

Free multiplicative central limit theorems and the free multiplicative normal distribution on the unit circle

Christian Sattlecker

Introduction and notations

Let \mathcal{A} be a finite von Neumann algebra with a normal, faithful trace φ . Let $u \in \mathcal{A}$ be a unitary and x a self-adjoint operator affiliated with \mathcal{A} . Then we can assign a probability measure supported on the unit circle $\mu \in \mathcal{M}(\mathbb{T})$ to u and one supported on the real line $v \in \mathcal{M}(\mathbb{R})$ to x. The measures are called spectral distributions of u or x and determined by

$$\varphi(f(u)) = \int_{\mathbb{T}} f(z) d\mu(z), \qquad \varphi(g(x)) = \int_{\mathbb{R}} g(z) d\nu(z)$$

for all bounded Borel functions f, g on the spectrum of u or x, respectively.

We study free multiplicative convolution of unitary operators. Let $u, v \in \mathcal{A}$ be unitaries with spectral distributions $\mu, \nu \in \mathcal{M}(\mathbb{T})$. If u and v are free in the sense of D. Voiculescu [9], then the spectral distribution of the product uv is determined by μ and ν . Hence, we write $\mu \boxtimes \nu$ for this measure.

For measures $\mu \in \mathcal{M}(\mathbb{T})$ with non–vanishing expectation value $m_1(\mu) \neq 0$ we define the Ψ - and S-transform

$$\Psi_{\mu}(z) := \sum_{n=1}^{\infty} \mathsf{m}_{\mathsf{n}}(\mu) z^{n}, \qquad S_{\mu}(z) := \frac{z+1}{z} \Psi_{\mu}^{(-1)}(z),$$

where $m_n(\mu) = \int z^n d\mu(z)$ and $\Psi_{\mu}^{(-1)}$ denotes the composition inverse of Ψ_{μ} . The spectral distribution of a product of free unitaries can be computed with

$$S_{\mu\boxtimes\nu}(z)=S_{\mu}(z)\cdot S_{\nu}(z).$$

Let $u \in \mathcal{U}(H)$ be a unitary on a Hilbert space and $(v_t)_{t \in \mathbb{R}} \subseteq \mathcal{U}(H)$ a one-parameter group of unitaries, i.e. $v_s v_t = v_{s+t}$. If $v_1 = u$, we can define a n-th root of u by $u^{1/n} := v_{1/n}$. A theorem of M. H. Stone describes a one-to-one correspondence

$$x \leftrightarrow (v_t = \exp(itx))$$

between self-adjoint operators x and strongly continuous, one-parameter groups of unitaries $(v_t)_{t \in \mathbb{R}}$. Hence, we also consider self-adjoint operators.

If the measure $\mu \in \mathcal{M}(\mathbb{R})$ is the spectral distribution of a self-adjoint x, then $R(\mu) \in \mathcal{M}(\mathbb{T})$ denotes the spectral distribution of $\exp(ix)$, i.e.

$$\int_{\mathbb{T}} f(z) \ dR(\mu)(z) := \int_{\mathbb{R}} f(e^{it}) \ d\mu(t).$$

We define a right inverse $R^{-1}:\mathcal{M}(\mathbb{T})\to\mathcal{M}([-\pi,\pi])$ by

$$\int_{-\pi}^{\pi} f(e^{iz}) dR^{-1}(\mu)(z) := \int_{\mathbb{T}} f(z) d\mu(z)$$

Furthermore, we use the dilatation operator $D_c: \mathcal{M}(\mathbb{R}) \to \mathcal{M}(\mathbb{R})$ for c > 0. If μ is the distribution of X, then $D_c(\mu)$ denotes the distribution of cX.

Central Limit Theorem

Let $(x_k)_{k\in\mathbb{N}}$ be free self-adjoint operators with the same spectral distribution μ . The unitaries $\exp(itx_k)$ are also free. We want to study the large n limit of products

$$\exp\left(\frac{i}{\sqrt{n}}x_1\right)\exp\left(\frac{i}{\sqrt{n}}x_2\right)\ldots\exp\left(\frac{i}{\sqrt{n}}x_n\right).$$

The limit distributions of the following CLT were defined by H. Bercovici and D. V. Voiculescu [2].

Free multiplicative normal distribution

The free multiplicative normal distributions are the unique measures $\sigma_t \in \mathcal{M}(\mathbb{T})$, $t \geq 0$, with S-transform

$$S_{\sigma_t}(z) := \exp\left(t\left(z + \frac{1}{2}\right)\right).$$

Central Limit Theorem

Let $\mu \in \mathcal{M}(\mathbb{R})$ with vanishing first moment $m_1(\mu) = 0$ and variance $t := m_2(\mu) < \infty$. Then we have

$$\left(R\left(D_{\frac{1}{\sqrt{n}}}(\mu)\right)\right)^{\boxtimes n} \xrightarrow{w} \sigma_t.$$

For the proof we use a limit theorem of G. P. Chistyakov and F. Götze [5].

Free multiplicative normal distribution σ_t

The measures σ_t of the last section appear also in other applications. The key point is, that σ_t is the large N limit of the heat kernel measures on matrix unitary groups U(N) [3, 10]. This leads to many applications like a free multiplicative Brownian motion [3], and the large N limit of U(N) Yang-Mills theories [1, 10]. The measures were also used for representation theory of symmetric groups [7]. Properties of σ_t are hard to handle. P. Biane [3] computed the moments of σ_t . A new formula using the confluent hypergeometric function

$$_{1}F_{1}(a,b,z) := \sum_{n=0}^{\infty} \frac{(a)_{n}}{(b)_{n}n!} z^{n}$$

seems to be advantageous sometimes.

Theorem (moments and cumulants, [3])

The moments and free cumulants are given by

$$m_n(\sigma_t) = \exp\left(-\frac{nt}{2}\right) \sum_{k=0}^{n-1} \frac{(-1)^k n^{k-1}}{k!} \binom{n}{k+1} t^k$$

$$= \exp\left(-\frac{nt}{2}\right) {}_1F_1(1-n,2,nt) \quad and$$

$$\kappa_n(\sigma_t) = \exp\left(-\frac{nt}{2}\right) \frac{(-nt)^{n-1}}{n!}.$$

Remark: The latter formulae are also valid for the free multiplicative normal distribution on the *positive real line*, i.e. t < 0. We can deduce from the cumulants, that σ_t , t < 0, are \boxplus -infinite divisible. See also [8].

Conjecture 1

The characteristic function of the uncoiled measure $R^{-1}(\sigma_t)$ for $t \leq 4$ is given by

$$\varphi_{R^{-1}(\sigma_t)}(z) \stackrel{?}{=} \exp\left(-\frac{zt}{2}\right) {}_1\mathsf{F}_1(1-z,2,zt).$$

The following theorem describes the density function of σ_t . Some aspects have already been discovered by P. Biane [4].

Theorem (density function, [4])

The uncoiled measure $R^{-1}(\sigma_t)$ is absolutely continuous and the density function is Hölder–continuous, even, and monotone raising on $[-\pi, 0]$.

$$\operatorname{supp}\left(R^{-1}(\sigma_t)\right) = \begin{cases} [-c,c] & t < 4\\ [-\pi,\pi] & t \ge 4 \end{cases}$$
with $c = 2 \arctan\left(\sqrt{\frac{t}{4-t}}\right) + \sqrt{t\left(1-\frac{t}{4}\right)}$.

The density function can be written as a uniform converging Fourier series

$$\frac{dR^{-1}(\sigma_t)}{dx}(x) = \frac{1}{2\pi} + \frac{1}{\pi} \sum_{n=1}^{\infty} e^{-\frac{nt}{2}} {}_{1}F_{1}(1-n,2,nt) \cos(nx) - \pi < x < \pi.$$

Numerical approximation of the moments of $R^{-1}(\sigma_t)$ using Fourier polynomials led us to the following conjecture.

Conjecture 2

The free cumulants of the uncoiled measure $R^{-1}(\sigma_t)$ for $t \leq 4$ are

$$\kappa_n\left(R^{-1}(\sigma_t)\right) \stackrel{?}{=} \begin{cases} 0 & n \text{ odd} \\ t - \frac{t^2}{12} & n = 2 \\ \frac{(it)^n}{n!} B_n & n \ge 4 \end{cases}$$

where B_n denotes the n-th Bernoulli number. In terms of the ${\mathcal R}$ -transform this means

$$\mathcal{R}(z) \stackrel{?}{=} \frac{it}{1 - e^{-itz}} - \frac{1}{z} - \frac{it}{2} + tz.$$

We have hoped, that the two conjectures would shed some light on the question, wether there is a nice way to uncoil the measure σ_t , t>4, on a larger interval than $[-\pi,\pi]$ or on the whole real line. Maybe this would help to understand the "shock" of the free unitary Brownian motion, when the spectrum collide at $-1=e^{\pm i\pi}$, i.e. when the time parameter reaches t=4. Unfortunately, the conjectures fail for t>4. The functions are not a characteristic function or a \mathcal{R} -transform, respectively.

The Cauchy distribution and the real Poisson kernel

The Cauchy distribution plays an important role for additive convolution in non-commutative probability theory [6]. It has also nice properties for multiplicative convolution on the unit circle.

Let $\nu_t \in \mathcal{M}(\mathbb{R})$, t>0, be the Cauchy distribution with density function

$$d\nu_t(x) = \frac{t}{\pi(t^2 + x^2)} dx - \infty < x < \infty.$$

The rolled-up measure $\rho_t:=R(\nu_t)\in\mathcal{M}(\mathbb{T})$ is the real Poisson kernel with density function

$$dR^{-1}(\rho_t)(\theta) = \frac{\sinh(t)}{2\pi(\cosh(t) - \cos(\theta))} d\theta - \pi < \theta < \pi.$$

and S-transform $S_{\rho_t}(z) = e^t$.

The free and classical convolution of an arbitrary $\mu \in \mathcal{M}(\mathbb{R})$ and a Cauchy distribution coincide

$$R(\mu) \boxtimes \rho_t = R(\mu) \circledast \rho_t = R(\mu * \nu_t) = R(\mu \boxplus \nu_t).$$

In especially, we have

$$R(D_s(\nu_1)) \boxtimes R(D_t(\nu_1)) = R(D_{s+t}(\nu_1)).$$

So we can call the Cauchy distribution 1–stable with respect to the free multiplicative convolution on the unit circle. We do not know more stable distribution in this sense, than $\delta_c \boxplus \nu_t$ with $c \in \mathbb{R}$ and $t \geq 0$.

We guess, that there exists also a central limit theorem for measures with heavy tails similar to [6]. The set $\mathcal{M}^* \subseteq \mathcal{M}(\mathbb{R})$ of applicable probability measures may be characterised as follows. Every $\mu \in \mathcal{M}^*$ can be written as a sum of two positive measures $\mu = \tau + \lambda$.

lacktriangleright au has finite second moment $m_2(au) < \infty$

There exists a function $f(z) = \sum_{n=2}^{\infty} \frac{a_n}{z^n}$ and constants 0 < r < R, such that f(z) is analytic for |z| > r and non-negative for all real |z| > R and

$$d\lambda(x) = f(x)\mathbb{1}_{|x|>R} dx.$$

Conjecture

Let $\mu \in \mathcal{M}^*$ and

$$t \stackrel{?}{=} \Im \int_{\Gamma} z \, f(z) \, dz$$

where f is the function from the definition of \mathcal{M}^* and $\Gamma = \{Re^{i\theta} \mid \theta \in [0, \pi]\}$ equipped with counter–clockwise direction. We conjecture, that

$$\left(R\left(D_{\frac{1}{n}}(\mu)\right)\right)^{\boxtimes n} \xrightarrow{w} \rho_t$$

If t=0, then we treat ρ_0 as the Dirac measure δ_1 .

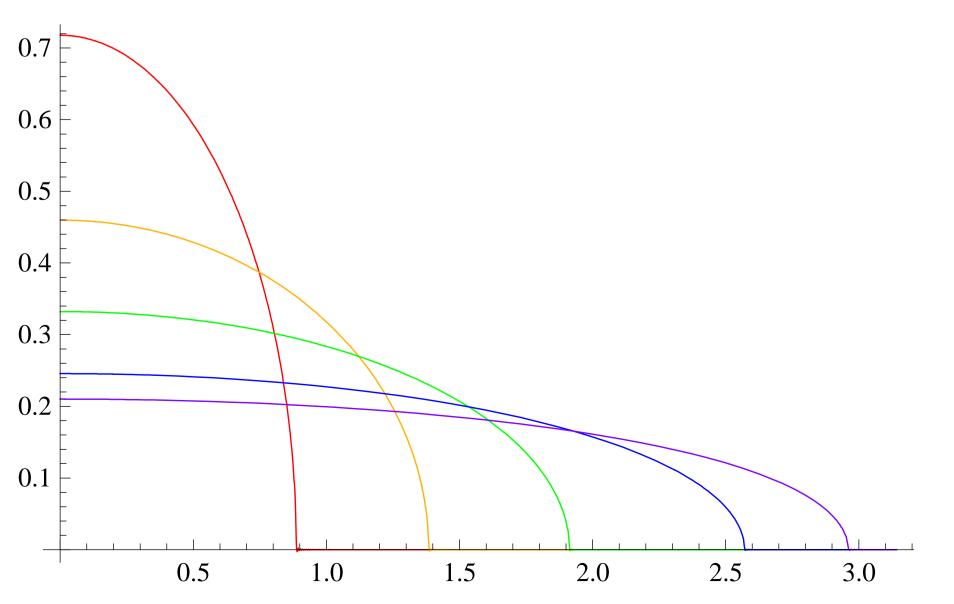


Figure: Approximated density functions of the free multiplicative normal distribution σ_t for t=0.1, t=0.5, t=1, t=2, and t=3.

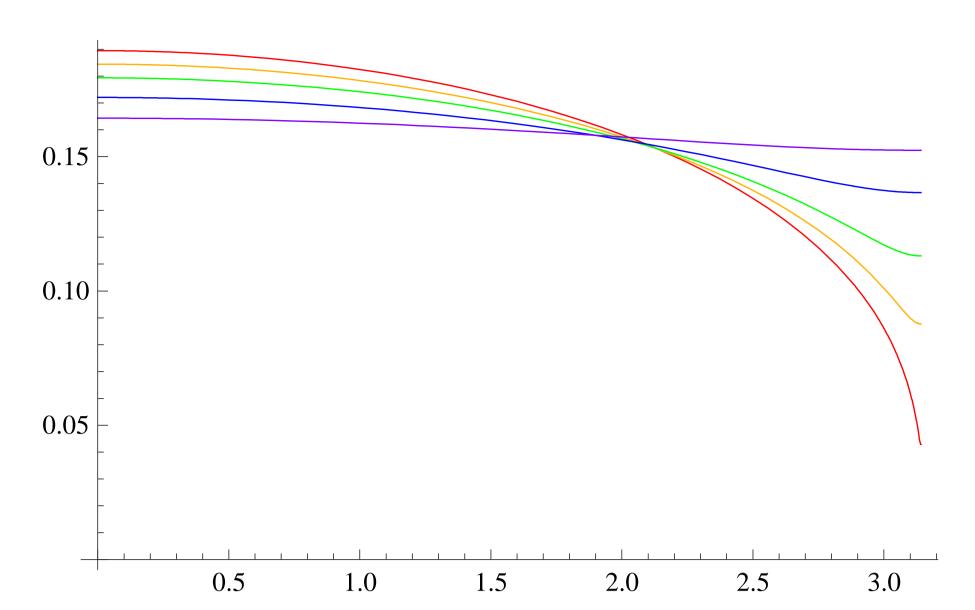


Figure: Approximated density functions of the free multiplicative normal distribution σ_t for $t=4.1,\ t=4.5,\ t=5,\ t=6,\ \text{and}\ t=8.$

Bibliography

- [1] Michael Anshelevich and Ambar N. Sengupta. Quantum Free Yang–Mills on the Plane. arXiv:1106.2107, 2011.
- [2] Hari Bercovici and Dan Voiculescu. Lévy-Hinčin type theorems for multiplicative and additive free convolution. Pacific J. Math., 153(2):217–248, 1992.

[3] Philippe Biane.

Free Brownian motion, free stochastic calculus and random matrices. In *Free probability theory (Waterloo, ON, 1995)*, volume 12 of *Fields Inst. Commun.*, pages 1–19. Amer. Math. Soc., Providence, RI, 1997.

[4] Philippe Biane.

Segal-Bargmann transform, functional calculus on matrix spaces and the theory of semi-circular and circular systems.

J. Funct. Anal., 144(1):232–286, 1997.

[5] Gennadii P. Chistyakov and Friedrich Götze. Limit theorems in free probability theory. II. *Cent. Eur. J. Math.*, 6(1):87–117, 2008.

[6] Takahiro Hasebe.

Analytic continuations of Fourier and Stieltjes transforms and generalized moments of probability measures.

J. Theor. Probability, 2011.
in Vorbereitung, arXiv:1009.1510v2.

[7] Thierry Lévy.

Schur-Weyl duality and the heat kernel measure on the unitary group. *Adv. Math.*, 218(2):537–575, 2008.

[8] Noriyoshi Sakuma and Hiroaki Yoshida.

New limit theorems related to free multiplicative convolution. 2011.

arXiv:1103.6156v1.

[9] D. V. Voiculescu, K. J. Dykema, and A. Nica.

Free random variables, volume 1 of CRM Monograph Series.

American Mathematical Society, Providence, RI, 1992.

A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups.

[10] Feng Xu.

A random matrix model from two-dimensional Yang-Mills theory. *Comm. Math. Phys.*, 190(2):287–307, 1997.