theorem for measures with heavy
tails similar to [6]. The set M∗ ⊆ M(R) of applicable probability measures
may be characterised as follows. Every µ ∈M∗ can be written as a sum of two
positive measures µ = τ + λ.
τ has finite second moment m2(τ ) <∞
There exists a function f (z) =

∑∞
n=2

an
zn and constants 0 < r < R , such that

f (z) is analytic for |z | > r and non–negative for all real |z | > R and

dλ(x) = f (x)1|x |>R dx .

Conjecture

Let µ ∈M∗ and
t ?

= =
∫

Γ
z f (z) dz

where f is the function from the definition ofM∗ and Γ = {Reiθ | θ ∈ [0, π]}
equipped with counter–clockwise direction. We conjecture, that(

R
(
D1

n
(µ)
))�n w−→ ρt

If t = 0, then we treat ρ0 as the Dirac measure δ1.
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Figure: Approximated density functions of the free multiplicative normal distribution σt for
t = 0.1, t = 0.5, t = 1, t = 2, and t = 3.
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Figure: Approximated density functions of the free multiplicative normal distribution σt for
t = 4.1, t = 4.5, t = 5, t = 6, and t = 8.
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