
OASIS Digital Signature Services
(OASIS-DSS)

An Architecture, Implementation and
Interoperability

Master’s Thesis at Graz University of Technology
2008

submitted by Konrad Lanz, bakk.techn., BSc Hons
Institute for Applied Information Processing and Communications (IAIK),

Graz University of Technology
A-8010 Graz, Austria

December 2008

© Copyright 2005-2008 Konrad Lanz

Assessor: O.Univ.-Prof. Dipl.-Ing. Dr.techn. Reinhard Posch
Supervisor: Ass.-Prof. Dipl.-Ing. Dr.techn. Peter Lipp

i

The candidate confirms that the work submitted is his own and the appropriate credit has been given
where reference has been made to the work of others.

I understand that failure to attribute material which is obtained from another source may be considered
as plagiarism.

(Signature of student)

Signature Value F4BtvtUqSBPSgBeE2QPp1suVNoU75kZAk05AgIgLKJlMEov7RCAW35vkkEr/HwdR

Signatory C=AT,OU=VSig,O=Hauptverband österr. Sozialvers.,CN=Konrad Lanz���

Date/Time-UTC 2008-12-15T23:15:40Z������������������������������

Issuer-Certificate C=AT,O=Hauptverband österr. Sozialvers.,CN=VSig CA 2��

Serial-No. 17293657787164074630362273138432232730208

Method urn:pdfsigfilter:bka.gv.at:binaer:v1.1.0

Parameter etsi-bka-1.0@1229382940-394096199@31239-32542-0-14959-320�������

Verification Verification service: http://demo.a-sit.at/el_signatur/verification

©2005-2008 Konrad Lanz, All Rights reserved. Permission to copy this document is granted to Graz University of Technology i.e. the Institute for Applied Information Processing and

Communications (IAIK) for in house educational purposes and its library and on a fair use basis.

For permission to copy this document otherwise please do not hesitate to contact K-L@gmx.net with the following subject “request for copy permission MSc-Thesis 2008”.

This document counts towards my degree classification.

This thesis has been written in LATEX.

ii

Abstract

OASIS Digital Signature Services (OASIS-DSS)
An Architecture, Implementation and Interoperability

This Master’s Thesis investigates “OASIS Digital Signature Services (OASIS-DSS)”, a client-server
protocol that can contribute to hide the complexities of digital signature processing for “Extensible
Markup Language (XML)” documents from the user. The challenges when creating “XML-Signature
Syntax and Processing (XMLDSIG)” signatures range from making secure choices for transforms such
as “XML Path Language Version 1.0 (XPath) filter transform”, “Extensible Stylesheet Language for
Transformation (XSLT)” to canonicalization (C14n) of XML. Further, various cryptographic signature
schemes, key distribution and the secure choice of hash functions need to be taken off a client and are
better manageable centrally.

When signed XML payload travels from client to server and back, broken signatures appear, the issue
and proposed solutions are discussed in this thesis. When transforms and canonicalization in XMLDSIG
depend on the context of the transport protocol signatures break. As such they are affected by inherited
namespaces, inherited attributes or simply the presence of the transport protocol in the data model. XML
documents can in general not be enveloped in one another.

This thesis proposes to amend XML itself to enable round tripping of signed XML data.

The architecture of OASIS-DSS itself was modified and extended to become implementable for all
kinds of XML documents and transforms. A design and an implementation of an OASIS-DSS prototype
library coping with the mentioned issues was performed.

During the work on this thesis standardization activities were undertaken in the “Organization for the
Advancement of Structured Information Standards (OASIS)” and the “World Wide Web Consortium
(W3C)”. The author participated in the OASIS-DSS technical committee and W3C XML Security
Working Group and its predecessor. Various amendments to OASIS-DSS addressing shortcomings
identified during the work on this thesis have been committed.

iii

iv

Kurzfassung

OASIS Digital Signature Services (OASIS-DSS)
An Architecture, Implementation and Interoperability

Diese Masterarbeit untersucht ,,OASIS Digital Signature Services (OASIS-DSS)“ ein Client-Server Pro-
tokoll, das dazu beiträgt die Komplexität digitaler Signatur Verarbeitung von ,,Extensible Markup Lan-
guage (XML)“ Dokumenten dem User abzunehmen. Die Herausforderungen beim Erstellen von ,,XML-
Signature Syntax and Processing (XMLDSIG)“ Signaturen reichen von der Wahl sicherer Transforma-
tionen wie ,,XML Path Language Version 1.0 (XPath) Filtertransformationen“, ,,Extensible Stylesheet
Language for Transformation (XSLT)“ bis hin zum Kanonisieren (C14n) von XML. Verschiedene kryp-
tographische Signaturverfahren, Schlüsselmanagement und die sichere Wahl einer Hashfunktion können
dem Client abgenommen werden. Diese Entscheidungen werden oft besser zentral auf einem Server
getroffen.

Wenn signiertes XML vom Client zum Server und retour gesendet wird, brechen immer wieder Sig-
naturen. Diese Problematik und Lösungsvorschläge werden in dieser Arbeit diskutiert. Auch wenn
Transformationen und Kanonisierung in XMLDSIG vom Kontext des Transportprotokolls abhängen,
können Signaturen brechen. Als solche sind diese von geerbten Namensräumen, geerbten Attributen
oder schlicht von der Gegenwart des Transportprotokolls im Datenmodell betroffen. XML ist unter der
Operation des Einfügens eines Dokumentes in ein anderes im Allgemeinen nicht abgeschlossen.

Diese Arbeit schlägt vor XML selbst anzupassen um XML uncodiert direkt in XML so transportieren
zu können, dass signierte XML Inhalte originalgetreu erhalten werden.

Die Architektur von OASIS-DSS selbst wurde so modifiziert und erweitert, dass eine Implementier-
barkeit für generelle XML Dokumente und allgemeine Transformationen möglich ist. Ein Design und
eine Implementierung einer OASIS-DSS Prototypen-Bibliothek, die oben genannte Probleme behan-
delt, wurden durchgeführt.

Während dieser Masterarbeit wurden bei der ,,Organization for the Advancement of Structured Informa-
tion Standards (OASIS)“ und dem ,,World Wide Web Consortium (W3C)“ Standardisierungstätigkeiten
unternommen. Der Autor war Mitglied des OASIS-DSS Technischen Komitees (TC) und bei der
W3C XML Security Working Group und deren Vorgängergruppe. An verschiedensten Änderungen
von OASIS-DSS wurde fortlaufend mitgearbeitet.

v

vi

Acknowledgements

I would like to thank . . .

Edith. 1998 was the luckiest year in my life, and not because XML was published. Edith thank you for
your support, your patience and the last ten years.

Eva, my mum for supporting me in everything I ever did.

Peter Lipp my supervisor for trusting in my abilities right from the beginning.

The Institute for Applied Information Processing and Communications (IAIK) and its head Reinhard
Posch my assessor for giving me the chance to do this work at this institute.

Many thanks to Harald Bratko for proof reading this document and Dieter Bratko for giving me advice
on Public-Key Infrastructure (PKI).

Especially, Clemens Orthacker for his friendship and proof reading the document.

Konrad Lanz

vii

Formatting conventions in this thesis.

• acronym (ACR) - acronyms

• ACR - abbreviated acronym

• code - in-line code elements

• <ds:Signature> - refers to Extensible Markup Language (XML) elements

• <dss:SignRequest> - refers to XML Schema (Schema) element declarations

• dss:SignRequestType - refers to Schema types declarations

• RequestID - XML attributes or Schema attribute declarations

viii

Contents

Statement . i

Kurzfassung . v

Abstract . iii

Acknowledgements . vii

1 Introduction 1

2 Background 3
2.1 The Extensible Markup Language (XML) . 3

2.1.1 The X and typing in XML . 5

2.1.2 XML, a good choice for a signature . 8

2.2 Namespaces and Types . 9

2.2.1 Namespaces help to extend XML grammars 9

2.2.2 XML Schema (Schema) . 11

2.3 XML Technologies for Processing . 14

2.3.1 Simple API for XML (SAX) . 15

2.3.2 Document Object Model (DOM) . 17

2.3.3 XML Path Language Version 1.0 (XPath) . 18

2.3.4 Uniform Resource Identifier (URI) . 23

2.3.5 XML Pointer Language Version 1.0 (XPointer) 28

2.3.6 Extensible Stylesheet Language for Transformation (XSLT) 33

2.3.7 Cascading Style Sheets (CSS) . 35

2.4 Digital Signatures . 35

2.4.1 XML Digital Signatures . 36

2.5 Canonicalization . 42

2.5.1 Minimal Canonicalization (MC14n) . 42

2.5.2 C14n and C14n11 . 43

2.5.3 Exclusive XML Canonicalization Version 1.0 (Exc-C14n) 45

2.5.4 Schema Centric XML Canonicalization Version 1.0 (ScC14n) 47

2.5.5 Canonicalizations overview . 50

ix

3 OASIS-DSS 51
3.1 Incentives for using OASIS-DSS . 51

3.2 Basics . 53

3.2.1 dss:RequestBaseType . 55

3.2.2 dss:DocumentBaseType . 56

3.2.3 dss:DocumentType - Forms of payload . 57

3.3 Signing . 59

3.3.1 Basic processing for signing using XMLDSIG 59

3.3.2 Enter the processing at various stages . 59

3.3.3 Important optional inputs and outputs for signature creation 64

3.3.4 <dss:IncludeObject> - Creating enveloping signatures 64

3.3.5 <dss:SignaturePlacement> - Creating enveloped signatures 65

3.3.6 <dss:SignedReference> - More control on reference generation 66

3.3.7 Further optional inputs and outputs for signature creation 68

3.3.8 Other optional inputs . 68

3.3.9 dss:ResponseBaseType - Returning signed documents 68

3.3.10 <dss:SignResponse> . 69

3.4 Verifying . 71

3.4.1 Basic processing for verifying using XMLDSIG 72

3.4.2 Important optional inputs and outputs for signature verification 72

3.4.3 <dss:VerifyResponse> . 73

3.5 Signing, Verifying - concluding remarks . 73

3.6 OASIS-DSS Profiles . 74

3.7 OASIS-DSS protocol extension points . 75

3.7.1 Fixing the OASIS-DSS Schema . 75

4 Signing XML, weaknesses, solutions 77
4.1 Change XML . 78

4.1.1 A Proposal for XML 1.4142 . 79

4.1.2 Alternative proposal - xml-declaration . 81

4.1.3 Indention, Whitespace . 82

4.2 XMLDSIG and C14n . 85

4.2.1 C14n, remove whitespace by default? . 86

4.2.2 Making signatures robust against changes in whitespace is crucial. 87

4.2.3 Broken Signatures . 88

4.2.4 Proper use of XSLT in XMLDSIG . 89

4.2.5 Enveloping legacy XML . 90

4.2.6 Wrapping Attacks . 91

4.2.7 C14n and the XPath Data Model . 93

x

4.2.8 URI References and Comments . 95
4.3 OASIS-DSS . 95

4.3.1 Context Free Extraction and Opaqueness . 95
4.4 Conclusions . 99

5 OASIS-DSS prototype library 101
5.1 Architecture . 102
5.2 Design . 103

5.2.1 Components . 104
5.2.2 Processors . 106
5.2.3 URIDerferencer Decoration . 108

5.3 Data binding . 110
5.3.1 Java API for XML Binding (JAXB) . 112
5.3.2 Round-tripping and Infoset . 114

5.4 Implementation - Conclusions . 118

A Appendix 119
A.1 XML in XML . 120
A.2 XSLT to normalise base64 . 121
A.3 Recursive Schema . 122
A.4 Example of a ValidateType . 124
A.5 An Example of a very complex XML document. 124
A.6 XML Derivatives and Alternatives . 125

A.6.1 Bug in Xalan . 127
A.6.2 Bug in JAXB . 127

Bibliography 129

Glossary 137

Index 157

xi

xii

Chapter 1

Introduction

Modern e-Government and e-Business processes rely on the strategic benefits of pure electronic trans-
actions. Similar to paper based transactions, which can be signed and archived to provide evidence
for the arbitration of potential disputes, electronic transactions need to be secured. The continuance of
documents implies an End-to-End based approach as opposed to just securing a channel on a Point-to-
Point basis. This means that transactions comprised of documents are secured and not just messages
on their transmission channel. Signed documents, that can be stored and archived, allow to authenticate
and protect the integrity of asynchronous remote communications by applying End-to-End [1] security
principles.

The specification of OASIS Digital Signature Services (OASIS-DSS)1 is driven by the need for web-
based processing, which enables shared behavior of digital signature creation and verification across
a group of users. To secure electronic documents technological decisions have to be made on an or-
ganizational level rather than by single users. Also other associated services like time-stamping are
considered in OASIS-DSS, but are not the focus of this thesis. A web-based architecture avoids the need
to implement the technical, as well as physical and procedural, complexities within user applications
[2].

To support the processing of digital signatures the Organization for the Advancement of Structured
Information Standards (OASIS) established a digital signature services technical committee (TC). It de-
veloped a protocol for digital signatures in a client server environment. The creation and verification of
digital signatures via such a service facilitates the centralized control of the provision of signatures [3].
This thesis is focused on the OASIS-DSS protocol itself and its standardization, which also provides a
set of basic elements to identify a service policy or a claimed identity accessing the service, nevertheless

1Terms written in italics and Acronyms (ACR) can be found in the Glossary starting at page 137 of this thesis.

1

CHAPTER 1. INTRODUCTION

access control, transport layer security, service policy rules and signature policies [4] are out of scope.
Signature creation, signature verification, time-stamping and combinations of these comprise the list
of services specified in OASIS-DSS [2]. Signatures facilitate to secure documents for asynchronous re-
mote communications (Figure 1.0.1) whereas a OASIS-DSS server itself is to be accessed synchronously
(Figure 1.0.2).

Computer supported cooperative work (CSCW) classification matrices
synchronous asynchronous

co-located

remote X

Figure 1.0.1: signed electronic documents

synchronous asynchronous

co-located

remote X

Figure 1.0.2: OASIS-DSS itself

This document is structured into five chapters. A general introduction is given in chapter 1 followed by
chapter 2 providing background knowledge about the Extensible Markup Language (XML) (section 2.1),
its namespaces, types (section 2.2) and related technologies (section 2.3). Basics of digital signatures
are discussed in section 2.4, which requires a working knowledge of applied cryptography. A good
knowledge of XML, XML Schema (Schema) and XML-Signature Syntax and Processing (XMLDSIG) is
expected in chapter 3. It introduces OASIS-DSS and contains comments on its structure as an outcome
of the work on the OASIS-DSS standard. Then chapter 4 provides an analysis of XML in section 4.1,
XMLDSIG, Canonical XML Version 1.0 (C14n) in section 4.2 and OASIS-DSS in section 4.3. In chap-
ter 5 an architecture (section 5.1), a design (section 5.2) and an implementation of OASIS-DSS prototype
library are given.

To put the contributions towards the OASIS-DSS standard into a chronological context it shall be noted
that the work on this thesis started when OASIS-DSS was a working draft in revision 30 and the author of
this thesis joined the OASIS-DSS TC in March 2005. Hence the analysis of OASIS-DSS (section 4.3) will
address some of the shortcomings discovered in working draft 30 and the subsequent working drafts.

Note: The abbreviation DSS unfortunately matches the abbreviation used for another standard. To avoid
confusion one has to appreciate that OASIS-DSS is not the same as Digital Signature Standard (DSS).
When DSS or OASIS-DSS is mentioned in this document, then it refers to OASIS Digital Signature
Services (OASIS-DSS). At this point another source for potential confusion shall be mentioned as well:
the verbs verification and validation are often used interchangeably. Both terms are commonly used for
describing the process of verifying a signature. XMLDSIG and Java Specification Request 105 XML
Digital Signature APIs (JSR105) prefer the term validation whereas most pure cryptography related
publications talk about verification of signatures [5]. This document shall also adhere to use the term
verification for signatures, because the term validation is already used for validating an XML document
against a Document Type Definition (DTD), Schema or similar grammar language.

2

http://www.oasis-open.org/committees/download.php/10081/oasis-dss-1.0-core-spec-wd-30.pdf
http://www.oasis-open.org/committees/download.php/10081/oasis-dss-1.0-core-spec-wd-30.pdf

Chapter 2

Background

This chapter provides the background knowledge necessary to analyze OASIS Digital Signature Ser-
vices (OASIS-DSS), and begins in section 2.1 with an introduction to the Extensible Markup Language
(XML) and how it can be used to create XML based languages. Then subsection 2.3.1 explains how
XML is processed, subsection 2.3.2 shows how it is held in memory as a tree. How to address parts of
XML is explained in subsection 2.3.3, subsection 2.3.4 and subsection 2.3.5 and finally how XML can
be displayed can be found in subsection 2.3.6 and subsection 2.3.7.

XML and XML related technologies are discussed as they are an important basis to understand XML

signatures and OASIS-DSS. In section 2.4 a short introduction and references to literature explaining
the basics of digital signatures are provided. What XML signatures are and how they are processed
is explained in subsection 2.4.1. Proficient in XML and related technologies, vested with a working
knowledge about XML-Signature Syntax and Processing (XMLDSIG) and applied cryptography one
can approach chapter 3 for an introduction to OASIS-DSS.

2.1 The Extensible Markup Language (XML)

Readers already familiar with Extensible Markup Language (XML) may just skim through this section
or even skip it at all. Many people approaching XML for the first time however may note the hype
still surrounding XML even ten years after its development. XML was standardized by a working group
within the World Wide Web Consortium (W3C), started in 1996 and eventually issued the first Rec-
ommendation in February 1998. The overwhelming amount of related standards and huge amount of
encompassing information offered today makes XML look to have lost its claimed simplicity by now.
The purpose of this chapter is to demystify XML and to briefly explain its essentials.

3

2.1. THE EXTENSIBLE MARKUP LANGUAGE (XML) CHAPTER 2. BACKGROUND

XML in its simplest form can be viewed as a text document consisting of opening start tags (Figure 2.1.1
line 2) and closing end tags (line 8).

<?xml version="1.0" encoding="UTF-8"?>
2 <documentElement msg="parent of firstChild and secondChild">

<firstChild attr1="value">
4 This is in memory a text node and a child of element named firstChild.

<mixedContent>is text and <elements/> mixed. This is</mixedContent>
6 </firstChild>

<secondChild/>
8 </documentElement>

Figure 2.1.1: A simple well-formed XML document

These tags must be properly nested [6] and the opening tags can bear attributes (expression 2.1.2).

attr1="value" (2.1.2)

Between the tags one can find text1, processing instructions, comments and yet again opening and
closing tags. This form is referred to as the serialized XML representation, there elements are containers
having a name and optionally attributes.

An element, which is an opening tag and a closing tag together, can also be seen to constitute a non
terminal node, which is called an element node. One talks about nodes, because another important form
of XML is its parsed tree representation as specified by the Document Object Model (DOM) (subsec-
tion 2.3.2) or the XML Path Language Version 1.0 (XPath) data model (subsection 2.3.3).

The attributes, text, comments and processing instructions are terminal leaf-nodes in XML’s tree rep-
resentation. Elements can also be leaf-nodes, when they are empty and do not have attributes (expres-
sion 2.1.3).

<tagname/> or <tagname></tagname> (2.1.3)

If an element has text and element children, we talk about an element having mixed content (Figure 2.1.1
line 5). A simple example of an XML document can be found in Figure 2.1.1.

XML is a subset of Standard Generalized Markup Language ISO 8879 (SGML) with some simplifica-
tions [7] and the intention to be rather human-readable ([6] section 1.1 Origin and Goals).

One can parse an XML document by using a recursive descent parser. To serialize XML depth first
traversal over the tree representation emitting the serialized representations is performed. This is possi-
ble because XML must be properly nested.

XML’s original intend is to mark up data which means to add meta data to text of a document. This
meta data declares the types of the actual data and how its supposed to be processed or displayed,
for instance as in Extensible HyperText Markup Language (XHTML). The actual presentation is not
necessarily specified by the meta data itself, but may be specified by style-sheets written in languages

1In XML lingo this is called parsed character data or PCDATA.

4

CHAPTER 2. BACKGROUND 2.1. THE EXTENSIBLE MARKUP LANGUAGE (XML)

like Cascading Style Sheets (CSS). They associate formatting information with the tags, so they can be
displayed in a browser or printed.

In contrast to Hyper Text Markup Language (HTML), which has a predefined set of such meta data,
XML allows for extensibility and to define the meta data itself. Thus XML allows to create new data
formats or languages again based on XML . These are often written as normative text defining tags and
attributes. Such specification usually defines the semantics, instructions to process2 and sometimes also
how to display newly defined tags. The latter as already mentioned is often performed by style-sheets
or style-sheet transforms. Extensible Stylesheet Language (XSL) specifies how an instance of a class of
XML documents is transformed into a displayable document like a Portable Document Format (PDF) or
an XML document that uses a formatting vocabulary like XHTML (see Extensible Stylesheet Language
for Transformation (XSLT) subsection 2.3.6). For a discussion about content and its presentation refer
to [8] (section 2.2).

Although XML started as a pure markup language intended to publish documents like articles, books
or electronic documents, it is used today for other data formats [9] and protocols like OASIS-DSS as
well. It is already a popular file format for configuration files and data exchange between companies
and applications.

2.1.1 The X and typing in XML

As XML claims to be human-readable and it may be typed using any text editor, the following section
shall be concerned with typing in another sense and show how types and grammars work and what
eXtensibility is in XML.

XML’s extensibility does not only allow to define new tags, but also allows to extend existing data
formats and languages. Extended document-instances containing newly defined tags should preferably
remain processable by old applications, that ignore the new markup. It is assumed that the old markup
can stand by itself. This is called the “Must Ignore” pattern of extensibility [10] enabling forwards com-
patibility. It potentially allows new documents to be processed in old applications, whereas backwards
compatibility only requires new applications to be able to process old documents. Extensibility in the
broader sense can however be understood as the ability to easily allow for updating a language. For
instance the use of wild-cards as in XML Schema (Schema) plans for extensibility.

Normative text defining new or extended languages is mainly addressed at implementers and applica-
tion developers and usually cannot be interpreted by machines and tools. To allow tools to validate
document-instances against a grammar of an XML language specification, a formal grammar definition
like a Document Type Definition (DTD) is needed and hence often also part of language specifications.
DTDs specify which tags and attributes are valid in a document and how the tags form the structure of
the document. Eastlake calls this to define “the allowable syntax of XML” [11]. The DTD is a grammar
definition that lives directly in the Document Type Declaration (DOCTYPE) at the beginning of the pro-

log of an instance-document and is located behind the optional XML declaration (expression 2.1.4) and

2e.g. XML Property Lists

5

http://www.iaik.tugraz.at/teaching/11_diplomarbeiten/archive/scheibelhofer.pdf#page=27
http://developer.apple.com/documentation/Cocoa/Conceptual/PropertyLists/index.html

2.1. THE EXTENSIBLE MARKUP LANGUAGE (XML) CHAPTER 2. BACKGROUND

before the document element of an instance-document.

<?xml version="1.0" encoding="UTF-8"?> (2.1.4)

The DTD is comprised of an internal and an external subset. The external subset is referred to by a so
called external identifier inside the DOCTYPE. The external identifier can either be a system identifier3

directly referring to the resource or alternatively a public identifier specifying how the resource contain-
ing the DTD’s external subset can be found. A public identifier is followed by system literal that works
just like the system identifier and which is used as a default. A well known example for the latter is
shown in Figure 2.1.5 used in XHTML.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Figure 2.1.5: DOCTYPE declaration defines the document type for XHTML 1.0

A system identifier is converted to a URI reference that is referring to some file or data stream containing
markup declarations. All markup declarations - external and local - taken together comprise a grammar
called the DTD. Local markup declarations can extend the set of external markup declarations and
attribute and entity declarations may even be overridden, although this functionality is very limited (cf.
[6] “PEs in Internal Subset”).
Figure 2.1.6 shows for example how to constrain XHTML to only allow level 1 and 2 headings.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"

[
3 <!ENTITY % heading "h1|h2">
]>

Figure 2.1.6: A local entity declaration overrides an external entity declaration

The prolog can further contain comments (expression 2.1.7), processing instructions (expression 2.1.8)
and insignificant whitespace.

<!-- comment --> (2.1.7)

<?target content?> (2.1.8)

In Figure 2.1.9 one can see how those can potentially be arranged. We see an xml declaration, in-
significant whitespace, a processing instruction and a DTD. The prolog ends with a comment and some
more insignificant whitespace before the document element. There are more processing instructions,
comments and insignificant whitespace, after the document element and then some elements have mixed

content.
3Please recall that terms written in italics and acronyms (ACR) can be found in the Glossary starting at page 137.

6

http://www.w3.org/TR/REC-xml/#wfc-PEinInternalSubset)

CHAPTER 2. BACKGROUND 2.1. THE EXTENSIBLE MARKUP LANGUAGE (XML)

<?xml version="1.0" encoding="UTF-8"?>
2 <!-- comments followed by insignificant whitespace

processing instructions -->
4 <?ProcessingInstructionTarget content?>
<!DOCTYPE documentElement [

6 <!ELEMENT documentElement (#PCDATA | firstChild | secondChild)*>
<!ELEMENT firstChild (#PCDATA)>

8 <!ELEMENT secondChild (#PCDATA)>
]>

10 <!-- more comments-->
<documentElement> A man has two children, one is called

12 <firstChild> Alice
</firstChild > and the other one is called

14 <secondChild> Bob </secondChild>.
</documentElement>

16 <!-- more comments -->

18 <?ProcessingInstructionTarget content?>

20 <!-- more comments -->

Figure 2.1.9: A well-formed complex and untidy XML document

XML Schema (Schema) was introduced by the W3C as a replacement for DTDs [12] and is used more
frequently today as part of a language specification. Schema is an XML vocabulary for describing the
allowed contents [13] and structure of XML documents from other XML vocabularies.

Schema is not limited to create new languages from scratch. It allows to extend existing languages with
new tags, attributes and constraints. This allows to augment, profile or restrict existing languages and
should preferably be exercised in a forward and backward compatible fashion, thus preventing current
implementations from breaking. Orchard discusses problems when extending existing languages [10]
and introduces extension and versioning strategies.

Interestingly Extensible Markup Language 1.1 (XML 1.1) is not versioned in a forwards compatible
fashion. Extensible Markup Language (XML) became an W3C recommendation on 10th of February
1998 and XML 1.1 followed on the 4th of February 2004. XML 1.1 differs mainly in addressing several
requirements arising from internationalization like character sets and loosing the constraints on names
for markup. Harold discourages the use of XML 1.1 unless markup in languages not specified in Unicode
2.0 is required [14]. Orchard argues that XML 1.1 extended XML where no such extension was allowed
[10]. During our work for the XML Core Working Group (XMLCORE) the review of the fourth and fifth
edition for XML and second edition of XML 1.1 was on the agenda. It is likely that the compatibility
defects will be fixed in a future edition by changing XML’s name production. An XML 1.1 document is
then also an XML (1.0) document, despite its version number and differences with namespace undecla-
rations. Although we consider it fair and just to extend XML’s character set for names (i.e. the tag and
attribute names, do not discriminate certain user groups any more); it should be noted that XML may be
changed in a way, that is not fully forwards compatible.

XML 1.1 is currently not of significance for this thesis as the XPath data model (subsection 2.3.3) is

7

2.1. THE EXTENSIBLE MARKUP LANGUAGE (XML) CHAPTER 2. BACKGROUND

currently not defined for XML 1.14; changes to XML however are of interest as software produced for
this thesis depends on libraries affected by such changes.

2.1.2 XML is a good choice for a signature and signed data format.

XML as such is not special and alternatives that make other trade-offs (section A.6) may pose a better
choice than XML [16]; hence the following question should be asked: “What makes XML so popular
and why is it so often preferred?”

It is the wide adoption in standards and tools that often makes XML the first choice, and it makes
protocols, data formats, and configuration files less proprietary. One does not have to come up with
new file formats over and over again, essentially reinventing already existing functionality. Today many
document based applications like StarOffice, OpenOffice and MS-Office use XML and it is commonly
used for platform independent data exchange. Protocols and languages based on XML are standardized
and XML is today the driving technology for web services. Hence companies like Google, Amazon,
Ebay and PayPal offer their services via Application Program Interfaces (API), many of which use
XML. It currently is the state of the art for data exchange between loosely coupled components like in
web services and service-oriented architectures, where data should be self-contained and to some extend
self-explanatory.

Karlinger (section 1.1.1ff [17], in German) gives an overview of the history and advantages of XML. An
important advantage mentioned, when signing XML or using it as a signature format, is that XML in con-
trast to Abstract Syntax Notation One (ASN.1) is comparatively human-legible and one does not require
additional tools to read it. This however can be disputed for complex XML documents, where tools
are required as well for comfortable reading. For relatively small, clean and simple XML documents
however the assumption should hold true. The ability to check documents against a certain grammar
allows to constrain XML documents and to keep them clean and as expected. Another advantage when
signing XML was already mentioned by Scheibelhofer [8]. He points out that the signing of structured
text like XML documents, separating structured data from its presentation, can allow visually impaired
or hearing impaired user groups to choose an appropriate representation for the data to be signed or
verified. It gives some degree of freedom to the presentation of the data.

It should be added here that XML technologies can even be an enabler to sign information as opposed
to just signing data. Classes of XML documents to be signed can be accompanied by a Schema defining
the allowed syntax. An additional description defining the semantics of the allowed elements, attributes
and their interrelation complete a language definition. Such syntax and semantic definitions can be
published and secured by signatures themselves. Hence a kind of closure to the process of signing
information would be achieved using XML technologies consistently. An underlying assumption about
common interpretation of how to define classes of XML documents and their semantics is required. This
points into the area of standardization, standard compliance and signature policies [4], which are easier

4This may change if a new edition of XPath would be issued incorporating an erratum to section 5.4 [15].

8

CHAPTER 2. BACKGROUND 2.2. NAMESPACES AND TYPES

enforced in a client server environment using an interface like OASIS-DSS. This thesis considers policies
out of scope and they are mentioned here just for completeness.

XML technologies however are not the only way to achieve a similar effect. There is the socially highly
accepted concept of paper documents that are mimicked for instance by PDF documents. It should
be pointed out that such approaches accept the mixture of structure and presentation by relying on the
analogy of representation on paper. Signing pure plain text documents like the average signed plain
text email can also achieve the effect of signing information instead of just signing data by avoiding
formatting all together. Nevertheless, a common interpretation and understanding about the character
set5 and its encoding has to be assumed (and potentially secured) for every text based data format (also
for XML).

Pure plain text documents are in general not as visually attractive as a well designed markup document.
Although depending on the application they may be sufficient and because of their simplicity even
superior in certain use cases and for certain requirements.

To conclude, XML is not necessarily the best choice for each and every use case, but it seems to be a good
choice for many use cases. It is an enabler to signing standardized information and aids interoperability.
Its wide adoption and legibility aid self-containment and self-expressiveness of the data format.

2.2 Namespaces and Types

Having introduced XML, its extensibility and versioning in the previous section (subsection 2.1.1), this
section will continue with Namespaces in XML 1.0 (XMLNS). They are used to avoid name conflicts
and to allow for extensibility across different language specifications. OASIS-DSS makes use of XMLNS

and so do other standards that are depending on XMLDSIG like for example XML Advanced Electronic
Signatures (XAdES).

2.2.1 Namespaces help to extend XML grammars

The use of namespaces for various specifications and languages is supported by standardization bodies
like OASIS, European Telecommunications Standards Institute (ETSI) and the W3C specifying gram-
mars for standards in namespaces in their domain range. Within such a namespace a class of documents
and their syntaxes and to various degrees also their semantics are defined. Such vocabularies are com-
bined and can be joined to larger grammars.

As mentioned above Schema allows to define the syntax or grammar for a class of XML documents.
XMLNS extends this functionality by allowing to join such grammars by prefixing the element and
attribute names with a namespace prefix (eg.: pb) that has to be declared in a namespace declaration
(expression 2.2.1).

xmlns:pb="http://example.org/b/" (2.2.1)

5font substitution (2.2.1), https://demo.egiz.gv.at/plain/projekte/dokumentenformate/pdf_a

9

https://demo.egiz.gv.at/plain/projekte/dokumentenformate/pdf_a

2.2. NAMESPACES AND TYPES CHAPTER 2. BACKGROUND

A namespace declaration looks like an attribute where the namespace prefix can be declared by a non
colonized name (NCName) preceded by xmlns and separated by a colon. By definition xmlns is
bound to http://www.w3.org/XML/1998/namespace. This namespace is reserved for this
very purpose of declaring a namespace prefix.

<?xml version="1.0" encoding="UTF-8"?>
2 <ee attr="has-no-namespace">

<ea xmlns="http://example.org/a/" attr="has-no-namespace">
4 <pb:eb xmlns:pb="http://example.org/b/" pb:attr="in-namespace-b">

<pc:ec xmlns:pc="http://example.org/c/" attr="has-no-namespace">
6 <ea1 xmlns:pa="http://example.org/a/" pa:attr1="in-namespace-a">

<ed xmlns="" xmlns:pb="http://example.org/b2/">
8 <pb:ea2/>

</ed>
10 </ea1>

</pc:ec>
12 </pb:eb>

</ea>
14 </ee>

Figure 2.2.2: An example showing the use of namespaces and namespace declarations.

The binding of a prefix to a namespace is in scope for the element bearing the namespace declaration and
for all descendants. It is common to say, the children and its descendants inherit this binding. For the
example shown in Figure 2.2.2, we say the namespace declaration for http://example.org/b/
(line 4) in element pb:eb declares the prefix pb and is in scope for all descendants of pb:eb and
for pb:eb itself. The comma separated notion of an element name is called a prefixed name. And the
prefix is a shorthand for the namespace name it is declared for.

A default namespace can also be defined. It binds elements without a prefix to the default namespace
by using a default namespace declaration . This is shown in Figure 2.2.2 and we say the namespace
declaration for http://example.org/a/ in element ea is in scope for all descendants of ea and
for ea itself, despite ed.

xmlns="http://example.org/a/" (2.2.3)

XMLNS allows for a default namespace to be undeclared again by using a namespace undeclaration
(expression 2.2.4).

xmlns="" (2.2.4)

By definition attributes without a prefix are not in a namespace (line 3, 5).

It is technically possible to redeclare the binding of a prefix to a namespace (expression 2.2.5, Fig-
ure 2.2.2 line 7). Documents using the same prefix for different namespace names can become confusing
and hard to read. Also the interpretation of Qualified Names (QName) becomes harder.

xmlns:pb="http://example.org/b2/" (2.2.5)

10

http://www.w3.org/TR/REC-xml-names/#NT-NCName
http://www.w3.org/XML/1998/namespace

CHAPTER 2. BACKGROUND 2.2. NAMESPACES AND TYPES

There are two specifications defining namespaces, one for XML and the other one for XML 1.1. Their
most significant difference is, that XMLNS allows to undeclare the default namespace only, whereas
Namespaces in XML 1.1 (XMLNS 1.1) allow to undeclare namespace bindings, for any given prefix
(expression 2.2.6). Wild-cards undeclaring a set or all of the of prefixes are not specified.

xmlns:prefix="" (2.2.6)

The relation of the XPath data model to XML 1.1 and also XMLNS 1.1 is not well defined. This implies
that XMLDSIG, because it uses the XPath data model, is also not well defined for XML 1.1 documents.
Nevertheless many implementations accept XML 1.1 as input.

2.2.1.1 Qualified Name (QName)

XMLNS adds the term Qualified Names (QName) for all names that are subject to namespace interpreta-
tion. These are primarily element and attribute names and in Figure 2.2.2 all different kinds of QNames

can be found. In line 2 ee is an element name that is in no namespace. In line 3 ea is an un-prefixed
element name that lies in the default namespace, which however as mentioned earlier does not apply to
attributes like attr in lines 3 and 5. As explained in the last section line 4 shows the prefixed names of
an element (pb:eb) and an attribute (pb:attr). QNames however are not only used in element and
attribute names, but also in content. Kay calls this namespace sensitive content (page 49 [18]).

2.2.2 XML Schema (Schema)

This section is meant to give a very brief and incomplete introduction to XML Schema (Schema) to be
able to understand the essentials of Schema definitions for OASIS-DSS and XMLDSIG.
Schema is a language to define a grammar that XML documents can be - so to say - conforming to or
valid against. In contrast to a DTD Schema does not have its own basic syntax, but it is XML itself. It
also has a rich support for data types and is very verbose compared to grammar descriptions in Backus
Naur Form (BNF) for instance.

Grammar is a set of rules defining the structure of a family of XML documents. One
type of grammar is the Document Type Definition (DTD) format defined by the XML spec-
ification. Another increasingly common type is the W3C XML Schema (Schema) format
defined by the XML Schema specification. Grammars define which elements and attributes
can be present in a document, and how elements can be nested within the document (often
including the order and number of nested elements). Some types of grammars (such as
Schema) also go much further, allowing specific data types and even regular expressions to
be matched by character data content. [19]

Schema has support for data typing and is often a “type donor”6 for other XML based languages, which
themselves are often specified in terms of a Schema or DTD.

6 cf. built in data-types Part 2 section 3 [20].

11

http://books.google.com/books?id=Xw3_tzEJVEwC&pg=PA49&lpg=PA49
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/#built-in-datatypes

2.2. NAMESPACES AND TYPES CHAPTER 2. BACKGROUND

Schema supports simple and complex types, which are either defined in-line as anonymous types with
local scope (lines 4-9, Figure 2.2.7) or they are named top level types (lines 12-16, Figure 2.2.7) with
global scope.

<?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="MyInteger">
4 <xs:simpleType>

<xs:restriction base="xs:integer">
6 <xs:minInclusive value="1"/>

<xs:maxInclusive value="10"/>
8 </xs:restriction>

</xs:simpleType>
10 </xs:element>

<xs:element name="MyShortString" type="MyShortStringType"/>
12 <xs:simpleType name="MyShortStringType">

<xs:restriction base="xs:string">
14 <xs:maxLength value="3"/>

</xs:restriction>
16 </xs:simpleType>
</xs:schema>

An anonymous simple type and the simple top-level type named MyShortStringType.

Figure 2.2.7: Anonymous simple type and the simple top-level type

A simple type value is represented by character data content, if XML is in its serialized form. They may
be restricted or checked against regular expressions, but a simple type can never contain attributes or
other elements.

<xs:element name="PointND" type="PointNDType"/>
4 <xs:complexType name="PointNDType">

<xs:sequence id="coordinates">
6 <xs:element name="coordinate" type="xs:integer"

minOccurs="1" maxOccurs="unbounded"/>
8 </xs:sequence>

<xs:attribute name="note" type="xs:string"/>
10 <xs:attribute name="id" type="xs:ID"/>

</xs:complexType>

Figure 2.2.8: The complex top level type named PointNDType

A complex type can have a structural description for attributes and elements and specify the order and
quantity of the latter by means of sequences and choices. Attributes can only be of simple type. Un-
fortunately attributes are specified after the sequences or choices of elements in Schema which does not
match their position in an XML document. There attributes appear in the start tag.

12

CHAPTER 2. BACKGROUND 2.2. NAMESPACES AND TYPES

2.2.2.1 Schema Instance

An XML document can be associated with a Schema by means of attributes in the Schema instance
namespace (expression 2.2.9), which is usually bound with the xsi prefix.

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" (2.2.9)

The attribute xsi:schemaLocation allows for a space separated list, where namespaces alternate
with the locations of the corresponding Schema resource. For elements and attributes that are in no
namespace xsi:noNamespaceSchemaLocation is used.

Documents may also be validated against a Schema without such an association. Then the parser is
instructed directly to use a certain Schema or dereference the namespace Uniform Resource Identi-
fier (URI). A language specified in Schema is in the namespace provided by the targetNamespace
attribute in the schema file. Which looks in the case of XMLDSIG as in line 31 of its Schema (Fig-
ure 2.2.10).

<schema xmlns="http://www.w3.org/2001/XMLSchema"
30 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

targetNamespace="http://www.w3.org/2000/09/xmldsig#"
32 version="0.1" elementFormDefault="qualified">

Figure 2.2.10: targetNamespace in xmldsig-core-schema.xsd

Schema offers a large set of built-in very expressive simple data types7. Minimal support of non-
deterministic content models is provided by using xs:all. Otherwise it is very limited in its support
for non-deterministic content models (chapter 7 [21]) and languages like RELAX NG, TREX and RE-
LAX have better support in that area. It is the Unique Particle Attribution Rule (UPA-Rule) that forbids
a Schema validator to look ahead to decide what branch of a grammar definition really matches. A very
good example can be found in [10].

More advanced usage like a recursive Schema are not used in XMLDSIG or OASIS-DSS, however counter
signatures in XAdES have a recursive character. Hence a short example for a recursive complex type
shall be given in Figure 2.2.11, the complete schema with an example can be found in section A.3. Here
in analogy to a file-system the complex type FolderType can contain Folder elements, which are
themselves of FolderType.

2.2.2.2 Post Schema Validation Infoset (PSVI)

Schema and DTD can more than just defining and validating the allowed structure and value spaces of
elements and attributes. They also allow to augment attributes with default values and type information,
especially notable are here the attributes of type ID or xs:ID, whose type information is needed so

7http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/#built-in-datatypes

13

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#Instance_Document_Constructions
http://www.w3.org/TR/xmldsig-core/xmldsig-core-schema.xsd
http://relaxng.org/
http://thaiopensource.com/trex/
http://www.xml.gr.jp/relax/
http://www.xml.gr.jp/relax/
http://www.xml.com/pub/a/2004/10/27/extend.html?page=2#example
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/#built-in-datatypes

2.3. XML TECHNOLOGIES FOR PROCESSING CHAPTER 2. BACKGROUND

<xs:element name="Folder" type="fs:FolderType"/>
15 <xs:complexType name="FolderType">

<xs:choice minOccurs="0" maxOccurs="unbounded">
17 <xs:element ref="fs:Folder"/>

<xs:element ref="fs:TextFile"/>
19 <xs:element ref="fs:BinaryFile"/>

</xs:choice>
21 <xs:attribute name="name" type="fs:folderAndFileNameType"/>

</xs:complexType>

Figure 2.2.11: recursive Schema

that they can be dereferenced. This has the drawback that a dependency from the XML document to
the DTD or Schema is introduced and exceeds what the term validation covers. We hence conclude that
the term validation is misleading as actual content is supplied via default values and type information is
attached to the in memory representation.

The term Post Schema Validation Infoset (PSVI)8 subsumes the set of information that is added to a
parsed and validated in memory representation of XML and includes the latter.

2.2.2.3 Schema Patterns

There exists a set of state of the art Schema patterns that are often tacitly used and first have been
documented by Costello [22]. They resulted from collaborative work by members of the “xml-dev”
mailing list.

element declarations type definitions Schema-pattern

one global
all anonymous (local) Russian Doll

all named (global) Venetian Blind

all global
all anonymous (local) Salami Slice

all named (global) Garden of Eden

Figure 2.2.12: Schema Patterns

Many Schemas are however not using just one pattern, but rather mix some the patterns.

2.3 XML Technologies for Processing

In this section an overview is given, which technologies are used to access and process XML. The
different layers for processing XML are explained from the bottom up. We start with the event based
push parsing API called Simple API for XML (SAX) (subsection 2.3.1) and a short mention of the
Streaming API for XML (StAX) is made; which is an API similar to SAX, but instead of being data

8Some parsers like Xerces allow to disable it using http://apache.org/xml/features/validation/schema/augment-psvi

14

http://xerces.apache.org/xerces2-j/features.html

CHAPTER 2. BACKGROUND 2.3. XML TECHNOLOGIES FOR PROCESSING

driven it is a pull parsing API. Higher level APIs like the Document Object Model (DOM) or the XPath

data model follow. They essentially represent the complete parsed XML document in memory as a tree
and allow for navigational tree traversal and random access using attributes of type ID.
Most existing implementations of XMLDSIG, like the IAIK XML Security Toolkit (XSECT), are based
on DOM, because the reference processing model of XMLDSIG requires random access as provided by
DOM. XPath filtering requires navigational access and the XPath data model. C14n is defined on this
data model as well.
DOM implementations often use SAX for parsing XML and then translate the events to nodes. They
require a lot of memory to hold the documents. Future versions or profiles of XMLDSIG may constrain
the reference processing model in a way, to make it suitable for streaming processing. Then pure SAX

and StAX implementations of XMLDSIG could be created, which is why we consider the bottom up
approach for explaining XML processing relevant. CSS used for presentation (subsection 2.3.7) and
URIs addressing resources in the web and within documents are important basics for understanding
XMLDSIG. To address certain parts of an XML document, XPath (subsection 2.3.3) expressions are an
important tool. Other XML processing expressed in XSLT (subsection 2.3.6) is optional in XMLDSIG,
but can be an enabler for rich presentation of actually signed XML content and a key to robustness.

2.3.1 Simple API for XML (SAX)

The Simple API for XML (SAX) is an event based push parsing API and it is part of the Java API for
XML Processing (JAXP). When parsing an XML document, SAX fires events for every piece of XML it
comes across. This means that a parser has to be set up with information about the input and handlers,
which receive the events the SAX parser fires, are to be registered before the processing can begin. The
events are categorized by the different handlers.

• ContentHandler - It receives events indicating the start and the end of a document and of elements.
Attributes are included in the event for a start-tag. In between, events for character content,
processing instructions, ignorable whitespace and the beginning and ending of namespace scopes
are fired. It is notable that namespace scopes can start with the actual element declaring it, and
are hence fired before.

• LexicalHandler - It receives events for comments and those indicating the start and end of CDATA

sections with events for character content in between.

• DTDHandler - It receives basic events related to the DTD like notation declarations9 and unparsed
entity declarations.

• Type Declarations Handler (DeclHandler) - It receives events related to the DTD for element and
attribute declarations as well as for external and internal entities.

9 There is convention that notation declarations may be used to identify processing instruction targets, most code just
compares target names as strings, rather than use DTDHandler.notationDecl() [23].

15

http://www.w3.org/TR/xmldsig-core/#sec-XPath
http://java.sun.com/j2se/1.4.2/docs/api/org/xml/sax/ContentHandler.html
http://java.sun.com/j2se/1.4.2/docs/api/org/xml/sax/ext/LexicalHandler.html
http://java.sun.com/j2se/1.4.2/docs/api/org/xml/sax/DTDHandler.html
http://www.w3.org/TR/xml/#Notations
http://www.w3.org/TR/xml/#dt-unparsed
http://www.w3.org/TR/xml/#dt-unparsed
http://www.w3.org/TR/xml/#NT-NDataDecl
http://java.sun.com/j2se/1.4.2/docs/api/org/xml/sax/ext/DeclHandler.html

2.3. XML TECHNOLOGIES FOR PROCESSING CHAPTER 2. BACKGROUND

The ContentHandler is the most prominent interface as it handles the most important parts of an XML

document: the start-tags including attributes, followed by character content, other start-tags and end-
tags that close elements. A library that processes XMLDSIG however, will also have to be sensitive to
comment and CDATA sections. Although the latter are not so critical, CDATA sections should preferably
remain unchanged, because problems with the merging of adjacent text-nodes in the XPath data model
can arise. This is why the LexicalHandler interface is almost as important for OASIS-DSS and XMLD-

SIG as the ContentHandler. The DTDHandler and DeclHandler are of less importance as the DTD is
removed by C14n, entities are considered to be expanded beforehand and the DTD cannot be navigated
in the XPath data model (cf. subsection 5.3.2). Nevertheless DTDHandler and DeclHandler affect the
PSVI subsection 2.2.2.2, and are hence important if attributes of type ID are used in a document and
by XMLDSIG’s reference processing model. Attributes of the form xml:id mitigate this dependency as
these are ID attributed in their own right [24], however only few parsers support it at this time.

To summarize SAX is intentionally centric around the ContentHandler to achieve simplicity. Hence reg-
istering other handlers with an XML parser like Xerces is rather cumbersome. Here setting the property
for the LexicalHandler10 and for the Type Declarations (DeclHandler)11 is the only way and reflects that
APIs more or less neglect other events.

SAX parsers are event producers and applications consume these events and either process them or
transform them into data structures like a tree structure. SAX is also the underlying technology for
higher level API implementations like DOM. Also stronger typed tree representations like data structures
of Java Architecture for XML Binding (JAXB) that are based on some grammar like Schema build
upon SAX. Applications using SAX directly however have to take care of maintaining context and data
structures themselves. Purely SAX based applications can potentially be highly performance efficient in
time and memory requirement, if applications optimize context and the data-structures held in memory.
However as soon as random access within an XML document is introduced by attributes of type ID,
referred to by others of type IDREF, memory efficiency suffers. The same is true when referencing
in the same-document using fragment URI references as defined in XML Pointer Language Version 1.0
(XPointer) (subsection 2.3.5) like the shorthand (aka. bare-name) XPointers. Their random access nature
leads to implementations that usually keep the complete parsed XML document as DOM in memory.

An API with similar properties is Streaming API for XML (StAX). It is a pull parsing API, which means
the user or application iterates over the input, but it is as such not necessarily more efficient in time
or memory usage than SAX. Brownell mentioned about the popular SAX implementations that neither
Crimson nor Xerces include SAX-to-Text functionality [23], StAX offers this events to XML writing
functionality. StAX gains importance as it is used more and more in web services, and claims to be
easier to use than SAX.

10http://xml.org/sax/properties/lexical-handler
11http://xml.org/sax/properties/declaration-handler

16

http://java.sun.com/j2se/1.4.2/docs/api/org/xml/sax/ContentHandler.html
http://java.sun.com/j2se/1.4.2/docs/api/org/xml/sax/ext/LexicalHandler.html
http://java.sun.com/j2se/1.4.2/docs/api/org/xml/sax/ContentHandler.html
http://java.sun.com/j2se/1.4.2/docs/api/org/xml/sax/DTDHandler.html
http://java.sun.com/j2se/1.4.2/docs/api/org/xml/sax/ext/DeclHandler.html
http://www.w3.org/TR/xml-c14n#Terminology
http://www.w3.org/TR/xml-c14n#Terminology
http://java.sun.com/j2se/1.4.2/docs/api/org/xml/sax/DTDHandler.html
http://java.sun.com/j2se/1.4.2/docs/api/org/xml/sax/ext/DeclHandler.html
http://www.w3.org/TR/xml/#sec-attribute-types
http://java.sun.com/j2se/1.4.2/docs/api/org/xml/sax/ContentHandler.html
http://java.sun.com/j2se/1.4.2/docs/api/org/xml/sax/XMLReader.html#setProperty(java.lang.String,%20java.lang.Object)
http://java.sun.com/j2se/1.4.2/docs/api/org/xml/sax/ext/LexicalHandler.html
http://java.sun.com/j2se/1.4.2/docs/api/org/xml/sax/ext/DeclHandler.html
http://www.w3.org/TR/xml/#sec-attribute-types
http://www.w3.org/TR/xml/#sec-attribute-types
http://www.w3.org/TR/xptr-framework/#shorthand
http://www.w3.org/TR/2001/CR-xptr-20010911/#bare-names
http://xerces.apache.org/xerces2-j/properties.html#lexical-handler
http://xerces.apache.org/xerces2-j/properties.html#declaration-handler

CHAPTER 2. BACKGROUND 2.3. XML TECHNOLOGIES FOR PROCESSING

2.3.2 Document Object Model (DOM)

The Document Object Model (DOM) represents XML data as an n-ary tree structure in memory. The
nodes are connected by their parent-child relationships. The root node of this tree is the document node,
which is not to be confused with the document element that is the first element node. All inner nodes
are element nodes. The leaf nodes are empty element nodes, text nodes, nodes representing CDATA

sections, comment nodes and nodes representing processing instructions.

All these nodes are ordered in their order of appearance in the document, and the first character of a
node counts. This is the so called document order . The attribute nodes are conceptually not considered
to be ordered within their owning elements, but could be also seen a set of leaf nodes attached to their
owning element. An idiosyncrasy of DOM is that attribute nodes are not considered children of the
element node owning them. This plays an important role when selecting parts of a document with
XPath (subsection 2.3.3).

The document root node additionally contains data about the XML version, encoding and the DOCTYPE.

<a >

xml:ns="uri"

a1="val"

 txt txt <c > </c>

document

PI PI<!-- -->

Figure 2.3.1: DOM Tree Representation

The biggest benefit of DOM is at the same time its biggest disadvantage: the complete document is held
in memory. It allows for random access when resolving same-document reference and ID attributes.
XMLDSIG requires random access within its document and hence currently all major implementations
are based on DOM. An example is given in Figure 2.3.1 showing the complete spectrum of node types
that may appear in a DOM representation of an XML document. In document order Starting with the
conceptual document node the following nodes appear:

1. document node or root node (document)

17

http://www.w3.org/TR/xml/#sec-attribute-types

2.3. XML TECHNOLOGIES FOR PROCESSING CHAPTER 2. BACKGROUND

2. processing instruction (PI)

3. comment node (<!-- -->)

4. document element (<a>) owning attributes, that follow naturally (as a whole) the location
of their owning element:

• namespace declaration xmlns:pre="uri"

• a normal attribute a1="val"

5. the content of the document element itself starts with a text node (txt)

6. followed by an empty element node ()

7. yet another text node (txt)

8. and one more empty element (<c></c>).

9. eventually after the document element another processing instruction (PI) follows.

The order within the attributes of an element is of no significance by their definition in XML. Three
things are worth noting in this example. First a document node may not contain text nodes and all
whitespace located there is not reflected in the DOM representation as it is considered insignificant.
Secondly there is only one document element and thirdly there may be processing instructions and
comments before and after the document element.
The DOM API is versioned in levels, Level 3 is supported in JAXP1.3 or higher.
One state of the art library for parsing XML to DOM is Xerces, maintained as a Project by the Apache
Software Foundation.

2.3.3 XPath

XPath is a non-XML syntax used not only by XPointer and XSLT for identifying particular pieces of
XML documents, but also by XMLDSIG and XML encryption.
The XPath data model has a notion similar to that of DOM with a few exceptions and is of particular
importance to XMLDSIG and C14n. A small difference is that the document node is called root node

and a more important one is that namespace nodes are distributed to the child elements of the element
bearing the namespace declarations and their children recursively (along the descendant axis). It should
be noted that there are further more subtle distinctions between those data models. As signature breaks
if only one single character or byte is represented differently, and one has to appreciate all intricacies
of technologies underlying XMLDSIG. DOM for instance is aware of CDATA sections, while the XPath

data model only knows text nodes and considers adjacent text nodes to be joined up to one text node12.

12http://www.w3.org/TR/DOM-Level-3-XPath/xpath.html#TextNodes

18

http://www.w3.org/TR/DOM-Level-3-XPath/xpath.html#TextNodes

CHAPTER 2. BACKGROUND 2.3. XML TECHNOLOGIES FOR PROCESSING

Figure 2.3.2 shows the XML document corresponding to the XPath data-model in Figure 2.3.4.

<?xml version=’1.0’?>
2 <?PI pival?>
<!-- comment -->

4 <a a1="1" a2="2" xmlns="a-ns" xmlns:pre="a-2-ns">
<!-- comment -->

6
<?PI pival?>

8 <c c1="1" c2="2"/>
<!-- comment -->

10 <?PI?><c1/><d>
<e/>

12 <f/>
</d>

14
<?PI pival?>

16 <!-- comment -->

Figure 2.3.2: XML document represented as XPath tree in Figure 2.3.4

In Figure 2.3.4 processing instruction nodes are indicated by <?, comment nodes by <!--, text nodes
by txt, element nodes by a single character and the attribute nodes by their name in half the size of the
element nodes. Namespace nodes are shown between the attribute nodes and the element nodes. Refer
also to the legend in Figure 2.3.3. Although XPath does not make a distinction between nodes declaring
a namespace and inherited namespace nodes all inherited namespace nodes are represented in light gray.

Figure 2.3.3: XPath Tree Representation Legend

19

Figure 2.3.4: XPath Tree Representation for Figure 2.3.2

20

CHAPTER 2. BACKGROUND 2.3. XML TECHNOLOGIES FOR PROCESSING

Earlier the descendant axis was mentioned, which contains all element nodes that are in a sub-tree
excluding the element or document root that delimits the sub-tree. Axes are an important concept for
XPath expressions, they define into which direction traversal through the tree shall go. Several axes are
defined in XPath and they can be divided into four groups:

• self
The self axis contains only the current context node.

• axes going laterally from the current context node

– attribute
The attribute axis contains only nodes if the context node is an element node having at-
tributes.

– namespace
As potentially every node that is a descendant of the document element may have a names-
pace in scope the namespace axis contains nodes for all kinds of context nodes.

• axes running in document order

– child
The child axis contains the children of an element or document node and is empty for all
other context nodes.

– descendant
The descendant axis contains all children and their children in depth first recursion (i.e.
document order).

– descendant-or-self
This axis describes the same list of nodes as the descendant axis plus the actual context
node.

– following
This axis describes in document order the list of all nodes that appear after the context node.

– following-sibling
This axis describes the set of all nodes having the same parent as the context node and appear
in document order after the context node.

• axes running in reverse document order

– parent
The parent axis contains the parent of the context node thus is empty for the document node.

– ancestor
The ancestor axis contains context node’s parent and its parent recursively in reverse docu-
ment order and is empty for the document node.

21

2.3. XML TECHNOLOGIES FOR PROCESSING CHAPTER 2. BACKGROUND

– ancestor-or-self
The same as the ancestor axis plus the context node.

– preceding
This axis describes the set of all nodes that appear in reverse document order before the
context node.

– preceding-sibling
This axis describes the set of all nodes having the same parent as the context node and appear
in reverse document order before the context node.

XPath is a query language used to select sets of nodes from an XML document. The example in expres-
sion 2.3.5 shows typical components of a location path, called location steps, that are separated by a
slash ’/’. For example expression 2.3.5 starts at the document root with a slash, then selects the docu-

ment element if it is called Signature and is in the namespace associated with the prefix ds (usually
the XMLDSIG namespace). From there the next location step spawns on all nodes of the node-set pro-
duced in the previous step. In this case going down the child axis the location path selects elements
called Object in the same namespace having an attribute called ID with the value ’object1’.

location step︷ ︸︸ ︷
/child : : ds : Signature/

axis︷ ︸︸ ︷
child : :

node test︷ ︸︸ ︷
ds : Ob ject

filter step︷ ︸︸ ︷
[@ID = ‘ob ject1′]︸ ︷︷ ︸

location path

(2.3.5)

A location step is composed of an axis, a node test and may be further narrowed by zero or more filter
steps delimited by square brackets.
The result after a slash is a node-set and the next location step will be applied to all nodes of this node-
set. This means the location step will be evaluated n times for a node-set of cardinality n taking one
node after the other as context node. Note however that we will have a node-set after each location
step and hence there will be no duplicate nodes. A good introduction to XPath can be found in one of
Michael Kay’s books (e.g. [18]).
XPath node-sets (aka. document sub-sets) are used as input for canonicalizing complete documents or
parts of them. C14n defines its input for canonicalizing complete documents by node-sets according to
expression 2.3.6 without comments and expression 2.3.7 with comments.

(//.|//@∗ |//namespace : : ∗)[not(sel f : : comment())] (2.3.6)

(//.|//@∗ |//namespace : : ∗) (2.3.7)

Where the union (|) of all (//.) element, text, comment, and processing instruction nodes along the
descendant-or-self axis is build with all attributes (//@*) along the descendant-or-self axis and with all
the namespace nodes (//namespace::*) along the descendant-or-self axis.
In expression 2.3.6 a filter-step at the end removes all the comment nodes.

22

CHAPTER 2. BACKGROUND 2.3. XML TECHNOLOGIES FOR PROCESSING

There are two versions of XPath, of which version 2.0 relatively recently became a W3C Recommen-
dation (i.e. a Standard). XPath version 2.0 however does not play a role for the current version of
XMLDSIG.

2.3.4 Uniform Resource Identifier (URI)

A Uniform Resource Identifier (URI) is defined in RFC3986 [25] and can be used as an identifier like a
name or as a resource-locator like a reference or an address. The URI syntax is not discussed in detail in
this section as it can be acquired from RFC3986 [25], RFC2396 [26] and other sources (section 7 [11]).

URIs are normatively referenced in the relevant specifications and we discuss further how URIs are
used in OASIS-DSS and XMLDSIG. OASIS-DSS directly refers to RFC2396 [26] and indirectly via
XMLDSIG[27] as well as via Schema’s xs:anyURI simple type.

XMLDSIG normatively refers to URI by referencing RFC2396 [26] and RFC2732 [28], both of which
have been obsoleted by RFC3986 [25]. And RFC3986 [25] is referenced by XML Signature Syntax and
Processing - Second Edition - (XMLDSIG SE)[29].

URIs as Identifiers, Names or Values

The use of URIs to denominate algorithms and cryptographic schemes is important and RFC3986 [25]
defines the term identifier . . .

[. . .] to distinguish what is being identified from all other things within its scope of iden-
tification. Our use of the terms ”identify” and ”identifying” refer to this purpose of distin-
guishing one resource from all other resources.

Along with OASIS-DSS Schema’s target namespace (expression 2.3.8) structured URNs (a subset of
URIs) with a common prefix13 (expression 2.3.9) are used for assigning well defined values to various
inputs and messages (expression 2.3.10).

targetNamespace="urn:oasis:names:tc:dss:1.0:core:schema" (2.3.8)

urn:oasis:names:tc:dss:1.0 (2.3.9)

urn:oasis:names:tc:dss:1.0:resultmajor:Success (2.3.10)

Similarly XMLDSIG Schema’s namespace (expression 2.3.11) is used alongside with various URIs to
identify algorithms (expression 2.3.12), qualify elements and specify encodings.

targetnamespace="http://www.w3.org/2000/09/xmldsig#" (2.3.11)

13prefix in the general sense, not namespace prefix.

23

http://tools.ietf.org/html/rfc3986#page-5

2.3. XML TECHNOLOGIES FOR PROCESSING CHAPTER 2. BACKGROUND

http://www.w3.org/2000/09/xmldsig#sha1 (2.3.12)

This usage of URIs as names is comparable to the use of string constants and they can be compared by
their literal value, normalizations are usually not considered to be necessary.

URIs as References or address for Resources

The use of URIs as a reference or an address employs the term resource defined in [25] as

[. . .] whatever might be identified by a URI. [. . .]

Which is to some extend circular and mainly lives form the examples provided:

[. . .] an electronic document, [. . .] a service [. . .] human beings, corporations, and bound
books [. . .] Likewise, abstract concepts [. . .], such as the operators, and operands of a
mathematical equation, the types of a relationship [. . .], or numeric values [. . .].

This broad definition of a resource is useful to link from one resource to another and hence this document
can link to an email addressee by using mailto:Konrad.Lanz@iaik.tugraz.at, to a telephone
by using tel:+433168730 (callto:+433168730), a Vo-IP connection like skype:echo123,
for instance if read electronically.

However, when it comes to signing, URIs are per se not very useful and we have the additional re-
quirement, that they need to be dereferenceable to an octet-stream, which can be digested and signed.
This is commonly true for URIs using the http: scheme, when retrieving data from the web like in
expression 2.3.13.

http://www.example.org/index.html (2.3.13)

Applications may even dereference URIs under the tel: scheme to binary data objects; for example
by requiring the called party to answer by modem, using the dialpad or simply record the voice14. This
is however not commonly used and such examples just serve the purpose of demonstrating that resource
retrieval will have to be reproducible.

Such is necessary, so that verification can be performed at a later time especially as RFC 3986 [. . .]

does not require that a URI persists in identifying the same resource over time, though that is a common

goal of all URI schemes [25].

In the case of a phone call and recorded voice this becomes immediately apparent; two voice recordings
of the same sentence will unlikely be binary equivalent data objects. This points to one of the immanent
strenght of an OASIS-DSS request, where arbitrary data can be associated with arbitrary URIs. So the
actual data retrieval is detached from the process of signing or verifying. Hence data stored during
signing can be supplied for verification at a later time, which can be useful, if resource ceased out of
existence or changed.

14APIs offer the possibility to extend resource retrieval for less frequently used URI schemes and dereference the resource.

24

http://tools.ietf.org/html/rfc3986#page-5
mailto:Konrad.Lanz@iaik.tugraz.at?subject=Spam%20from%20your%20thesis.&body=Before%20sending%20this,%20I%20ask%20myself:%20Do%20I%20really%20havesomething%20to%20say?
tel:+433168730
callto:+433168730
http://www.google.com/search?q=site%3Awikipedia.org+Vo-IP&btnI=
skype:echo123
http://www.example.org/index.html

CHAPTER 2. BACKGROUND 2.3. XML TECHNOLOGIES FOR PROCESSING

Solutions for authentication and integrity assurance of the retrieval actions as such, as well as the po-
tential need for confidentiality is out of the scope of this document and detached from OASIS-DSS.
Evidence collection that such has been performed securely, may be modeled into application logic on
top of XMLDSIG and OASIS-DSS to be potentially managed centrally for a group of users, but this
would exceed the scope of this document.
XMLDSIG and OASIS-DSS live from the assumption that the data objects (i.e. the dereferenced re-
sources) are reviewed by the signer before signing them (section 8.1.2 [27][29]).

The relative URI reference

As resources may also be identified relatively with respect to some base URI the term URI references

should be used, because it encompasses both URIs and relative URI references. A relative URI reference

is subject to interpretation against a base URI, called relative resolution (section 5.2 [25]). As relative
resolution is idempotent, all URI references can be seen as being subject to relative resolution and we
can be ignorant whether they are relative or not.

Examples of relative URI references include:

• //www.example.org/

• //www.example.org/foo/bar/baz/index.html?boo=far#faz

• /foo/bar/baz/

• foo/bar/baz/index.html#faz

• ../index.html?boo=far

• ./../

• .././

• /

• ./

Figure 2.3.14: Examples of relative URI references.

Same-document URI references

A URI reference can refer either within or to the same document bearing its lexical representation, which
RFC 3986 [25] calls a same-document reference. All others are external URI references. These terms
are important, because the processing in XMLDSIG and OASIS-DSS make use of them.

25

http://www.w3.org/TR/xmldsig-core/#sec-Seen
http://tools.ietf.org/html/rfc3986#section-5.2
http://www.google.com/search?q=site%3Awikipedia.org+idempotent&btnI=
//www.example.org/
//www.example.org/foo/bar/baz/index.html?boo=far#faz
/foo/bar/baz/
foo/bar/baz/index.html#faz
../index.html?boo=far
./../
.././
/

2.3. XML TECHNOLOGIES FOR PROCESSING CHAPTER 2. BACKGROUND

• same-document URI, which more accurately should be called a same-document reference, eg.:

– "" (the empty URI reference)

– #xpointer(’/’)

– #element(/something/else)

• external URI (reference) which is intended to be the opposite, eg.:

– http://www.example.org/path/file.ext#foo

– ../seg/

– ../seg/file.ext

– file://c:/folder/file.ext#foo

Figure 2.3.15: same-document reference vs external URI (reference)

XMLDSIG (section 4.3.3.2 - 4.3.3.3) uses the term same-document reference in a narrow sense limiting
it to two idioms: the empty URI and fragments; but it has not brought up a definition. RFC2396
[26] (section 4.2) is unclear whether a same-document reference (Figure 2.3.16) is limited to those two
idioms. RFC3986 [25] (section 4.4) mentions the two idioms, but conceptualizes even broader, requiring
normalization and the availability of a base URI for comparison. So RFC3986 [25] may consider the
URI references in Figure 2.3.16 as same-document references, as they will contribute either the empty
string or only a fragment towards URI resolution. This however can depend on the path and potentially
on the scheme.

• foo/..

• foo/../

• bar

• foo/../bar#baz

• ../foo/bar#baz

Figure 2.3.16: Are those same-document references?

Nevertheless a base URI is required to be able to determine path and scheme. Only then can be said
with certainty that we have a same-document reference. In the first two cases of Figure 2.3.16 the URI

reference resolves to the empty string, which is a no-op and we can talk about a same-document ref-

erence assuming that the scheme has the usual syntax for the path components (eg. http:). Given
a scheme the first two cases can be quite clear, but the last three cases are more subtle and every-

26

""
#xpointer('/')
#element(/something/else)
http://www.example.org/path/file.ext#foo
../seg/
../seg/file.ext
file://c:/folder/file.ext#foo
http://www.w3.org/TR/xmldsig-core/#sec-ReferenceProcessingModel
http://tools.ietf.org/html/rfc2396#section-4.2
foo/..
foo/../
bar
foo/../bar#baz
../foo/bar#baz

CHAPTER 2. BACKGROUND 2.3. XML TECHNOLOGIES FOR PROCESSING

thing depends on the base URI. If the base URI ends in . . ./bar in the third and the fourth case or
. . .foo/bar in the last case, we potentially have same-document references. For example the base
URI http://example.org/foo/bar with the following URI reference ../foo/bar#baz re-
sults in http://example.org/foo/bar#baz which in this case identifies the same document,
but may not in the case of another base.

To summarize, things become here very quickly very subtle when the resolution has to be considered
detached from an actual retrieval action (e.g. on a local file system). RFC3986 [25] is not useful for
a simple syntactical definition, and we even have not asked, whether foo/ would have to exist in the
first, the second and the third case, in the fifth it would.

Eventually in XMLDSIG SE [29] we have been explicit enough:

In this specification, a ’same-document’ reference is defined as a URI-Reference that con-
sists of a hash sign (’#’) followed by a fragment or alternatively consists of an empty URI
[URI].

Which is the union of what RFC 3986 calls a fragment-only URI [25] and the empty URI reference (””).

So we note that a fragment-only relative URI reference and the empty URI are technically also subject
to interpretation against a base URI. They however do not depend on the scheme but may depend on the
media type [25]. They can not result in leaving the current resource in XMLDSIG, because they do not
have a path component and the knowledge of a base URI or its scheme is not required.

• “#xpointer(/)”

• “#faz”

• “#xpointer(id(’faz’))”

Figure 2.3.17: Examples of fragment-only URI references.

It should be noted that a necessary assumption is, that an XML signature bearing the same-document

reference is in a resource of an XML Internet media type (aka. MIME type or Content-type), which is
necessary to have the semantics of the fragment defined. This seems to be a reasonable assumption for
a same-document references inside an XML signature.

Let the following be what we will call the XML Internet media types:

• text/xml

• application/xml

• text/xml-external-parsed-entity

• application/xml-external-parsed-entity

27

../foo/bar#baz
http://tools.ietf.org/html/rfc3986#section-5.1
#xpointer(/)
#faz
#xpointer(id('faz'))

2.3. XML TECHNOLOGIES FOR PROCESSING CHAPTER 2. BACKGROUND

For these the XPointer framework [30] defines the fragment semantics.
We can hence conclude that XMLDSIG and OASIS-DSS make a distinction between same-document

references and all other URI references called external URIs.

The “Java Specification Request 105 XML Digital Signature APIs (JSR105)” implements the derefer-
encing of URIs in XMLDSIG by a special class to allow applications to use URIs in a flexible way.
OASIS-DSS implementations will have to make use of custom URI dereferencing as it is done within the
protocol for arbitrary URIs. The distinction between same-document references and all external URIs

will have to be respected, when processing OASIS-DSS.

2.3.5 XPointer

XPointer [31] brings XPath and URI together. It is used to identify fragments or sub-resources by means
of a URI reference locating a resource that is an XML document.

Shorthand XPointers

The most frequently used XPointer is at the same time one of the most common ways to reference sub-
resources within the same document. It is called the shorthand (aka. bare-name) XPointer and is shown
in expression 2.3.18.

#someId (2.3.18)

The original definition of bare-name XPointers “normative” for XMLDSIG was based on the XPointer

candidate recommendation from 2001 [31] (section 4.2.2 [31]):

[. . .] A bare name stands for the same name provided as the argument of id(). [. . .]

That in turn refers to XPath’s id() function (section 4.1 [32]):

[. . .] the result is a node-set containing the elements in the same document as the context
node that have a unique ID equal to any of the tokens in the list. [. . .]

These references provide no direct indication about what should happen with unknown identifiers.
Hence implementations may falsely assume that returning the empty node-set may be appropriate in
such a case. Nevertheless when the XPointer specification is more carefully examined it should be
noted that XPointer has a different goal from XPath and will not allow for empty results (section 3.4
[31]):

[. . .] the XPointer language is intended as a specification of locations rather than a broader
query language, an empty result is an error. [. . .]

XPointer until today never became a W3C recommendation and has not exceeded the status of a can-
didate recommendation. Hence it shouldn’t be normatively referenced. It has been superseded by the

28

http://www.w3.org/TR/xptr-framework/#shorthand
http://www.w3.org/TR/2001/CR-xptr-20010911/#bare-names
http://www.w3.org/TR/2001/CR-xptr-20010911/#bare-names
http://www.w3.org/TR/xpath#function-id
http://www.w3.org/TR/2001/CR-xptr-20010911/#errors

CHAPTER 2. BACKGROUND 2.3. XML TECHNOLOGIES FOR PROCESSING

XPointer Framework [30], the xmlns() [33] and element() scheme [34]. The pure xpointer()
scheme was relegated to being a working draft [35].

XMLDSIG SE recognizes that the XPointer candidate recommendation from 2001 [31] has never become
a recommendation and refers now to the newer specifications [30], [33] and [34]. They are consistent
with respect to empty results (section 1.2 and section 3.2 [30]) :

[Definition: error] A violation of the syntactic rules of this specification, or the failure of
a pointer to identify subresources. [. . .] If no element information item is identified by a
shorthand pointer’s NCName, the pointer is in error.

The bare-name XPointers are now called shorthand XPointers and XMLDSIG SE normatively references
them in [30].

Full XPointers

The second XPointer idiom XMLDSIG mandates to be supported is a full XPointer either selecting the
document root or an element by ID.

#xpointer(/) (2.3.19)

#xpointer(id(’someId’)) (2.3.20)

The paradox situation with the latter is that the id() function, although depicted in various examples
of the XPointer Framework, will remain not to be normatively defined until XPointer would become a
recommendation. XPath could not be referenced directly by XMLDSIG SE because its id() function
returns the empty node-set as mentioned above. Hence the element() scheme was used to function-
ally specify it, the syntax however stayed the same and is now defined in XMLDSIG SE.

When we regard XPointers isolated, then expression 2.3.20 is equal to the shorthand XPointer in ex-
pression 2.3.18.XMLDSIG however introduces in section 4.3.3.2 an artificial distinction that requires
same-document reference shorthand XPointers to dereference node-sets without comment nodes.

All other XPointers are discouraged in XMLDSIG SE, but remain optional and the XPointer candidate
recommendation [31] remains to be their specification. They are however of significance as existing
standards have adopted them already as we will see later.

External XPointers

External URI references even such as in expression 2.3.21 containing a fragment must be dereferenced
to a stream of octets as required in XMLDSIG section 4.3.3.2 [29][27].

http://www.w3.org/TR/xmldsig-core/#xpointer(id(’sec-Acknowledgements’))

(2.3.21)

29

http://www.w3.org/TR/2003/REC-xptr-framework-20030325/#dt-error
http://www.w3.org/TR/2003/REC-xptr-framework-20030325/#shorthand
http://www.w3.org/TR/REC-xml-names/#NT-NCName
http://www.w3.org/TR/2001/CR-xptr-20010911/#bare-names
http://www.w3.org/TR/xptr-framework/#shorthand
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-ReferenceProcessingModel
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-ReferenceProcessingModel

2.3. XML TECHNOLOGIES FOR PROCESSING CHAPTER 2. BACKGROUND

This plus the fact that neither a serialization of secondary resources nor an encoding for transmitting
node-sets, nor how sub resources or node-sets are supposed to be parsed have been defined, implies for
resources of some XML Internet media type that complete primary resources (the whole document) are to
be dereferenced by any XMLDSIG application, which would be consistent with the Internet architecture
(section 2.6 and 3.2.1 [36]). There it says:

Interpretation of the fragment identifier is performed solely by the agent that dereferences
an URI the fragment identifier is not passed to other systems during the process of retrieval.
This means that some intermediaries in Web architecture (such as proxies) have no interac-
tion with fragment identifiers and that redirection (in HTTP [RFC2616], for example) does
not account for fragments.

At the time XMLDSIG was written, there was no consensus about that fragments do not cause the
dereferencing of subresources, which has become good practice in 2003 and eventually normative in
2004 [36].

This explains, why the use of XPointers is not recommended in external URIs, as the interpretation of
the fragment part is defined by the external resource’s MIME type [36] (aka. Internet media type or
Content-type) and the selection of the fragment may not be performed by the signature application.

XPointers degenerated by XMLDSIG

Looking at XMLDSIG (section 4.3.3.3 [27]) and XMLDSIG SE (section 4.3.3.3 [29]) one can see that
XPointer in XMLDSIG is effectively degenerated to normal XPath, by ignoring point nodes and replacing
ranges with all nodes that have some intersection with the range, necessary to retrieve an XPath node-set.
A further difference introduced is that selected element nodes are replaced by their complete sub-tree
resulting in a node-set that is the union of them all and may result in a forest.

The XPointer Implementation Report [37] mentions that the principal extensions beyond XPath were
rarely implemented. This means that the XPath-only functionality of XPointer and the xpointer()
scheme [35] could easily be propagated to recommendation and formally and normatively supported for
such a subset. XSECT for instance provides support up to this level.

There are XPath-only schemes defined for the XPointer framework in the XPointer Scheme Registry
which however appear to be hardly noted or supported. A reason may be that such a registry does not
have the normative standing of a recommendation and is hence not as prominent.

Why has the xpointer() scheme not been removed in XMLDSIG SE?

Although there is weak commitment towards XPointer in general and in XMLDSIG SE, the XML Se-
curity Specifications Maintenance Working Group (XSSMWG) discovered that the XPointer candidate
recommendation was normatively referenced by XMLDSIG and has to remain so for conformance in
XMLDSIG SE. This had to be done despite the fact that the xpointer() scheme has no normative

30

http://www.w3.org/TR/webarch/#fragid
http://www.w3.org/TR/webarch/#media-type-fragid
http://www.w3.org/TR/2002/WD-webarch-20020830/#identifiers
http://www.w3.org/TR/2003/WD-webarch-20030326/#fragid
http://www.w3.org/TR/webarch/
http://www.w3.org/TR/webarch/
http://www.w3.org/TR/webarch/#media-type-fragid
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/#sec-Same-Document
http://www.w3.org/TR/2008/PER-xmldsig-core-20080326/#sec-Same-Document
http://www.w3.org/2005/04/xpointer-schemes/

CHAPTER 2. BACKGROUND 2.3. XML TECHNOLOGIES FOR PROCESSING

standing of a W3C recommendation15 , because there has been a period of almost seven years where
this has not been uncovered.

Why has the xpointer() scheme never become a recommendation?

Reasons for not having made it to a recommendation until today are rooted in US patent claims po-
tentially affecting parts of the XPointer specification. Nevertheless this has not been uncovered in the
XMLDSIG community for a long time, and so several specifications and implementations based on
XMLDSIG used the XPointer candidate recommendation. There has been considerable controversy [38]
and comments mentioning prior art. The situation is less drastic in Europe as in principle software as
such is not patentable. Uncertainty concerning a first license, which has been superseded by a second
license did obviously not convince the community surrounding XPointer until today to provide enough
complete implementations of the xpointer() scheme to move it to a recommendation.

Despite the normative difficulties, a subset of XPointer’s syntax has been used and is mentioned in
examples of the XPointer framework [30]. The Austrian Citizen Card makes use of the xpointer()
scheme in its Security Layer [39]16 as well as German banking associations in Electronic Banking
Internet Communication Standard (EBICS).

Do XPointers have to be escaped in XMLDSIG?

URI references in XML can use characters that are not allowed in URIs is general. This has however
been specified across many specifications and in the case of XMLDSIG lead to some ambiguities. One
might think the following full XPointer in expression 2.3.22 taken from the EBICS standard can be used
as it is in URIs in XMLDSIG.

<Reference URI="#xpointer(//*[@authenticate=’true’])"> (2.3.22)

There are a few subtleties with the use of URIs in XMLDSIG in combination with XPointer. It is
unclear whether a fragment-only URI reference containing “unescaped square brackets []” as in ex-
pression 2.3.22 is allowed in XMLDSIG or whether it has to be percent-encoded as in expression 2.3.23.

<Reference URI="#xpointer(//*%5B@authenticate=’true’%5D)"> (2.3.23)

The grammar in RFC2732 [28] (Figure 2.3.25) as opposed to its prose allows them.

The following characters “a..zA..Z0..9-._˜!$&’()*+,;=/?:@” are allowed in a fragment by
the grammar in RFC2396 [26] (Figure 2.3.24).

RFC2732 [28] moves the square brackets "[" and "]" to the list of reserved characters and hence
allows “a..zA..Z0..9-._˜!$&’()*+,;=/?:@[]” in the fragment.

15Standardization within the W3C follows a certain process before becoming a W3C Recommendation. A process graphic
is shown here http://www.w3.org/2001/02pd/rec54-img.svg.

16Examples can be found in their tutorial.

31

http://lists.w3.org/Archives/Public/www-xml-linking-comments/2000OctDec/0092.html
http://lists.w3.org/Archives/Public/www-xml-linking-comments/2001AprJun/0034.html
http://lists.w3.org/Archives/Public/www-xml-linking-comments/2001AprJun/0034.html
http://www.w3.org/TR/2003/REC-xptr-framework-20030325/#scheme
http://www.buergerkarte.at
http://www.buergerkarte.at/konzept/securitylayer/spezifikation/20080220/minimum/minimum.html#profilXMLSig.erstellung.referenzen
http://lists.w3.org/Archives/Public/w3c-ietf-xmldsig/2007JulSep/thread.html#msg3
http://www.w3.org/2001/02pd/rec54-img.svg
http://www.buergerkarte.at/konzept/securitylayer/spezifikation/20080220/tutorial/tutorial.html#N101F2

2.3. XML TECHNOLOGIES FOR PROCESSING CHAPTER 2. BACKGROUND

fragment = *uric
uric = reserved | unreserved | escaped
reserved = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" |

"$" | ","
unreserved = alphanum | mark
mark = "-" | "_" | "." | "!" | "˜" | "*" | "’" |

"(" | ")"

fragment = *(
";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" |
"$" | ","
alphanum |

"-" | "_" | "." | "!" | "˜" | "*" | "’" |
"(" | ")"
)

Figure 2.3.24: RFC2396 [26] BNF relevant for URI fragment

(3) Add "[" and "]" to the set of ’reserved’ characters:

reserved = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" |
"$" | "," | "[" | "]"

and remove them from the ’unwise’ set:

unwise = "{" | "}" | "|" | "\" | "ˆ" | "‘"

Figure 2.3.25: RFC2732 [28] BNF relevant for URI fragment

XMLDSIG seems to allow "[" and "]" in a fragment, but the intent expressed in the text of RFC2732
[28] is that they should be used only for IPv6 hosts and not in the fragment.

It defines a syntax for IPv6 addresses and allows the use of "[" and "]" within a URI
explicitly for this reserved purpose. [28]

Hence the only solid choice is to escape square bracket characters unless they delimit an IPv6 host.

XMLDSIG also appears to allow "#" and "%" (section 4.3.3.1 [27]), but again the only solid choice
is to escape these characters unless they delimit the fragment from the path or start an percent en-
coding respectively. XMLDSIG SE clarifies the situation (section 4.3.3.1 [29]) in accordance with the
xs:anyURI Schema type. It references now RFC3986 [25] and it is likely that many XML related
W3C recommendations will in future versions at least non-normatively refer to Legacy extended IRIs
for XML resource identifications (LEIRI) that can be mapped to Internationalized Resource Identifierss
(IRI) and eventually to URIs.

The addition of unescaped square brackets to be allowed in the fragment would have complicated the
very simple escaping algorithm of LEIRIs and the weak standing of the xpointer() scheme made
such an addition unjustifiable and it was hence not adopted by XMLCORE.

32

http://www.google.com/search?q=site%3Awikipedia.org+IPv6&btnI=
http://tools.ietf.org/html/rfc2732#section-3
http://www.google.com/search?q=site%3Awikipedia.org+IPv6&btnI=
http://tools.ietf.org/html/rfc2732#section-3
http://www.google.com/search?q=site%3Awikipedia.org+IPv6&btnI=
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/ #sec-URI
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-URI
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#anyURI

CHAPTER 2. BACKGROUND 2.3. XML TECHNOLOGIES FOR PROCESSING

2.3.6 Extensible Stylesheet Language for Transformation (XSLT)

The Extensible Stylesheet Language for Transformation (XSLT) is used to transform XML data and
documents to XML and other data formats. XSLT is located in the Transformation API for XML (TrAX)
of JAXP. The target data format is often HTML, plain text or XML based outputs like XHTML or PDF via
Extensible Stylesheet Language Formatting Objects (XSL-FO). XPath, XSLT and XSL-FO are referred
to as Extensible Stylesheet Language (XSL) technologies.

There are different approaches how XSL style-sheets can be written. This section very briefly discuss
how to write a style-sheet transformation. XSLT in its most frequently used variant is data driven and
defines templates that match nodes of an input node-set by means of an XPath expression as soon as
they are passed in. Such templates then produce the output by printing their child elements and content
from other namespaces than the xsl 17 namespace. These are further combined and intermingled with
values and nodes of the matched node-set from the input document. These style-sheets often work with
built-in template rules (see Figure 2.3.26) and automatically process an input document by recursion.

<xsl:template match="*|/">
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="text()|@*">
<xsl:value-of select="."/>

</xsl:template>

<xsl:template match="comment()|processing-instruction()"/>

Figure 2.3.26: Built-in Template Rules

• The first built-in template in Figure 2.3.26 matches the root of the document "/" and any element
node "*" including the document element.

Then xsl:apply-templates is performed which in turn defaults to selecting all child nodes
by select="*" (same as select="child::*") and applying the matched template. This
is hence forming an automatic depth-first recursion over the elements of an input document.

• The second template causes all text nodes and attribute values to be printed as they are discovered
in the node-set. Note however that the first built-in template does not iterate over the attributes.

• The third built-in template causes comments and processing instructions to be ignored by default.
It has no child nodes that either apply or call other templates and does not contain nodes that
could be emitted. Empty templates are essentially no-ops and if matched just consume nodes.

17Recall that a prefix can be associated with a namespace. In this case xsl would be declared like this:
“xmlns:xsl="http://www.w3.org/1999/XSL/Transform"”

33

http://www.w3.org/TR/xslt#built-in-rule

2.3. XML TECHNOLOGIES FOR PROCESSING CHAPTER 2. BACKGROUND

To override the second and third built-in template comprises a common approach to write a style-sheet
and may be combined with additional templates that match node-sets according to the value of match.
This approach is similar to pattern matching in functional programming languages and takes advantage
of the built-in recursive depth-first traversal.

Another approach is to override the first built-in template and to explicitly select and iterate the in-
put nodes by using commands like <xsl:for-each> potentially in combination with named tem-
plates that are similar to subroutines. Such an approach pulls the nodes in and calls certain tem-
plates with certain node-sets, whereas the first approach is pushed by recursions. The pull approach
is closer to an imperative way of processing the data. Also a hybrid approach may be taken by calling
<xsl:apply-templates> again on sub-trees of the document.

XSLT data types

XSLT supports commonly used data types like number, string, boolean and data types more specific
to XML like node-sets or the rarely used result tree fragments. Result tree fragments are the type of
variables that contain a number of nodes from the actual stylesheet itself and hence can be emitted as
output. Selecting nodes or only parts of a variable of type result tree fragment is usually not possible in
XPath 1.0 as they are not considered to be node-sets. Many implementations however offer proprietary
extensions to convert result tree fragments to node-sets.

Important language constructs

Language constructs include conditionals like <xsl:if> which however misses an “else” path. This
is mitigated by <xsl:choose> that can contain one or more <xsl:when> conditionals and one
<xsl:otherwise> construct. Node-sets in XSLT can be iterated by using <xsl:for-each> and
using the position() for getting an index.

As mentioned above there are two approaches to actually execute templates, the one is done by pat-
tern matching using <xsl:apply-templates> the other one <xsl:call-template> call-
ing a pattern by its name. Different templates matching the same nodes are valid and templates can
carry the same name if distinguished by a mode attribute. The mode attribute is like a string param-
eter specified with <xsl:apply-templates mode="mode1"/> or <xsl:call-template
name="foo" mode="mode2"/>.

Template priorities, import and include

Default priorities modeled into the language exist trying to match the most specific pattern when deter-
mining the template to be called.

Style-sheets may also import or include other style-sheets. Templates from imported style-sheets have
a lower priority than the “local” templates of the importing stylesheet.

34

CHAPTER 2. BACKGROUND 2.4. DIGITAL SIGNATURES

When a stylesheet however is included, the included templates receive the same priority classification
as if they would have been declared directly in the including style-sheet.

Extension mechanism

XSLT has an extension mechanism and allows for so called extension elements and extension functions,
that can pose a significant security risk [40] (see also. subsection 4.2.4) and are usually implementation
dependent. At the time of writing version 2.0 became a W3C Recommendation. It does not play a role
for the current version of XMLDSIG or OASIS-DSS. XSLT is part of TrAX the Transformation API for
XML.

2.3.7 Cascading Style Sheets (CSS)

Cascading Style Sheets (CSS) define the appearance of XML or HTML documents separately form the
actual data. They are usually included by means of a processing instruction. CSS is a simple declarative
language18 that allows authors and readers to attach styles such as fonts, colors and spacing to HTML

or XML documents. Authors can tailor their documents for presentation on various media such as
visual browsers, aural devices, printers, Braille devices, and hand held devices [11]. “Stylesheets affect
security because they must be included under a signature if the signature is meant to securely indicate
approval of information as presented to a user.” [11]

2.4 Digital Signatures

Digital signatures, or more generally electronic signatures strive to be the electronic counterpart of hand-
written signatures. Digital signatures in the context of this thesis are clearly distinct from handwritten
electronic signatures performed on a touch sensitive pad or display. The latter signatures today often
appear at cash registers in US or UK supermarkets or shops and replace paper credit card payment in-
structions. In continental Europe personal digital assistants (PDA) are often used as a replacement for a
paper signature to acknowledge the receipt of a parcel from the postal service.

In contrast digital signatures employ a cryptographic signature scheme such as RSASSA-PKCS 1-v1 5
specified in Public Key Cryptography Standards (PKCS) #1 or Keyed-Hash Message Authentication
Code (HMAC) to assure authenticity, integrity and potentially non-repudiation of signed data. It should
be noted that digital signatures, in contrast to electronic handwritten signatures, do not require physical
presence of the signatory. It is hence possible to sign data in a client server environment for which
OASIS-DSS can be the interface.

In [8] the relation of handwritten signatures to digital signatures is discussed and short introductions
to Public-Key Infrastructures (PKI), public signature schemes, qualified certificates and revocation of

18CSS itself is not using an XML syntax, because its early versions predate XML. Newer versions of CSS may not have
switched to an XML syntax because Lie did not want to end up with a programming language [41].

35

http://www.google.com/search?q=site%3Awikipedia.org+PDA&btnI=

2.4. DIGITAL SIGNATURES CHAPTER 2. BACKGROUND

certificates are given. The source points out that all known techniques that meet the requirements for
secure electronic signatures laid out by European regulators are based on cryptographic methods and
mentions further that handwritten signatures written on a touch sensitive display are not secure electronic
signatures. Given the source is a little dated with respect to its key length recommendation, we add that
today as of 2008 the recommended key length for the RSA signature scheme has increased from 1024
Bit to 2048 Bit [42]. Lenstra and Verheul projected in 2001 that a machine build in 2009 for $250 million
could factor a 1024-bit RSA key in a day. A good resource is http://www.keylength.com/ and
provides a good overview of key length recommendations.

It should further be added that longer hash functions of the SHA-2 family should be considered for future
systems. In [43] we discuss the need to move from SHA-1 to longer hash functions based on FIPS
and NIST draft publications and recent advances in search for SHA-1 collisions by Rijmen, Mendel,
Rechberger, De Cannière [44], [45].

XML Advanced Electronic Signatures (XAdES) [46] and CMS Advanced Electronic Signatures (CAdES)
[47] argue for the need for certificate revocation when a private key is lost and the implied importance
of timestamps to provide lower (former) and upper (later) bounds for the actual signature creation time
and [8] gives a good overview about this.

It should be added that the lower bound and upper bound are considered important by some legislation
within Europe to record the time of creation of the signed data by augmenting it with a time-stamp.

This allows to interpret claimed times and dates inside the signed data in the light of these bounds. The
upper bound additionally prevents repudiation by certificate revocation after the upper bound in time.
In practice these two bounds should ideally form a small interval, that in good approximation could be
seen as an instant in time. However, timestamps are in most cases not required to make valid signatures
despite in some special cases like patent applications or similar.

Cryptographic signature schemes provide the basis for creating secure electronic signatures and ad-
vanced electronic signatures compliant with European legislation.

In Europe electronic signatures are treated in Directive 1999/93/EC of the European Parliament and of
the Council of 13 December 1999 on a “Community framework for electronic signatures”.

An introduction to the European legal framework for electronic signatures can be acquired from various
sources (e.g. [48] section 1.1).

2.4.1 XML Digital Signatures

XMLDSIG is a W3C recommendation [27] and The Internet Engineering Task Force (IETF) draft stan-
dard revised by the XSSMWG. Eastlake [11] gives an introduction to XMLDSIG and an overview can be
found in section 2.0 of XMLDSIG [27][29].

XMLDSIG’s structures are defined by means of a DTD and a Schema. The Schema follows primarily the
Garden of Eden Schema-pattern introduced in subsection 2.2.2.3. There are a few exceptions, i.e. the

36

http://www.google.com/search?q=site%3Awikipedia.org+RSA&btnI=
http://www.keylength.com/
http://www.google.com/search?q=site%3Awikipedia.org+SHA-2&btnI=
http://www.google.com/search?q=site%3Awikipedia.org+SHA-1&btnI=
http://www.google.com/search?q=site%3Awikipedia.org+FIPS&btnI=
http://www.google.com/search?q=site%3Awikipedia.org+NIST&btnI=
http://www.google.com/search?q=site%3Awikipedia.org+SHA-1&btnI=

CHAPTER 2. BACKGROUND 2.4. DIGITAL SIGNATURES

element declarations for <ds:HMACOutputLength>19, <ds:XPath>, all element declarations of type
ds:CryptoBinary and all child structures of <ds:X509Data> are defined locally.

Figure 2.4.1 [27] shows the structure of XML signatures using BNF like quantifiers like ? for zero or
one occurrence, + for one or more occurrences and * for zero or more occurrences of an element in a
given location of the structure. To emphasize the fact that elements are in the XMLDSIG namespace the
prefix ds: has been added to Figure 2.4.1.

<ds:Signature ID?>
2 <ds:SignedInfo ID?>

<ds:CanonicalizationMethod/>
4 <ds:SignatureMethod/>

(<ds:Reference URI? ID?>
6 (<ds:Transforms>)?

<ds:DigestMethod>
8 <ds:DigestValue>

</ds:Reference>)+
10 </ds:SignedInfo>

<ds:SignatureValue ID?>
12 (<ds:KeyInfo ID?>)?

(<ds:Object ID?>)*
14 </ds:Signature>

Figure 2.4.1: XML Digital Signatures Overview [27] with minor update.

A top level overview on how XML documents are signed and verified is given in the following Data
Flow Diagram (DFD) (Figure 2.4.2). The DFD notation has been extended by a circle with a double
lined border to represent the document that will eventually bear the signature. This document may well
be in a location addressable by an URI (Figure 2.4.2 3.). Further a circle with a thick border was added
to represent an information drain. The DFD should be read so that the data takes one path along directed
edges until resulting in a <ds:DigestValue>, signed document or verification result.

Figure 2.4.2 describes the process of signing and employs an XML digital signatures library (1. XMLD-
Sig) that builds upon a library that offers cryptographic functionality (CryptoLib) and potentially upon a
hardware security module (HSM) allowing better protection of private key material. The signer (Signer)
provides via some API for XMLDSIG a set of inputs to create <ds:Reference> elements (Reference+)
identifying, filtering and transforming data objects to be signed. If a Java platform is used this API is
usually JSR105. Further an URI specifying how the set of <ds:Reference> elements comprising the
<ds:SignedInfo> will be canonicalized (<ds:CanonicalizationMethod>) and a set of inputs to create a
<ds:KeyInfo> providing information about the signer and how to discover the VerificationKey
(KeyInfo) is given. The optional <ds:KeyInfo> may in the case of a public signature scheme bear
the signers public key. This Information (KeyInfo) is if available also used to identify and retrieve the
SigningKey.

19Note that elements will be shown as “<prefix:localname>”, types as “ prefix:localname ” and attributes as Attribute,
use also page viii.

37

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-X509Data
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-DigestValue
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-CanonicalizationMethod
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/KeySelector.html#select(javax.xml.crypto.dsig.keyinfo.KeyInfo,%20javax.xml.crypto.KeySelector.Purpose,%20javax.xml.crypto.AlgorithmMethod,%20javax.xml.crypto.XMLCryptoContext)
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/KeySelector.html#select(javax.xml.crypto.dsig.keyinfo.KeyInfo,%20javax.xml.crypto.KeySelector.Purpose,%20javax.xml.crypto.AlgorithmMethod,%20javax.xml.crypto.XMLCryptoContext)
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/dsig/dom/DOMSignContext.html#DOMSignContext(java.security.Key,%20org.w3c.dom.Node)

2.4. DIGITAL SIGNATURES CHAPTER 2. BACKGROUND

Signer

1.
XMLDSig

|
CryptoLib

|
[HSM]

3.
URI

Adressable
Locartions

DataObject

URI

2.
Signer’s
KeyStore

[HSM]

Reference+
CanonicalizationMethod,

SignatureMethod,
KeyInfo

KeyInfo

SigningKey

(KeyInfo, SigningKey)

document XML
document

signed
document

XML
document

4.
XMLDSig

|
CryptoLib

DataObject

URI

Verifyer

5.
Verifyer’s
KeyStore

XML
document

VerificationKey

KeyInfo

valid/invalidvalidity

XML
document

6.
Trust Process

|
SharedSecret, PKI,

WebOfTrust or Other
Trust Models

(KeyInfo, VerificationKey)
(KeyInfo, VerificationKey)

Figure 2.4.2: XMLDSIG DFD Level 1

A verifier then receives the signed document and again uses an XML digital signatures library (4.
XMLDSig) and the embedded KeyInfo to retrieve the VerificationKey20. The references are processed
to generate the <ds:SignedInfo> which is then canonicalized, digested and the resulting digest value is
compared against the digest value secured in the <ds:SignatureValue>. This is called the core process-
ing of XMLDSIG.

2.4.1.1 Processing Model

The introduction to the processing model given here approaches XML digital signatures by taking a look
at the data flow of the signed data objects.
These are referred in the URI attribute of <ds:Reference> (Figure 2.4.1 line 5), filtered21 or trans-
formed by the <ds:Transforms> (line 6) and finally resulting in the hash (<ds:DigestValue> line 8).
The data flow of the hash values is continued and they are collected in the <ds:SignedInfo> (lines

20As mentioned in chapter 1 we prefer to talk about verification of signatures in contrast to JSR105 speaking about a
validatingKey and using a method called validate to verify a signature.

21It is easier to understand many of XMLDSIG’s idiosyncrasies when XPath-filtering and XPath-Filter 2.0 [49], although
provided in a <ds:Transform>, are not viewed as transforms. They are filters or selectors and depend not only on the input
node-set but also on the whole input document.

38

http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/KeySelector.html#select(javax.xml.crypto.dsig.keyinfo.KeyInfo,%20javax.xml.crypto.KeySelector.Purpose,%20javax.xml.crypto.AlgorithmMethod,%20javax.xml.crypto.XMLCryptoContext)
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/dsig/dom/DOMValidateContext.html#DOMValidateContext(java.security.Key,%20org.w3c.dom.Node)
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/dsig/XMLSignature.html#validate(javax.xml.crypto.dsig.XMLValidateContext))
http://www.w3.org/TR/xmldsig-core/#sec-XPath
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transform

CHAPTER 2. BACKGROUND 2.4. DIGITAL SIGNATURES

1.4
Signature-

Method

1.2
SignedInfo

1.3
Canonicaliza-
tionMethod

Signature
|

SignedInfo,
SignatureValue,
KeyInfo, Object

1.1
1..n Reference

1..n Reference
|

URI, Transforms,
DigestMethod, DigestValue

SignedInfo
|

CanonicalizationMethod
SignatureMethod
1..n Reference

Canonicalized
SignedInfo

|
CanonicalizationMethod

SignatureMethod
1..n Reference

CanonicalizationMethod
SignatureMethod

Reference+
|

URI, Transforms,
DigestMethod

KeyInfo

1.5
KeySelector

SigningKey

2.
Signer’s
KeyStore

[HSM]

KeyInfo

SigningKey

Signature
|

SignedInfo,
SignatureValue

KeyInfo

Figure 2.4.3: XMLDSIG DFD Level 2: The Processing Model (sign)

2-10) which is normalized by application of the <ds:CanonicalizationMethod> (line 3, aka. canon-
icalized, see section 2.5) and produces, by application of some signature scheme identified by the
<ds:SignatureMethod> (line 4) a <ds:SignatureValue>.
To assure a secure binding of the signer to its VerificationKey, some sort of trust process building on
a trust model is required. In the simplest way this is a shared secret used for HMAC or for public key
cryptography some PKI where a trusted path to a trusted third party can be established.
How <ds:Reference>s are processed is described first. They comprise the <ds:SignedInfo> which
is then canonicalized, digested and signed eventually resulting in the <ds:Signature>. This order
is somehow given naturally by the need to have the digest values before they can be complied to a
<ds:SignedInfo> on signing, for verifying the reverse order is possible and preferable [40] because
<ds:Transforms> usually come form a foreign source and may be a security problem (recall sec-
tion 2.3.6 on page 35 and more discussion on this will be in subsection 4.2.4).
XMLDSIG has a reference mechanism, in contrast to other signature formats like Cryptographic Mes-
sage Syntax (CMS) that only sign one data object. This reference mechanism employs one URI22 per
<ds:Reference> to identify the data objects located either within the same XML document as the sig-
nature or anywhere else accessible via an URI. Certain forms of signatures can be characterized by the
way the data objects are positioned in relation to the signature in the same document or externally. So
before continuing on the flow of data objects, an overview of the different forms of referring to the data
objects is provided.

2.4.1.2 Signature Forms

• Enveloped Signatures are characterized by the fact that the signature is a descendant of a part of
the signed data object.

22One reference may omit the URI in which case dereferencing is application dependent.

39

http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/dsig/dom/DOMValidateContext.html#DOMValidateContext(java.security.Key,%20org.w3c.dom.Node)
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-SignedInfo
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Signature
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-SignedInfo
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#def-SignatureEnveloped

2.4. DIGITAL SIGNATURES CHAPTER 2. BACKGROUND

4.4
Signature-

Method

4.2
SignedInfo

4.3
Canonicaliza-
tionMethod

valid/invalid
4.1

1..n Reference

1..n Reference
|

URI, Transforms,
DigestMethod, DigestValue

SignedInfo
|

SignatureMethod
CanonicalizationMethod

1..n Reference
Canonicalized

SignedInfo

Signature
|

KeyInfo

1.5
4.5

KeySelector

VerificationKey

5.
Verifyer’s
KeyStore

KeyInfo

VerificationKey

1..n Reference

validity

1..n Reference
DigestValue Matches?

valid/invalid

Signature
|

SignedInfo

Figure 2.4.4: XMLDSIG DFD Level 2: The Processing Model (verify)

Enveloped signatures are placed inside the signed data object and hence one of the signature’s ancestors
is actually dereferenced by a reference within the signature itself. Enveloped signatures have to exclude
themselves23 from the data that is signed. This is performed by the so called enveloped signature
transform which is based on the here() function. The here() function is an extension to XPath

returning a node-set comprised of the node containing the expression.

• Enveloping Signatures bear the signed data object in the <ds:Object> and hence the signature is
an ancestor of the signed data object.

Enveloping signatures take advantage of the <ds:Object> (line 13) that can be used to embed mixed

content or just a text node representing data. XML documents however can have a prolog and hence
the element content production does not match the document production. This implies that one can not
envelope XML documents in general. Issues with the prolog and inherited namespaces can arise (see
also section 4.1). Hence XML documents are like binary data objects often base64 encoded and placed
inside a <ds:Object>.

• Detached Signatures are completely disjoint from the signed data object.

Detached signatures are disjoint from the signed data object and may lie within the same document as
the data object or in a separate file.
When XPointer URI fragments or more <ds:Reference>s than one are used then combinations of these
different forms with respect to the data objects can be achieved.

23At least the digest value of the corresponding reference and the signature value have to be excluded.

40

http://www.w3.org/TR/xml/#NT-content
http://www.w3.org/TR/xml/#NT-document

CHAPTER 2. BACKGROUND 2.4. DIGITAL SIGNATURES

Having explained the way data objects are referred by an URI and how this characterizes the different
forms of XML signatures we turn our focus back on the data flow.

2.4.1.3 Reference Processing Model

1.1.4
DigestMethod

1.1.2
Transforms

1.1.3
implicit
C14n

DigestValue
Reference

|
URI, Transforms,

DigestMethod,
DigestValue

1.1.1
URI

Dereferencer

Dereferenced
OctetStreamData

1.1.2.2
implicit

non-validating
XML

Parsing

Dereferenced
OctetStreamData

1.1.1
URI-

Dereferencer

3.
URI

Adressable
Locartions

Data

NodeSetData

OctetStreamData

NodeSetData

OctetStreamData

Dereferenced
OctetStreamData

Dereferenced
NodeSetData

OctetStreamData 1.1.2.1
Transform

0..n

(1.1.3)
1.1.2.3
implicit
C14n

1.4
DigestMethod

OctetStreamData

NodeSetData

OctetStreamData

NodeSetData

OctetStreamData

OctetStreamData

Figure 2.4.5: XMLDSIG DFD Level 3: The Reference Processing Model (sign)

How each reference is processed is shown in Figure 2.4.5. This processing is largely equal on sign-
ing and verification with the addition of a comparison of the <ds:DigestValue> with the existing
one for verification. After the URI has been resolved the data object (Data) is retrieved via the
URIDereferencer24 (1.1). Depending on the URI reference the URIDereferencer returns
NodeSetData for so called same-document references (wrt. XMLDSIG fragment only URI refer-

ences Figure 2.3.17) and refer to the whole or portions of the same document as the <ds:Reference> in
question. OctetStreamData is returned for external URI references.

If NodeSetData was dereferenced it should be noted that depending on the form of the fragment only
URI the node-set will contain comments for full XPointer expressions but not for shorthand XPointer

expressions. XMLDSIG however does not clarify whether comments are considered to be removed at
parse time or whether they are considered to be in the data model (subsection 4.2.8).

The dereferenced data will be filtered and transformed by the <ds:Transforms> (1.2).

24The terms URIDereferencer, Data, OctetStreamData and NodeSetData correlate with class names in the
JSR105.

41

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-DigestValue
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/Data.html
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/URIDereferencer.html
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/URIDereferencer.html
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/NodeSetData.html
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/NodeSetData.html
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/URIDereferencer.html
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/Data.html
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/OctetStreamData.html
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/NodeSetData.html

2.5. CANONICALIZATION CHAPTER 2. BACKGROUND

A <ds:Transform> (1.2.1) can require NodeSetData or OctetStreamData as input either from
the URIDereferencer or a preceding <ds:Transform>. The XMLDSIG processing model man-
dates that there is an implicit conversion to be performed on input from OctetStreamData to
NodeSetData via implicit non-validating XML parsing (1.2.2) and vice versa using C14n (1.2.3).
The last <ds:Transform> (Transform) will either return OctetStreamData that is then directly
hashed (1.4) or NodeSetData that will implicitly be canonicalized (1.3) and then hashed (1.4) result-
ing in a <ds:DigestValue>.

2.5 Canonicalization

Canonicalizing XML is hard! Tim Bray25

To be able to digest XML we need a binary representation or serialization, because only a series of bytes
(aka. octets) can be signed. Certain aspects of XML’s serial representation are left open and a canonical
and reproducible representation is hence required.
The goal of canonicalization is to remove any information, that is considered certainly insignificant and
to define an unambiguous representation for aspects that can be represented in various ways. Such neg-
ibilities range from character encoding, line breaks, order of attributes, whitespace in tags and between
attributes, unutilized namespaces to value normalizations based on a DTD or Schema.
Higher forms of canonicalization include the more primitive ones.
The following forms of XML canonicalization currently can be found in standards, drafts and other
sources. They are presented here by their level of sophistication and ordered from simple to complex:

• Minimal Canonicalization (MC14n) [50] [51]

• Canonical XML Version 1.0 (C14n) [52]

• Canonical XML Version 1.1 (C14n11) [53] fixing issues analyzed by us [54] and the XMLCORE

working group (WG).

• Exclusive XML Canonicalization Version 1.0 (Exc-C14n) [55]

• Schema Centric XML Canonicalization Version 1.0 (ScC14n) [56]

2.5.1 Minimal Canonicalization (MC14n)

Eastlake briefly discusses the trade-off between insufficient canonicalization and excessive canonical-
ization (section 9.1 [11]). He introduces canonicalization as being useful for signing text and mentions
Minimal Canonicalization (MC14n) (section 2.4 [51]) defined in section 6.5.1 of RFC3075 [50]26.
MC14n only performs encoding and character level normalizations:

25http://lists.xml.org/archives/xml-dev/200403/msg00305.html
26obsoleted by RFC3275[57] which does not contain MC14n any more.

42

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transform
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/NodeSetData.html
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/OctetStreamData.html
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/URIDereferencer.html
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transform
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/OctetStreamData.html
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/NodeSetData.html
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transform
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/OctetStreamData.html
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/NodeSetData.html
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-DigestValue
http://lists.xml.org/archives/xml-dev/200403/msg00305.html
http://www.google.com/search?q=site%3Awikipedia.org+Tim Bray&btnI=
http://tools.ietf.org/html/rfc4051#section-2.4
http://tools.ietf.org/html/rfc3075#section-6.5.1
http://lists.xml.org/archives/xml-dev/200403/msg00305.html

CHAPTER 2. BACKGROUND 2.5. CANONICALIZATION

• trans-code to UTF-8

• Unicode normalizations, if converted from non-Unicode

• line end (line break, Unix, Windows)

MC14n has to be used explicitly in XMLDSIG by using a <ds:Transform> on the <ds:Reference>
level to canonicalize data objects and as <ds:CanonicalizationMethod> on a <ds:SignedInfo> level.
The use of MC14n raises interoperability concerns, because as of 2005 two independent interoperable
implementations of MC14n have not been announced [51].

After mentioning that canonicalization shall remove what is insignificant and maintain what is signifi-
cant to an application, Eastlake lapidary points out that: “achieving robust and secure signatures requires
just the right canonicalization [11]”.

What is less clear from this source is that getting canonicalization right, may be highly application
dependant.

2.5.2 Canonical XML Version 1.0 (C14n) and Canonical XML Version 1.1 (C14n11)

Canonical XML Version 1.0 (C14n) and Canonical XML Version 1.1 (C14n11)27 go beyond the char-
acter level normalizations and are concerned with the normalization of logical structures of XML.

They can however only achieve normalization of XML as far as the XML specification [6] designates
parts of its serialized representation as insignificant. The XMLNS specification [58] has been exam-
ined to determine that superfluous namespace declarations (section 4.6 [52]) can be removed. Such are
essentially unnecessary namespace redeclarations and they have to be clearly distinguished from un-
used namespace declarations. The latter are namespace declarations which are not used by any of the
elements or attributes that have them in scope.

C14n retains all whitespace content as parsers pass it on to applications. A DTD or Schema is required
to distinguish ignorable whitespace of pure element content from whitespace in more general mixed

content. As however C14n is ignorant about whether a DTD or Schema is available and an XMLDSIG

application MUST attempt to parse the octets yielding the required node-set via XML well-formed pro-

cessing, it is best common practice to retain as much white space as possible. The alternative to let the
parser remove the ignorable whitespace (see also subsection 4.1.3) is prohibited by C14n:

All whitespace within the root document element[sic!]28 MUST be preserved (except for
any #xD characters deleted by line delimiter normalization)(section 2.1 of [52][53])

So C14n adds the following aspects to MC14n:

• attributes are lexicographically ordered, their values normalized and delimited by double quotes

27C14n and C14n11can be used interchangeably in most of this paragraph.
28Meant was obviously the document element.

43

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transform
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-CanonicalizationMethod
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-SignedInfo
http://www.w3.org/TR/xml/ #sec-logical-struct
http://www.w3.org/TR/xml-c14n#SuperfluousNSDecl
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-ReferenceProcessingModel
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-ReferenceProcessingModel
http://www.w3.org/TR/xml-c14n #DataModel

2.5. CANONICALIZATION CHAPTER 2. BACKGROUND

• empty elements are represented unambiguously

• CDATA sections are replaced with their character content

• superfluous namespace redeclarations are removed from each element

• namespace declarations are lexicographic ordered

• xml declaration and DTD are removed

• Some normalizations required by C14n are preformed by parsers

– character and parsed entity references are replaced (expanded)

– whitespace outside of the document element is removed

– whitespace within start (space between attributes) and end tags is normalized

– default attributes are added to each element in validating parsers29

• some normalizations of DTD validating parsers need to be suppressed to assure that

– all whitespace in character content is retained (excluding characters removed during line
feed normalization)30

Although C14n has been superseded by C14n11, it is however still the default canonicalization for
NodeSetData to OctetStreamData conversion (Figure 2.4.5 on page 41 Item 1.1.3) and is the
only canonicalization that is applied implicitly. <ds:SignedInfo>’s <ds:CanonicalizationMethod>

(line 3 Figure 2.4.1 on page 37) is not inherited as a default for <ds:Reference> level processing.

C14n11 as the successor of C14n31 fixes problems surrounding the inheritance of attributes in the XML

namespace. The first example in Figure 2.5.1 on page 45 shows that C14n erroneously passes xml:id,
which has been defined after C14n, down to orphaned nodes [54], despite xml:id is not an inheritable
attribute. Hence we introduced32 the term simple inheritable attribute for xml:lang and xml:space to
distinguish them from xml:base, which has more complex inheritance rules.

Similarly xml:base was not treated correctly in C14n [54]. The second example in Figure 2.5.1 on page
45 shows this and rules for passing on a relative URI reference value in xml:base have been specified in
C14n11 for node-sets representing fragmented document sub-trees.

29Requires a validating parser configured to perform http://xml.org/sax/features/validation and a DTD or Schema
30Requires for a validating parser on SAX level http://apache.org/xml/features/dom/include-ignorable-whitespace to be set

to true or at the DOM level setIgnoringElementContentWhitespace(false) or setting the parameter element-content-whitespace
31For signature generation the explicit usage of C14n11 is recommended by XMLDSIG SE [29], which implies that C14n is

not recommended to be used any more for new signatures.
32“http://lists.w3.org/Archives/Public/public-xml-core-wg/2006Mar/0040.html”

44

http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/NodeSetData.html
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/OctetStreamData.html
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-SignedInfo
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-CanonicalizationMethod
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://lists.w3.org/Archives/Public/public-xml-core-wg/2006Mar/0040.html
http://xerces.apache.org/xerces2-j/features.html
http://xerces.apache.org/xerces2-j/features.html
http://java.sun.com/j2se/1.4.2/docs/api/org/xml/sax/XMLReader.html#setFeature(java.lang.String,%20boolean)
http://java.sun.com/j2se/1.4.2/docs/api/javax/xml/parsers/DocumentBuilderFactory.html#setIgnoringElementContentWhitespace(boolean)
http://xerces.apache.org/xerces2-j/javadocs/api/org/w3c/dom/DOMConfiguration.html#setParameter(java.lang.String,%20java.lang.Object)
http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-element-content-whitespace
http://lists.w3.org/Archives/Public/public-xml-core-wg/2006Mar/0040.html

CHAPTER 2. BACKGROUND 2.5. CANONICALIZATION

input C14n-output C14n11-output

XPath document subset expression
(//. | //@* | //namespace::*)[ancestor::a and not(. = parent::a/@*)]

<a xml:id="ida">

<c />

<b xml:id="ida"/>
<c xml:id="ida"/></c>

<c></c>

XPath document subset expression
(//. | //@* | //namespace::*)[not(self::b or . = parent::b/@*)]

<a xml:base="p/f">
<b xml:base="..">

<c xml:base="x">
</c>

<a xml:base="p/f">

<c xml:base="x">
</c>

<a xml:base="p/f">

<c xml:base="../x">
</c>

Figure 2.5.1: Example outputs for C14n and C14n11

2.5.3 Exclusive XML Canonicalization Version 1.0 (Exc-C14n)

Exclusive XML Canonicalization Version 1.0 (Exc-C14n) avoids to fix up any inheritance of simple
inheritable attributes and xml:base, by simply treating them as normal attributes. This is fine for con-
nected (non-fragmented) node-sets, but may cause problems in fragmented ones as we will see in sub-
section 2.5.3.1. Exc-C14n [55] adds to the notion of superfluous namespace declarations the notion of
visibly utilized namespace declarations. Such can be understood as the complement of unused names-
pace declarations. The term becomes more important where Exc-C14n modifies the processing of C14n

for namespace declarations. Exc-C14n only renders namespace declarations for sub-trees of an XML

document (or fragmented parts thereof), that really use the associated prefix in elements or attributes.

Exc-C14n modifies the processing of C14n as follows:

• simple inheritable attributes and xml:base are treated like normal attributes

• an optional parameter called InclusiveNamespacePrefixList containing a list of space
separated namespace prefixes that will behave as in C14n can be supplied

• all other namespace prefixes will be rendered only where needed in element or attribute names
and unused namespace declarations are hence removed.

It should be added that namespace declarations solely needed for QNames in content - like in XPath-
expressions that use prefixed names - are not considered as being visibly utilized namespace declarations

and should hence be added to the InclusiveNamespacePrefixList. This may seem surprising
as this is a well known issue. Eastlake mentions that namespace prefixes are considered significant in
such XPath-expressions (section 9.1 [11]) and they can appear inside attribute values or text content.

45

2.5. CANONICALIZATION CHAPTER 2. BACKGROUND

A reason may be that Eastlake considers it generally impossible to determine algorithmically whether

a namespace prefix is actually referenced by some XML [11]. Eastlake points to some problems with
Exc-C14n (Section 9.6.4 [11]), but provides little guidance.

It is good practice to use Exc-C14n only for connected node-sets and declare all used prefixes in the
InclusiveNamespacePrefixList.

The following section will hence discuss how to determine what data is suitable for Exc-C14n.

2.5.3.1 NodeSetData suitable for exclusive canonicalization

In general it is good practice to use Exc-C14n whenever possible, especially if applications use names-
pace prefixes only to qualify elements and attributes whose owning element is also in the document
subset. Despite the fact that document sub-sets (node-sets) containing attributes and not their owning
elements have a questionable semantic and hence should be avoided, they are nonetheless allowed in
XPath and accepted by Exc-C14n. Such node-sets are however not suitable for Exc-C14n with respect
to the definition of visibly utilized namespace declarations.

If no default namespace has been specified there will be only prefixed names and names that are in no
namespace. If further namespace prefixes are used only in attributes, whose owning element is in the
document subset and in element names then the visibly utilized namespace declarations will be equal to
the used namespace declarations.

This could even be checked programmatically by a heuristic that finds prefixed names by matching the
production in attribute values and text nodes. If however a default namespace has been declared QNames

do not necessarily have a prefix and can hence not be found easily.

Hence the default namespace should be added to the InclusiveNamespacePrefixList in any
case. Adding #default will assure the correct interpretation of QNames without prefix.

The InclusiveNamespacePrefixList allows to sign XML using Exc-C14n in cases where all
prefixes that are used in prefixed names in content are known.

Prefixes that have been used anyway, by an output ancestor element or an output attribute of an output
ancestor element of the node bearing the QName in question, could theoretically be exempted. In
practice however it is advisable not to exempt them and to add all such prefixes as it does not harm to
treat visibly utilized namespace declarations inclusively.

Data objects should not depend on inheritable attributes (xml:lang, xml:space and xml:base) unless these
attributes and their owning elements are in the document subset.

In fragmented document subsets additional caution is required as orphaned elements will not necessarily
inherit from their parent but rather from their grandparent or further ancestors. Figure 2.5.2 on page 47
shows this in its first example. With respect to xml:base Exc-C14n is also not useful in fragmented
node-sets, as can be seen in the second example.

To see what content is suitable for Exc-C14n it is best to look at what documents including their actual
information content would be destroyed if canonicalized exclusively.

The direction in which mathematical expressions are read matters and can depend on the direction, that

46

http://www.w3.org/TR/xml-c14n #sec-Use

CHAPTER 2. BACKGROUND 2.5. CANONICALIZATION

input Exc-C14n-output C14n11-output

XPath document subset expression
(//. | //@* | //namespace::*)[not(self::b or .=parent::b/@*)]

<a xml:lang="de">
<b xml:lang="en">

<c />

<a xml:lang="de">

<c></c>

<a xml:lang="de">

<c xml:lang="en"></c>

XPath document subset expression
(//. | //@* | //namespace::*)[not(self::b || parent::b/@*)]

<a xml:base="p/f">
<b xml:base="..">

<c xml:base="x">
</c>

<a xml:base="p/f">

<c xml:base="x">
</c>

<a xml:base="p/f">

<c xml:base="../x">
</c>

Figure 2.5.2: Example outputs from Exc-C14n and C14n11

can change with xml:lang and a value can hence change from infinity to zero 0/x = 0 and x/0 = infinity
or vice versa.

2.5.4 Schema Centric XML Canonicalization Version 1.0 (ScC14n)

Schema Centric XML Canonicalization Version 1.0 (ScC14n) [56] was specified by the OASIS UDDI
TC and is even richer in normalizing the content of an XML document.
ScC14n is an extremely complex form of canonicalization which however comes very close to actually
producing equal serializations for logically equivalent XML. In contrast to other forms of canonical-
ization it requires full schema assessment and some human engagement in the form of annotating the
employed Schema. It is based on an augmented version of the XML Information Set (Infoset) as input
and as data-model. It also allows for a node-set or octet-stream as input and defines how they shall be
converted to an Infoset. Besides the UDDI context however, ScC14n seems to be only used in MPEG-
21. Otherwise - to our knowledge - it has hardly been used, nor yet as of 2008 been implemented by
major vendors of XMLDSIG implementations.
The ScC14n specification mentions a number of limitations other canonicalizations suffer in its section
1.1 [56]. The following paragraphs comment some of those limitations and mark them with a bullet
point followed by the actual commentary.

• In the first limitation it is claimed that C14n and Exc-C14n become less and less useful to practical

applications of XML, because of the advent of Schema and the weak expressiveness of DTDs.

This claim however does not seem to be justified and it is unclear whether it is true after all. Thus it can
be ignored.

47

http://www.google.com/search?q=site%3Awikipedia.org+UDDI&btnI=
http://www.google.com/search?q=site%3Awikipedia.org+UDDI&btnI=
http://www.google.com/search?q=site%3Awikipedia.org+MPEG-21&btnI=
http://www.google.com/search?q=site%3Awikipedia.org+MPEG-21&btnI=
http://uddi.org/pubs/SchemaCentricCanonicalization-20050523.htm#sec-Limitations-of-existing
http://uddi.org/pubs/SchemaCentricCanonicalization-20050523.htm#sec-Limitations-of-existing

2.5. CANONICALIZATION CHAPTER 2. BACKGROUND

• C14n (and all previously mentioned forms of Canonicalization) do not normalize namespace pre-
fixes.

ScC14n rightfully claims that this is in contrary to the intent of XMLNS.

Note that the prefix functions only as a placeholder for a namespace name. Applications
should use the namespace name, not the prefix, in constructing names whose scope extends
beyond the containing document. (XMLNS section 4 [58])

C14n justifies not normalizing namespace prefixes by potential dependencies of XPath-expressions in
the content (section 4.4 [52], resp. [53]). QNames in content - as mentioned before - are known to suffer
the deficiency of not necessarily being detected as such. As mentioned earlier the XPointer xmlns()

scheme [33] shows that a namespace binding for a prefix is not necessarily determined by a namespace
declaration.

It is an architectural principle of URIs that they be context-independent. It follows that the
QNames that appear in an XPointer must not refer to in-scope namespaces as this would
make transcription impossible in the general case.[59]

This would however require a canonicalization to either assume or know that the xmlns() scheme
has not been used or to be able to process it in a canonical manner or to ignore XPointers at all. In
contrast to a Technical Architecture Group (TAG) finding [59] referring to some larger, more global
redesign of, for example, XML to address these issues, ScC14n tries to tackle them by Namespace
Prefix Desensitization.

• ScC14n claims that esoteric node-sets comprised of just (one) attribute(s) constitute a minor se-
curity hole to C14n as they will have lost their namespace context.

Exc-C14n mentioned this in its section 5.2 [55] already, but does not fix it. Despite mentioning this,
ScC14n does not disallow esoteric node-sets and does not require its output to be well-formed (section
2.5).

• ScC14n eventually identifies many of the liberties (insignificant portions) within XML when used
with XMLNS and Schema, that are not properly covered by other canonicalizations. These range
from known data-type canonicalization issues which appear to ones have been overlooked by
Schema data-types.

ScC14n extends Exc-C14n.

ScC14n extends Exc-C14n about the following normalizations:

• model group xs:all reordering defined in ScC14n’s serialize method in section 3.5.1, specifi-
cally at clause 2.b.iv.3 .

48

http://www.w3.org/TR/2006/REC-xml-names-20060816/#NT-Prefix
http://www.w3.org/TR/xml-c14n/#NoNSPrefixRewriting
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/#sec-EsotericNodesets
http://uddi.org/pubs/SchemaCentricCanonicalization-20050523.htm#sec-overview-serialize
http://uddi.org/pubs/SchemaCentricCanonicalization-20050523.htm#sec-overview-serialize
http://www.w3.org/TR/xmlschema-0/#element-all
http://uddi.org/pubs/SchemaCentricCanonicalization-20050523.htm#def-fn-serialize

CHAPTER 2. BACKGROUND 2.5. CANONICALIZATION

• removal of insignificant whitespace in element-only (non-mixed) content defined in ScC14n’s

serialize method in section 3.5.1 specifically at clause 2.b.iv.4 (cf. Schema [20] section 3.4.4
clause 2.3).

• Namespace Prefix Desensitization

– ScC14n allows to augment Schema declarations of elements and attributes with special at-
tributes in annotations in order to associate a URI identifying a language such as XPath or
QNames that use prefixes. The types for attributes and elements are hence augmented so
that instances thereof contain values interpreted in a language known to canonicalization
wrt. prefixes. The association is performed by attributes in annotations to schema defini-
tions called embeddedLang or embeddedLangAttribute. The first associates a URI

identifying a language statically with the type (schema definition); the latter by identifying
an attribute of the annotated element schema definition whose value dynamically specifies
the language.

– ScC14n allows for such an association also to be done if not specified as before by fiat in
some specification. ScC14n does it so for the type of the element named “XPath” contained
in elements of type ds:TransformType and the types of “xpath” attributes in Schema, by
augmenting them with the URI for XPath.

• namespace attribute normalization

• data-type canonicalization

– capitalization (case-insensitivity) of Unicode characters can be locale-specific and context-
dependent, mapping of case can change the length of a character sequence. Upper and lower
cases are not precise duals [56].

Namespace Prefix Desensitization

Namespace prefix desensitization can be influenced “. . . by fiat in some specification . . . ” [56], but
ScC14n does not provide for a means to specify in some parameters which specifications have been
taken into account. So over time and across different application areas implementations would interpret
such a clause in different ways, that in turn would harm interoperability.

ScC14n is hardly used.

ScC14n has not achieved wide support, because of the following reasons:

It has been specified outside the W3C and may be perceived as being specific to the UDDI context, it is
too costly in terms of processing as it always requires full Schema assessment. It cannot be parametrized
to to turn off expensive normalizations, that many applications do not need.

49

http://uddi.org/pubs/SchemaCentricCanonicalization-20050523.htm#def-fn-serialize
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#formal-complex-type
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#formal-complex-type
http://www.google.com/search?q=site%3Awikipedia.org+UDDI&btnI=

2.5. CANONICALIZATION CHAPTER 2. BACKGROUND

2.5.5 Canonicalizations overview

Complexity Robustness Affected Layers Canonicalization

co
m

pl
ex
←

si
m

pl
e

ro
bu

st
→

fr
ag

ile encoding and characters MC14n

the previous and XML, XMLNS

C14n

C14n11

Exc-C14n

the previous and Schema ScC14n

Figure 2.5.3: Canonicalizations overview

50

Chapter 3

OASIS Digital Signature Services
(OASIS-DSS)

The OASIS Digital Signature Services (OASIS-DSS) specifications are XML-based and describe two
request and response protocols by means of Schema. The first one is a protocol to apply digital signatures
and the second one to verify them. Documents can be sent to an OASIS-DSS server and signatures on
the documents are sent back. On the other hand documents with a signature on them, around them and
next to them are sent to a server, and an answer whether the signature can be verified against supplied
document and data objects is sent back [60].

3.1 Incentives for using OASIS-DSS

Machines in a normal office environment are often in an insecure state. It can be quite complicated to
keep all systems in a well maintained state, given the different threats ranging from root-kits to viruses.
Malware is carried via various attack vectors such as private email and USB sticks. A protocol like
OASIS-DSS can help to avoid to have corporate keys on such systems.

It also enables authenticated clients to sign corporate documents - like press releases - centrally using a
common key. Signatures can be created and verified without complex client software and decentralized
configuration.

Centralized access control, auditing and archiving of sign and verify requests can be accomplished
more easily. A central enforcement including certain bylaws, policies and documents or check for
certain business logic on signature generation and verification may be an advantage. Also checking of
certificates by means of Online Certificate Status Protocol (OCSP) or Certificate Revocation Lists (CRL)

51

http://www.google.com/search?q=site%3Awikipedia.org+Malware&btnI=
http://www.google.com/search?q=site%3Awikipedia.org+USB sticks&btnI=

3.1. INCENTIVES FOR USING OASIS-DSS CHAPTER 3. OASIS-DSS

can be managed easier. Certificate path validation can be performed centrally and the burden is shifted
away from clients.

Another important property of signing and verifying documents using an OASIS-DSS request is: Docu-
ments do not actually have to be in the locations indicated by the Uniform Resource Identifiers (URI).
So signatures may still be verified, although some data object has been removed from its original lo-
cation or is temporally not available. Arbitrary data can be associated with arbitrary URI references in
OASIS-DSS requests. So the actual data retrieval is detached from the process of signing or verifying.
Hence data stored during signing can be supplied for later verification, which is in particular useful, if
web servers ceased to exist or changed their contents. An OASIS-DSS sign-request may even be kept as
an archive format for data objects and later transformed into a verify request for signature verification.

The alternative, to reestablish the environment that existed during signing, is often neither useful nor
possible.

Note: An XMLDSIG signature as such cannot provide any assurances on the retrieval actions themselves.
It does not provide evidence about the real storage location of external data objects. A successfully
verified XMLDSIG signature merely states that the signer’s and the verifier’s environment retrieved the
same data objects according to the URI references in the signature.

Signer
Verifyer

Optional - Archive Optional - Archive

PKI

PublicKey
PrivateKey

PublicKey PublicKey

PublicKey

Figure 3.1.1: Signature processing with OASIS-DSS

Note: The following sections will contain parts of the OASIS-DSS specification and the schema design
will be criticized - where appropriate. As mentioned in chapter 1 the work on this thesis started when
OASIS-DSS was a working draft in revision 30 (WD30). It was neither possible nor the intention of the

52

http://www.oasis-open.org/committees/download.php/10081/oasis-dss-1.0-core-spec-wd-30.pdf

CHAPTER 3. OASIS-DSS 3.2. BASICS

author’s participation to conduct a complete redesign of the already defined structures. Standardization
Organizations employ democratic principles and processes in their technical committees (TC). Never-
theless considerable contributions to substantial parts of the OASIS-DSS specification have been made.
We hope that additional points identified in this document may be considered by the OASIS Digital
Signature Services eXtended (OASIS-DSS-X) TC for future versions of OASIS-DSS.

3.2 OASIS-DSS Basics

The chapter introduction presented OASIS-DSS as two request response protocols, one for signing and
one for verifying. How OASIS-DSS could be used in a real life scenario is shown in Figure 3.1.1. On the
left a signer sends an unsigned document, maybe some XML order form, to a OASIS-DSS server. Before
the signed document is returned, the OASIS-DSS server for example decided on a certain signature for-
mat, necessary transforms and may have enclosed certain statements, policies and included the signing
certificate. A copy of the data objects and the signature may have been stored on the server. The signed
XML document is then sent off to the verifier.
The verifier receives this document by means of email or other electronic process. It may have traveled
through several network nodes and potentially through various other higher level XML protocols.
The verifier then either verifies the document by herself or requests an OASIS-DSS server to perform
verification for her, assuming on the receiver side is also a OASIS-DSS server present.
To the private key used for signing corresponds a public key, which is bound to the identity of the signer
(signer’s company). A certificate proving this, has been issued by a Certification Authority or trusted
third party. Meaning a Public-Key Infrastructure (PKI) is available and allows to establish trust in the
signer’s public key.

OASIS-DSS is architecturally intended to be a stand alone service and can be layered on top of Hyper
Text Transfer Protocol (HTTP) or other higher level protocols, such as SOAP (SOAP). They can be
secured by Transport Layer Security (TLS) or Web Services Security (WSS)1 respectively.
The OASIS-DSS specification supports a variety of signature formats:

• XMLDSIG [27],[29] aka. RFC 3275

• CMS (RFC 3852) Signatures (not covered in this thesis)

• RFC 3161 time-stamps (not covered in this thesis)

• XML time-stamps (defined in OASIS-DSS)

• In the Advanced Electronic Signatures Profile [61]

– XAdES ETSI TS 101903 [46]

– CAdES ETSI TS 101733 [47]
1Currently maintained by the Web Services Secure Exchange (WS-SX) TC.

53

http://www.google.com/search?q=site%3Awikipedia.org+Certification Authority&btnI=

3.2. BASICS CHAPTER 3. OASIS-DSS

The OASIS-DSS Request

Figure 3.2.1 shows a simple example of a <dss:SignRequest> requesting a detached XMLDSIG signa-
ture as will be further discussed in the following sections.

<dss:SignRequest xmlns:dss="urn:oasis:names:tc:dss:1.0:core:schema">
2 <dss:OptionalInputs>

<dss:SignatureType>urn:ietf:rfc:3275</dss:SignatureType>
4 </dss:OptionalInputs>

<dss:InputDocuments>
6 <dss:Document RefURI="http://www.example.org/bar">

<dss:InlineXML><ex:foo xmlns:ex="http://www.example.org/bar">
8 <ex:bar/>

<ex:baz/>
10 </ex:foo></dss:InlineXML>

</dss:Document>
12 </dss:InputDocuments>
</dss:SignRequest>

Figure 3.2.1: An simple example of a <dss:SignRequest>

The example shows an optional input that designates the signature type and a very simple XML payload
is provided as <dss:InlineXML>.

Namespaces and Types

The targetNamespace2 used for elements and types is:

urn:oasis:names:tc:dss:1.0:core:schema (3.2.2)

The OASIS-DSS specification [62] is built on a dss:RequestBaseType3 and a dss:ResponseBaseType.
The dss:RequestBaseType is extended by the local anonymous types in the element declarations of
<dss:SignRequest> and the <dss:VerifyRequest>. Similarly the dss:ResponseBaseType is extended
by the <dss:SignResponse>, the <dss:VerifyResponse> is inconsistent however and directly of type
dss:RequestBaseType4.

To handle those requests, a basic processing has been defined for signing and for verifying. It can
be overridden and augmented by several optional inputs and outputs. To introduce OASIS-DSS, the
optional parts will be ignored at first and many details skipped. The basic structures are introduced in
the following sections, starting with the dss:RequestBaseType in subsection 3.2.1. The basic processing
can be found in subsection 3.3.1. It defines the core functionality and can be extended or overridden by

2For targetNamespace recall subsection 2.3.4.
3Recall that elements will be shown as “<prefix:localname>”, types as “ prefix:localname ” and attributes as

Attribute, use also page viii.
4This may be an editorial problem; the <dss:VerifyResponse> has gone missing from the schema after cd-r04 (http://

lists.oasis-open.org/archives/dss/200611/msg00014.html) and was differently reintroduced in wd49.

54

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#def-SignatureDetached
http://lists.oasis-open.org/archives/dss/200611/msg00014.html
http://lists.oasis-open.org/archives/dss/200611/msg00014.html

CHAPTER 3. OASIS-DSS 3.2. BASICS

processing specified for variants of different payload or optional inputs. Some of them allow to enter
the processing at later stages as explained in subsection 3.3.2.

Having explained how the payload is conveyed, its processing and signing can be found in section 3.3.
Process entry and mutations for signing are in subsection 3.3.3. This approach explains the service and
starts with what is important and successively goes into more detail. Unfortunately the specification is
not in all parts written in such an order that makes this very order apparent.
Taking advantage of what has been established for signing, the differences when verifying are explained
in section 3.4

3.2.1 dss:RequestBaseType

The dss:RequestBaseType in Figure 3.2.3 is a complex type. Recall from subsection 2.2.2 Figure 2.2.8
on page 12 that such can specify a content model consisting of structural description of the attributes
and elements.

<xs:complexType name="RequestBaseType">
155 <xs:sequence>

<xs:element ref="dss:OptionalInputs" minOccurs="0"/>
157 <xs:element ref="dss:InputDocuments" minOccurs="0"/>

</xs:sequence>
159 <xs:attribute name="RequestID" type="xs:string" use="optional"/>

<xs:attribute name="Profile" type="xs:anyURI" use="optional"/>
161 </xs:complexType>

Figure 3.2.3: dss:RequestBaseType

The dss:RequestBaseType has two optional attributes. The RequestID attribute (line 159) is a gen-
eral purpose string. The server echoes it in the response. The optional Profile attribute (line 160)
indicates by means of a URI what profile should be used.
The structure of dss:RequestBaseType allows to omit <dss:OptionalInputs>. Surprisingly the same is
true for <dss:InputDocuments>, the latter becomes clearer when we discuss the <dss:VerifyRequest>
in Figure 3.4.1.

<dss:InputDocuments>

The <dss:InputDocuments> carries the payload. The <dss:OptionalInputs> are a means to supply
instructions for amending and mutating the processing as will be discussed later. That the service
is primarily tailored for the reference processing model of XMLDSIG can be seen from the payload
container names <dss:Document>, <dss:TransformedData> and <dss:DocumentHash>.
<dss:Other> is a general purpose container for extensibility, allows mixed content from arbitrary names-
paces and will be covered in section 3.7.
The <dss:InputDocuments> element specification in Figure 3.2.4 has a content model that is defined via
an anonymous type. It is modeled as a sequence of unbounded choices. The sequence is redundant, but

55

http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc157225013

3.2. BASICS CHAPTER 3. OASIS-DSS

<xs:element name="InputDocuments">
22 <xs:complexType>

<xs:sequence>
24 <xs:choice maxOccurs="unbounded">

<xs:element ref="dss:Document"/>
26 <xs:element ref="dss:TransformedData"/>

<xs:element ref="dss:DocumentHash"/>
28 <xs:element name="Other" type="dss:AnyType"/>

</xs:choice>
30 </xs:sequence>

</xs:complexType>
32 </xs:element>

Figure 3.2.4: <dss:InputDocuments>

it may have been used as a stylistic element to clearly express that the unbounded occurrence of choices
is in fact a sequence. The schema definition follows that a request will carry 1..n input documents all
of which will be covered by a <ds:Reference>.

<dss:TransformedData> enables a client to send a document sub-set and derived documents.

<dss:DocumentHash> carries only the fingerprint of a document to the server.

This allows service users and profile authors to split the burden of reference processing between the
client and the server. A client can then enter the processing at later stages, what will be covered
in more detail in subsection 3.3.2. For now we are interested only in the <dss:Document> and its
dss:DocumentType which merely extends dss:DocumentBaseType and is hence not shown here.

39 <xs:element name="Document" type="dss:DocumentType"/>

Figure 3.2.5: <dss:Document>

3.2.2 dss:DocumentBaseType

The dss:DocumentBaseType is the base type for all forms of payload containers and supplies a set of
attributes.

<xs:complexType name="DocumentBaseType" abstract="true">
34 <xs:attribute name="ID" type="xs:ID" use="optional"/>

<xs:attribute name="RefURI" type="xs:anyURI" use="optional"/>
36 <xs:attribute name="RefType" type="xs:anyURI" use="optional"/>

<xs:attribute name="SchemaRefs" type="xs:IDREFS" use="optional"/>
38 </xs:complexType>

Figure 3.2.6: dss:DocumentBaseType

The ID attribute is provided, so that a payload container may be referred to by optional inputs and other
protocol structures. The referring attributes in those structures are called WhichDocument.

56

http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076032
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076034
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076033
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076033

CHAPTER 3. OASIS-DSS 3.2. BASICS

The RefURI attribute (line 36) indicates what URI reference has been used to acquire the document.
It will result in <ds:Reference>’s URI attribute (line 5 in Figure 2.4.1 on page 37). Depending
on whether the RefURI attribute is either a same-document reference or an external URI reference

(section 2.3.4 Figure 2.3.15) the contained data has to be either dereferenced to NodeSetData or
OctetStreamData respectively. Despite its Schema declaration, the RefURI is not really an op-
tional attribute, because it may be omitted on one child of <dss:InputDocuments> only.

The RefType attribute is equivalent to the Type attribute in <ds:Reference>, which intends to provide
type information on the digest input, eventually resulting from resolving and transforming the data
object.

The optional SchemaRefs are used to identify the Schemas to validate the data object on parsing.

3.2.3 dss:DocumentType - Forms of payload

The OASIS-DSS protocol provides a rich way of transporting the actual payload, which is usually com-
prised of documents or document equivalent representations. The forms of payload reflect the require-
ment for different fidelity modes when it comes to convey XML inside XML. OASIS-DSS supports dif-
ferent fidelity such as modes for binary, character or XML level equivalent transport.

<xs:complexType name="DocumentType">
41 <xs:complexContent>

<xs:extension base="dss:DocumentBaseType">
43 <xs:choice>

<xs:element name="InlineXML" type="dss:InlineXMLType"/>
45 <xs:element name="Base64XML" type="xs:base64Binary"/>

<xs:element name="EscapedXML" type="xs:string"/>
47 <xs:element ref="dss:Base64Data"/>

<xs:element ref="dss:AttachmentReference"/>
49 </xs:choice>

</xs:extension>
51 </xs:complexContent>

</xs:complexType>

Figure 3.2.7: <dss:DocumentType>

By default <dss:Base64XML> and <dss:Base64Data> should be used for XML and non-XML data
objects respectively. Base64 Content-Transfer-Encoding (base64 encoding) allows for separation of
payload from the transport protocol (cf. subsection 4.3.1).

<dss:EscapedXML> is an alternative to <dss:Base64XML>, that assures opaqueness on the character
level. It may need less space if the ratio of XML tags to content is low.

<dss:InlineXML> uses Exc-C14n by default to have a well defined way for extracting a payload doc-
ument from the transport protocol context. Nevertheless not all payload is suitable for Exc-C14n (cf.
subsection 2.5.3.1).

57

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-URI
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076034

3.2. BASICS CHAPTER 3. OASIS-DSS

Fidelity modes for conveying payload

Payload Container Equivalence Context

<dss:Base64XML>, <dss:Base64Data> binary none
<dss:EscapedXML> character encoding
<dss:InlineXML> content encoding, namespace, inherita-

ble attributes

Figure 3.2.8: Payload in various forms

The most robust form for conveying payload in XML is base64 encoding, it preserves the binary equiv-
alence for any kind of XML content. Hence the basic processing is specified for Base64XML first.
It allows to transport, dereference and parse the conveyed data objects, without being affected by
the surrounding encoding, namespace-context and other inheritable XML attributes, such as xml:lang,
xml:space and xml:base. In turn expressions may also be in the document, which would evaluate dif-
ferently in a context distorted by the surrounding transport protocol. The base64 encoding separates
and shields the payload at the cost of additional serialization encoding and decoding plus parsing and of
course the lost space efficiency and bandwidth consumption on the wire.

<dss:EscapedXML> uses the predefiened general character entities &, < and gt; to escape
&, < and > where necessary5so it matches the CharData production [6] of XML. <dss:EscapedXML>

is already forced to use at least the same character encoding as the surrounding transport protocol, but
is meant to assure characterwise equivalence, potentially trans-coded from its original character encod-
ing. This already requires the corresponding <ds:References> to be made robust against a change in
the encoding, especially if referenced by an external URI (Figure 2.3.15) and if no <ds:Transforms>,
causing either an implicit (subsection 2.5.2) or an explicit canonicalization of the data are applied. Re-
calling the overview given in Figure 2.5.3, the bottom line for canonicalizing data objects that travel in
<dss:EscapedXML> over systems that use different encodings is MC14n (subsection 2.5.1). Neverthe-
less <dss:EscapedXML> is essentially a string that contains an escaped XML document. No context is
inherited with respect to XML technologies. The costs remain the same as with Base64XML.

In contrast, when using <dss:InlineXML> it can be handled in the same parsing step, but one has to
be considerate of the entire surrounding context. Like with <dss:EscapedXML>, it is not possible to
send data in <dss:InlineXML> that has another character encoding than the surrounding OASIS-DSS

transport protocol. The content shall further not depend or be affected by the existence of namespace-
declarations and other inheritable attributes in scope, otherwise the signatures may break. Hence OASIS-

DSS mandates to use Exc-C14n to extract the data object. As seen in subsection 2.5.3.1 not all data is
suitable for Exc-C14n (see also subsection 4.3.1). Applications not using xml:base or simple inheritable

5If no CDATA sections are used it is sufficient]]> also has to be escaped to]]>. OASIS-DSS is not explicit about
this.

58

http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076057
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076057
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms

CHAPTER 3. OASIS-DSS 3.3. SIGNING

attribute like xml:lang and xml:space or working with connected node-sets and having no QNames in
content will not experience any problems. Subsection 4.3.1 will discuss this in more detail.

Base64Data is intended to be used for non XML data, usually external to the <ds:Signature>, which
implies that the RefURI and respectively the <ds:Reference>’s URI have to be external URI refer-

ences. If the RefURI is a same-document reference, the data object has to be included into the same
document as the resulting signature. Otherwise it cannot be dereferenced. The latter is solved in OASIS-

DSS by mandating to use the optional input <dss:IncludeObject> in such a case (cf. Figure 3.3.5).

3.3 Signing

Having established in the previous sections how payload arrives in a <dss:SignRequest> at an OASIS-

DSS server and what fidelity modes exist, the following sections describe how they are processed for
signing. <dss:Base64XML> is what a client should use by default, as it provides the highest fidelity for
payload transport. With <dss:EscapedXML>, used with external URI references, care has to be taken
by a client or the server that it is at least canonicalized with MC14n. <dss:InlineXML> has also been
introduced, details of its processing are however deferred to keep the explanation of the basic processing
explanation simple.

3.3.1 Basic processing for signing using XMLDSIG

The basic processing deals with the various forms of payload and reflects XMLDSIG’s core and reference
processing model. As mentioned previously, the processing may be entered at various stages, ranging
from dereferencing a document, over the digest input up to the digest value. This makes the basic
processing very generic and it can be adapted, extended or overridden by optional inputs and profiles in
a flexible way.
The most common use case is when a client supplies payload in form of a plain <dss:Document>.
The normative assumption in this case is that one <dss:Document> within <dss:InputDocuments>
corresponds to one <ds:Reference>.
As described in subsection 2.3.2 an XML document has a document order. This applies in principle also
to the <dss:InputDocuments>, but a server MAY ignore this order. Thus a server can respect the order
but may not assume other implementations respect it as well. This mainly plays a role for processing
a <dss:VerifyRequest>. It implies that a server will have to be prepared that the <ds:Reference>
elements in a <ds:Signature> may be in a different order than in the <dss:InputDocuments>.

3.3.2 Enter the processing at various stages

Having only dealt with <dss:Document> so far, we are now coming back to Figure 3.2.4 of section 3.2.1
on page 56. The various stages at which the basic processing can be entered will be discussed. The
payload is supplied in <dss:InputDocuments> as either <dss:Document>, <dss:TransformedData>

59

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-URI
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076052
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Signature

3.3. SIGNING CHAPTER 3. OASIS-DSS

1. FOR EACH <dss:Document> IN <dss:InputDocuments>
a. IF <dss:Base64XML> (see later sub-sections for other cases)

THEN base64-decode, date MUST be a well formed XML Document
OTHERWISE ERROR
IF RefURI IS same document reference THEN parse to NodeSetData.

b. Server MAY CHOOSE to apply additional <ds:Transform>s
c. CHOOSE a <ds:DigestMethod> and calculate the <ds:DigestValue>
d. CREATE a <ds:Reference> as follows:

i. IF a RefURI attribute exists THEN
<ds:Reference>’s URI = RefURI

ELSE URI is omitted.
(More than one RefURI omitted is an error).

ii. IF a RefType exists THEN ds:Reference’s Type = RefType
iii. SET ds:Reference’s <ds:DigestMethod> as used in c.
iv. SET ds:Reference’s <ds:DigestValue> as calculated in c.
v. SET ds:Reference’s <ds:Transforms>, the sequence MUST

describe the effective transform as a reproducible
procedure from parsing until hash.

2. ds:Reference elements resulting from optional inputs
MUST be included.

3. CREATE an XML signature using the ds:Reference elements created
in Step 1.d, according to [XMLDSIG].

Figure 3.3.1: Simplified Basic Processing

or <dss:DocumentHash>. These match the following terms DereferencedData, DigestInput
of JSR1056 and <ds:DigestValue> of XMLDSIG, which is summarized in Figure 3.3.2.

XMLDSIG, JSR105 OASIS-DSS

<ds:Reference> URI <dss:DocumentBaseType> RefURI

⇓ ⇓
DereferencedData <dss:Document>

⇓ ⇓
DigestInput <dss:TransformedData>

⇓ ⇓
<ds:DigestValue> <dss:DocumentHash>

Figure 3.3.2: The reference processing can be split between clients and severs

<dss:Document> matches the locations addressable by a URI reference (3. in Figure 2.4.5 on page
41). Using a JSR105 compliant implementation such as the XML Security Toolkit (XSECT) a custom
server-side URIDereferencer can be employed to dereference the data objects from within the
<dss:InputDocuments>.

6Java Specification Request 105 XML Digital Signature APIs (JSR105)

60

http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc114309498
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/dsig/Reference.html#getDereferencedData()
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/dsig/Reference.html#getDigestInputStream()
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-DigestValue
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-URI
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/dsig/Reference.html#getDereferencedData()
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/dsig/Reference.html#getDigestInputStream()
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-DigestValue

CHAPTER 3. OASIS-DSS 3.3. SIGNING

<dss:TransformedData> inside <dss:InputDocuments> splits reference processing between the client
and server. The basic processing is entered before a <ds:DigestMethod> is chosen in 1.c. in line 8
of Figure 3.3.1. This corresponds to one of the edges labeled with OctetStreamData entering the
DigestMethod (1.1.4 Figure 2.4.5 on page 41) in the XMLDSIG reference processing model. In short
the DigestInput is supplied in terms of JSR105. The JSR105 API unfortunately did not allow to
supply a DigestInput on reference creation. Hence the extension of the API was requested during
the work on this thesis.

<dss:DocumentHash> provides a means to perform all of XMLDSIG’s reference processing, excluding
the actual formation of the <ds:Reference> on the client side. JSR105 again did not allow to supply a
<ds:DigestValue> on reference creation and needed to be extended as well.

The element declaration of <dss:Document> was in Figure 3.2.5 on page 56, now the element declara-
tions for <dss:TransformedData> and <dss:DocumentHash> follow.

3.3.2.1 <dss:TransformedData>

This form of payload extends <dss:DocumentBaseType> and informs the OASIS-DSS server what
<ds:Transforms> have been applied by the client already.

<xs:element name="TransformedData">
70 <xs:complexType>

<xs:complexContent>
72 <xs:extension base="dss:DocumentBaseType">

<xs:sequence>
74 <xs:element ref="ds:Transforms" minOccurs="0"/>

<xs:element ref="dss:Base64Data"/>
76 </xs:sequence>

<xs:attribute name="WhichReference" type="xs:integer"
use="optional"/>

78 </xs:extension>
</xs:complexContent>

80 </xs:complexType>
</xs:element>

Figure 3.3.3: <dss:TransformedData>

<dss:Base64Data> underlines the intention that the conveyed data is to be digested directly and must
be in base64 encoding.

The WhichReference attribute is added and will be of significance in a <dss:VerifyRequest> and
hence ignored at first.

Why <dss:TransformedData>?

The question could be asked: If the client performed all the transforms why shouldn’t it also perform
the digest computation?

61

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-DigestMethod
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/dsig/Reference.html#getDigestInputStream()
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/dsig/Reference.html#getDigestInputStream()
http://java.sun.com/webservices/docs/1.5/api/javax/xml/crypto/dsig/XMLSignatureFactory.html#newReference(java.lang.String,%20javax.xml.crypto.dsig.DigestMethod,%20java.util.List,%20java.lang.String,%20java.lang.String)
http://java.sun.com/webservices/docs/1.6/api/javax/xml/crypto/dsig/XMLSignatureFactory.html#newReference(java.lang.String,%20javax.xml.crypto.dsig.DigestMethod,%20java.util.List,%20javax.xml.crypto.Data,%20java.util.List,%20java.lang.String,%20java.lang.String)
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-DigestValue
http://java.sun.com/webservices/docs/1.5/api/javax/xml/crypto/dsig/XMLSignatureFactory.html#newReference(java.lang.String,%20javax.xml.crypto.dsig.DigestMethod,%20java.util.List,%20java.lang.String,%20java.lang.String)
http://java.sun.com/webservices/docs/1.6/api/javax/xml/crypto/dsig/XMLSignatureFactory.html#newReference(java.lang.String,%20javax.xml.crypto.dsig.DigestMethod,%20java.util.List,%20java.lang.String,%20java.lang.String,%20byte[])
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076035

3.3. SIGNING CHAPTER 3. OASIS-DSS

The main reason is that the burden of choosing a <ds:DigestMethod> is taken off the client. A cor-
porate sever may have to enforce certain policies or even choose different cryptographic hash functions
depending on the context of the data or addressee to fulfill certain business logic, yet giving the client
the chance to use XML technologies to derive the data from potentially complex sources.

It further allows servers to inspect and archive what has been signed, what might be required in the case
when corporate keys are used. Whether a server would want to vouch for some digest value without
having the chance to inspect the data is a legal or organizational issue and out of the scope of this
document and may be a topic for future work.

A more advanced use case is, when a client performs requests to some database and uses XML tech-
nologies to format the results and eventually produces an XHTML document. This may have to fulfill a
certain format, e.g. some corporate tax declaration. The client wants to get such a document signed and
maybe timestamped by some authority running an OASIS-DSS server. So the client can prove to have
produced the declaration and also shows how it was produced. In the case of an audit the authority can
then later check if the production of the data in the environment of the client is reproducible.

So the dereferencing from data sources is performed at the client-side, as is the compilation of this data
up to the final report. The production and formatting of this report is documented in the chain of trans-
forms by means of the <ds:Transfoms> and only the derived data is then sent off to the server, allowing
a client to avoid storing the actual document, yet prepared for a later verification and reproducibility of
the document.

Processing <dss:TransformedData>?

For simplicity in the basic processing it was decided that <dss:TransformedData> would be directly
hashed by omitting step 1.b. (section 3.3.5 [62]). All the <ds:Transforms> have been applied by the
client already.

<dss:TransformedData> enters reference processing at the end of the chain of <ds:Transforms> and
has to convey OctetstreamData (200602/msg00035)7. This implies that some form of canonical-
ization or transformation that results in OctetStreamData has to be the last element child of the
<ds:Transforms> element (line 74 in Figure 3.3.3).

Why should the server not apply additional transforms in the basic processing?

Transmitting intermediate results from a client to a server is unspecified, especially in the case of
NodeSetData that does not comprise a complete document.

Only OctetStreamData can be supplied and NodesetData requires the complete document to be
transmitted in the general case. In the cases where NodeSetData is in terms of the Infoset self con-

7This is a shorthand notation to point to discussion list entries on which the modifications to OASIS-DSS were based.
They are links and can be clicked in the electronic version of this document. The URI can also be gathered by prepending
’http://lists.oasis-open.org/archives/dss/’ and appending ’.html’.

62

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-DigestMethod
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transfoms
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076059
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://lists.oasis-open.org/archives/dss/200602/msg00035.html
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms

CHAPTER 3. OASIS-DSS 3.3. SIGNING

tained, there is no reason to apply further transforms or canonicalization by the server. For transmission
the NodesetData needs to be serialized and the serialization method is precisely C14n.
So the server can safely assume the NodeSetData was implicitly canonicalized by C14n.
If the client would not do this and terminate the <ds:Transforms> with a <ds:Transform> that results
in NodeSetData and not use C14n for implicit serialization, the result is undefined.
An OASIS-DSS server would not accept such an implicit serialization-parsing step due to transmission
in the middle of the chain of transforms, because then the requirement of the basic processing: “. . . , the

sequence MUST describe the effective transform as a reproducible procedure from parsing until hash

. . . ” [62] would be violated.
Hence the basic processing for <dss:TransformedData> assumes that data is to be digested directly. It
may be overridden however by optional inputs (e.g. <dss:SignedReferences> subsection 3.3.6), or by
profiles or their optional inputs.
And last but not least it will allow a smart server implementation to directly consume the supplied data
on first parsing by applying the hash function and to save so memory.

3.3.2.2 <dss:DocumentHash>

<dss:DocumentHash> assumes the reference processing including the digest calculation has been per-
formed at the client side. It informs an OASIS-DSS server what <ds:Transforms> have been applied,
what <ds:DigestMethod> was used and the <ds:DigestValue> is conveyed as well. All of XMLDSIG’s

<xs:element name="DocumentHash">
83 <xs:complexType>

<xs:complexContent>
85 <xs:extension base="dss:DocumentBaseType">

<xs:sequence>
87 <xs:element ref="ds:Transforms" minOccurs="0"/>

<xs:element ref="ds:DigestMethod" minOccurs="0"/>
89 <xs:element ref="ds:DigestValue"/>

</xs:sequence>
91 <xs:attribute name="WhichReference" type="xs:integer"

use="optional"/>
</xs:extension>

93 </xs:complexContent>
</xs:complexType>

95 </xs:element>

Figure 3.3.4: <dss:DocumentHash>

reference processing, excluding the actual formation of the <ds:Reference> is here performed on the
client side. This may be useful if in some use case, where the digest value of some data object is well
known and often included so the server can accept it as a “known good” value.
In many application contexts - like when a corporate key is used - simply vouching for some hash value
is not a good idea and “known good” values are essential, because: Only What is ”Seen” Should be

Signed [8][27][29].

63

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transform
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-DigestValue
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076036
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Seen
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Seen

3.3. SIGNING CHAPTER 3. OASIS-DSS

This principle formulates in one sentence that obviously what has been discarded in <ds:Transforms>
is not signed and that a <ds:Transform> cannot be trusted in general. It however also applies in the
reverse direction of a hash function, signing a hash value might cause you to be committed to what this
seemingly arbitrary sequence of bits might represent as a fingerprint.

It is a principle that one should not sign what is not understood. This is also true for a hash value which
by its preimage resistance cannot be understood by definition, unless it is known to belong to a certain
input or document.

In another potential use case where the authenticated signer wishes to use his own key, that is maybe
stored encrypted on an OASIS-DSS server, the reverse may be true. In such a situation sending only a
hash would help to ensure the signers privacy.

If such a system can be trusted or whether a server would want to vouch for some digest value without
having the chance to inspect the data is an organizational or a legal issue and out of the scope of this
thesis.

On verification the situation is far less critical and may be an enabler for privacy protection and per-
formance increases in successive requests, always containing signatures with some often appearing
<ds:Reference>.

To summarize, OASIS-DSS has different fidelity modes for carrying payload allows to enter XMLDSIG’s

reference processing at various stages.

3.3.3 Important optional inputs and outputs for signature creation

OASIS-DSS also supports a set of optional inputs and related outputs to handle a variety of signature
topographies like enveloping, enveloped and detached XMLDSIG signatures. They are explained in
subsection 2.4.1.2.

The optional inputs as <dss:IncludeObject> and <dss:SignaturePlacement> can be understood as
commands to a signature creation engine to alter the basic processing described earlier in subsec-
tion 3.3.1 to create enveloping or enveloped <ds:References>. One will note that the terms are used
here with respect to a <ds:Reference> and not with respect to the <ds:Signature>. This is more appro-
priate, because a signature can be detached, have a signed <ds:Object>, and be placed inside an XML

document that it signs at the same time.

3.3.4 <dss:IncludeObject> - Creating enveloping signatures

<dss:IncludeObject> is used to create enveloping signatures and refers via the the WhichDocument
attribute of type xs:IDREF to a <dss:Document>. This document will be placed in a <ds:Object> of
the resulting <ds:Signature>. This optional input makes no sense for <dss:TransformedDocument>
and <dss:DocumentHash> as placing signatures into transient and transformed documents is not useful.

The server either creates the enveloping <ds:Object> or grants the client to send a prepared one by
setting hasObjectTagsAndAttributesSet (200503/msg00007). This takes the burden of the

64

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transform
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#def-SignatureEnveloping
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#def-SignatureEnveloped
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#def-SignatureDetached
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-References
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Signature
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Object
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#def-SignatureEnveloping
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Object
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Signature
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Object
http://lists.oasis-open.org/archives/dss/200503/msg00007.html

CHAPTER 3. OASIS-DSS 3.3. SIGNING

<xs:element name="IncludeObject">
238 <xs:complexType>

<xs:attribute name="WhichDocument" type="xs:IDREF"/>
240 <xs:attribute name="hasObjectTagsAndAttributesSet" type="xs:boolean"

default="false"/>
<xs:attribute name="ObjId" type="xs:string" use="optional"/>

242 <xs:attribute name="createReference" type="xs:boolean"
use="optional" default="true"/>

</xs:complexType>
244 </xs:element>

Figure 3.3.5: <dss:IncludeObject>

server to invent ID attributes.

The attribute createReference triggers the creation of a <ds:Reference> covering the document
in question, and is by default set to true.

An enveloping signature bears the data object covered by at least one of their references. This implies
that the URI attribute of the corresponding <ds:Reference> has to be a same-document reference.

In OASIS-DSS WD30 page 22 the optional input was called <dss:EnvelopingSignature> and was seri-
ously underspecified.

3.3.5 <dss:SignaturePlacement> - Creating enveloped signatures

<dss:SignaturePlacement> is used to place the resulting <ds:Signature> inside a document which
is conveyed in <dss:Document> and causes the creation of a <ds:Reference> with same-document

reference by default.

<xs:element name="SignaturePlacement">
246 <xs:complexType>

<xs:choice>
248 <xs:element name="XPathAfter" type="xs:string"/>

<xs:element name="XPathFirstChildOf" type="xs:string"/>
250 </xs:choice>

<xs:attribute name="WhichDocument" type="xs:IDREF"/>
252 <xs:attribute name="CreateEnvelopedSignature" type="xs:boolean"

default="true"/>
</xs:complexType>

254 </xs:element>

Figure 3.3.6: <dss:SignaturePlacement>

This <dss:Document>’s RefURI is required to include the document by a same-document reference

and normally the use of the “Enveloped Signature Transform” (section 6.6.4 [27] [29]) is indicated as
well. The “Enveloped Signature Transform” makes use of the here() function [27] [29] and assures
that the signature does not sign itself. The here() function and thus the “Enveloped Signature Trans-
form” is only effective if it is not preceded by some transform emitting OctetStreamData. It is

65

http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076069
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.oasis-open.org/committees/download.php/10081/oasis-dss-1.0-core-spec-wd-30.pdf#page=22
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Signature
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076071
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-EnvelopedSignature

3.3. SIGNING CHAPTER 3. OASIS-DSS

necessary to be evaluated in the “same” document.

Finally the enveloped signature is returned in the optional output <dss:DocumentWithSignature> (a
container for a <dss:Document>, Figure 3.3.7). OASIS-DSS does not specify what fidelity mode should
be used for returning the signature. It seems to be a fair assumption to choose the same mode as has
been used for sending the input document to bear the signature to the server.

<xs:element name="DocumentWithSignature">
256 <xs:complexType>

<xs:sequence>
258 <xs:element ref="dss:Document"/>

</xs:sequence>
260 </xs:complexType>

</xs:element>

Figure 3.3.7: <dss:DocumentWithSignature>

3.3.5.1 Client side splicing

The concept of client-side splicing used to be in an earlier working draft (WD) of OASIS-DSS (i.e.
WD30 page 16 and WD30 page 20). There the server would have to compute the signature over data
objects that are out of their context. Even all sorts of same-document references and <ds:Transforms>
would be evaluated in multiple node-sets, each comprising a sub-document, that would have to be
independent of the remaining document that has not been sent by the client. The evaluation would have
to be performed as if it were one document.

Client-side splicing of signatures, although an interesting concept to save bandwidth on the back-channel
from the server, was deferred to a profile by the OASIS-DSS TC. It would have required normative
language to be added to the core document, which however would have to be fulfilled by clients. OASIS-

DSS however only defines processing for the server and normative text defining the behaviour of the
client would not really fit into the core specification. Further an XMLDSIG profile would have been
needed and blown up the document. All this seems to be best addressed in a document next to the core
document, but not in it. Unfortunately a concrete proposal for such a profile has since then never been
made or pursued by anyone (200507/msg00042, 200508/msg00007).

It would potentially be an interesting topic for future standardization.

3.3.6 <dss:SignedReference> - More control on reference generation

The <dss:SignedReferences> contains one or more <dss:SignedReference> elements and may be
supplied as optional input in a <dss:SignRequest>. The one-to-one mapping of the basic process-
ing from input documents to created <ds:Reference> elements can be overridden. This is done by
supplying multiple <dss:SignedReference> elements pointing to the same input document with the
WhichDocument attribute.

66

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#def-SignatureEnveloped
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076071
http://www.oasis-open.org/committees/download.php/10081/oasis-dss-1.0-core-spec-wd-30.pdf#page=16
http://www.oasis-open.org/committees/download.php/10081/oasis-dss-1.0-core-spec-wd-30.pdf#page=20
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://lists.oasis-open.org/archives/dss/200507/msg00042.html
http://lists.oasis-open.org/archives/dss/200508/msg00007.html
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076072
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference

CHAPTER 3. OASIS-DSS 3.3. SIGNING

If there is a RefURI present in the optional input, then an additional <ds:Reference> is created. The
RefURI’s value is set assigned to the <ds:Reference>’s URI, the RefId sets the <ds:Reference>’s
ID and the <ds:Transforms> are executed by the server. The server may perform zero or more addi-
tional <ds:Transforms>, and if needed canonicalize the result. Eventually the <ds:Digestvalue> will
be calculated and the transforms set in the <ds:Reference>.

If the RefURI is not set - then normal reference processing for the pointed to <dss:Document> is
adapted accordingly by overriding RefId and <ds:Transforms>.

<dss:SignedReferences>’s <ds:Transforms> do not make any sense with <dss:DocumentHash> and
OASIS-DSS mentions this optional input only with <dss:Document>.

<xs:element name="SignedReference">
270 <xs:complexType>

<xs:sequence>
272 <xs:element ref="ds:Transforms" minOccurs="0"/>

</xs:sequence>
274 <xs:attribute name="WhichDocument" type="xs:IDREF" use="required"/>

<xs:attribute name="RefURI" type="xs:anyURI" use="optional"/>
276 <xs:attribute name="RefId" type="xs:string" use="optional"/>

</xs:complexType>
278 </xs:element>

Figure 3.3.8: <dss:SignedReference>

The OASIS-DSS core does not define what happens when <dss:SignedReference> is used in combi-
nation with a <dss:TransformedData> in a <dss:SignRequest>. [. . .] 1. The server identifies the

<Document> referenced as indicated by the WhichDocument attribute. [. . .] [62] A potential in-
terpretation could be however, that the server refers to the <Document> in a more general sense and
OASIS-DSS rather means an element of <dss:DocumentBaseType>.

Then would also follow from step 2. 1.b. of <dss:SignedReferences>’s processing: [. . .] the server

may apply any other transform it considers appropriate as per its policy [. . .] [62]. The input would be
OctetStreamData and require the server to add a C14n before the first <ds:Transform> executed on
the server-side, if the last of <dss:TransformedData>’s <ds:Transforms> executed by the client ended
in node-set data. The latter is implied by an implicit C14n at the client side to serialize and transmit
the data, which would have to be reflected as per OASIS-DSS’ requirement for effective reflection of the
true transform8.

To specify such subtleties would have blown up the core document and further explains why addi-
tional server-side transforms are not allowed for <dss:TransformedData> in the basic processing sec-
tion 3.3.2.1 on page 62.

Given that the processing may be entered in the middle of the <ds:Transforms> using OASIS-DSS, it
is important that it can be implemented using a standard API such as JSR105 as well. The extension to

8As C14n is idempotent it would be safe to canonicalize anyway and not to rely on the clients choice for serialization.

67

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-URI
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-ID
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Digestvalue
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076072
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076072
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transform
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://java.sun.com/webservices/docs/1.6/api/javax/xml/crypto/dsig/XMLSignatureFactory.html#newReference(java.lang.String,%20javax.xml.crypto.dsig.DigestMethod,%20java.util.List,%20javax.xml.crypto.Data,%20java.util.List,%20java.lang.String,%20java.lang.String)

3.3. SIGNING CHAPTER 3. OASIS-DSS

JSR105 API, mentioned earlier would however be able to cope with the scenario of intermediate result
transmission.

3.3.7 Further optional inputs and outputs for signature creation

The optional input <dss:IntendedAudience> enables a specific instance of an OASIS-DSS server to
make choices and decisions based on the identity of the recipient.

The <dss:KeySelector> is a wrapper for a <ds:KeyInfo> allowing a client to tell an OASIS-DSS server
instance which key should be used for signing.

The < dss:Properties > are grouped in two lists.

• <dss:SignedProperties>

• <dss:UnsignedSignedProperties>

They contain <dss:Property> elements having an identifier and an associated value of arbitrary mixed

content. The Advanced Electronic Signature Profiles [61] make extensive use of this optional input to
include signed properties.

3.3.8 Other optional inputs

Other optional inputs that may be used during signing, but also for verifying, like for accessing the
service, policy matters or providing auxiliaries are mentioned in the following paragraph.

The optional input <dss:ServicePolicy> helps to establish a common expectation on a service policy.
<dss:ClaimedIdentity> can be used to supply a name; the claim can be supported by checking it against
a secure underlying transport binding (e.g. TLS with client certificate, TLS server authentication with
HTTP password protection) or message level authentication like an assertion as specified in the Security
Assertion Markup Language (SAML). OASIS-DSS is not specific on how this identity is used.

The optional input <dss:Schemas> allows to convey a list of Schemas and takes advantage of the
dss:DocumentType to be used for parsing the <dss:InputDocuments>. <dss:Schemas> may be used
as optional outputs as well as the Schema of a signed document can differ from the Schema of an
unsigned document, especially with enveloped signatures. Applications sometimes discover the need
for securing their documents and messages after systems have been deployed in which case Schema

cannot be changed and the addition of a <ds:Signature> could cause validation errors.

3.3.9 dss:ResponseBaseType - Returning signed documents

The dss:ResponseBaseType (Figure 3.3.9) defines how a response reports on the success of the process-
ing by using a <dss:Result> and provides a container called <dss:OptionalOutputs>.

The OptionalOutputs are of significance for returning enveloped signatures and have already been
mentioned in the context of <dss:SignaturePlacement> and optional <dss:Schemas> output.

68

http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076066
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076067
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-KeyInfo
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076068
http://docs.oasis-open.org/dss/v1.0/oasis-dss-profiles-AdES-spec-v1.0-os.html#_Toc159071337
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076041
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076042
http://www.google.com/search?q=site%3Awikipedia.org+SAML&btnI=
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076045
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076045
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#def-SignatureEnveloped
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Signature
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076049
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#def-SignatureEnveloped
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076045

CHAPTER 3. OASIS-DSS 3.3. SIGNING

<xs:complexType name="ResponseBaseType">
163 <xs:sequence>

<xs:element ref="dss:Result"/>
165 <xs:element ref="dss:OptionalOutputs" minOccurs="0"/>

</xs:sequence>
167 <xs:attribute name="RequestID" type="xs:string" use="optional"/>

<xs:attribute name="Profile" type="xs:anyURI" use="required"/>
169 </xs:complexType>

Figure 3.3.9: dss:ResponseBaseType

The <dss:Result> contains a <dss:ResultMajor> and a <dss:ResultMinor> element of simple type
xs:anyURI9. <dss:ResultMajor> values are:

• urn:oasis:names:tc:dss:1.0:resultmajor: followed by:

– Success

– RequesterError - indicating some error on the part of the client.

– ResponderError - indicating some error on the part of the server.

– InsufficientInformation - request failed due to a lack of information form some
other party or service.

The <dss:ResultMinor> qualifies the result further and provides the outcome or the actual reply of the
service. Its value always has the prefix urn:oasis:names:tc:dss:1.0:resultminor: and
is in the case of a <dss:SignResponse> followed for example by:

• urn:oasis:names:tc:dss:1.0:resultminor: followed by:

– MoreThanOneRefUriOmitted - indicating the corresponding violation of the XMLD-

SIG reference processing model (cf. subsection 2.4.1.3).

– InvalidRefURI

– NotParseableXMLDocument

– NotSupported - for unsupported optional inputs.

– . . .

3.3.10 <dss:SignResponse>

A <dss:SignResponse> (Figure 3.3.10) extends the dss:ResponseBaseType and additionally returns a
<dss:SignatureObject> (Figure 3.3.11 on page 70) containing either an in-line <ds:Signature> or

9We recall that Schema [20] functions as a type donor, in such a case the prefix “xs:TypeName” is commonly used to
refer to named top level types defined directly in Schema.

69

http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076049
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076049
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/ #sec-ReferenceProcessingModel
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Signature

3.3. SIGNING CHAPTER 3. OASIS-DSS

a Base64Signature in base64 encoding. This only works with enveloping or detached signa-
tures. Alternatively a pointer to an enveloped signature called < dss:SignaturePtr > referring into a
<dss:DocumentWithSignature> is provided.

<xs:element name="SignResponse">
179 <xs:complexType>

<xs:complexContent>
181 <xs:extension base="dss:ResponseBaseType">

<xs:sequence>
183 <xs:element ref="dss:SignatureObject" minOccurs="0"/>

</xs:sequence>
185 </xs:extension>

</xs:complexContent>
187 </xs:complexType>

</xs:element>

Figure 3.3.10: <dss:SignResponse>

<xs:element name="SignatureObject">
97 <xs:complexType>

<xs:sequence>
99 <xs:choice>

<xs:element ref="ds:Signature"/>
101 <xs:element ref="dss:Timestamp"/>

<xs:element ref="dss:Base64Signature"/>
103 <xs:element ref="dss:SignaturePtr"/>

<xs:element name="Other" type="dss:AnyType"/>
105 </xs:choice>

</xs:sequence>
107 <xs:attribute name="SchemaRefs" type="xs:IDREFS" use="optional"/>

</xs:complexType>
109 </xs:element>

Figure 3.3.11: <dss:SignatureObject>

<dss:Other> is a general purpose container to allow for extensibility.

Section Summary

To summarize OASIS-DSS receives a <dss:SignRequest> and returns a <dss:SignResponse>. The
optional inputs <dss:IncludeObject> and <dss:SignaturePlacement> can be used for the creation of
enveloping and enveloped signatures respectively.

<dss:SignaturePlacement> causes the enveloped signature to be returned in an optional output of the
<dss:SignResponse> called <dss:DocumentWithSignature>. The newly created <ds:Signature> will
be pointed to by the returned <dss:SignatureObject>’s child element < dss:SignaturePtr >.

70

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#def-SignatureEnveloping
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#def-SignatureDetached
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#def-SignatureEnveloped
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076053
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076037
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#def-SignatureEnveloping
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#def-SignatureEnveloped
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#def-SignatureEnveloped
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Signature

CHAPTER 3. OASIS-DSS 3.4. VERIFYING

3.4 Verifying

The <dss:VerifyRequest> extends dss:RequestBaseType (subsection 3.2.1) and inherits the attributes
Profile, RequestID and the child elements <dss:OptionalInputs> and <dss:InputDocuments>.
Hence it can just as well convey payload in various forms from base64 encoding in <dss:Base64XML>

to <dss:InlineXML> and enter the processing at various stages.

The <dss:SignatureObject> (Figure 3.3.11 on page 70) appears in the <dss:SignResponse> and in the
<dss:VerifyRequest> (Figure 3.4.1). Like in the <dss:SignResponse> it contains either the signature
itself or a pointer into one <dss:Document>.

Recall from dss:RequestBaseType that <dss:InputDocuments> were optional, which becomes clearer
now as they may be “substituted” by <dss:SignatureObject> for verifying enveloping <ds:Signature>s.
However this does not only make the service less clear, we would have preferred an approach where
enveloping signatures are transported in a <dss:Document> because of context free extraction and
symmetry.

<xs:element name="VerifyRequest">
280 <xs:complexType>

<xs:complexContent>
282 <xs:extension base="dss:RequestBaseType">

<xs:sequence>
284 <xs:element ref="dss:SignatureObject" minOccurs="0"/>

</xs:sequence>
286 </xs:extension>

</xs:complexContent>
288 </xs:complexType>

</xs:element>

Figure 3.4.1: <dss:VerifyRequest>

For streaming processing of <ds:Reference> elements <ds:Transforms> and <ds:DigestMethod>

must be accessible prior to the actual payload. Hence it would be preferable if <dss:SignatureObject>
containing this information appeared before the <dss:InputDocuments>. However Schema can extend
content types only at their content model’s end [20].

<dss:SignatureObject>’s < dss:SignaturePtr > enables a requester to place the signature or signed doc-
ument into a <dss:Document> child of <dss:InputDocuments>. < dss:SignaturePtr > is not useful for
<dss:TransformedData> and <dss:DocumentHash>.

The <dss:SignatureObject> including < dss:SignaturePtr > may even be omitted, in which case the
basic processing assumes only one <dss:Document> that must contain the signature10. This is perhaps
a too harsh constraint as it prevents detached signatures from being verified with this method. Allowing
only one <dss:Document> hinders necessary data objects from being sent. A weaker constraint as
for example to only verify the first signature from the first input document would be sufficient. This

10Interestingly this case has been reserved for multiple signature verification optionally supported in the core.

71

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#def-SignatureEnveloping
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Signature
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#def-SignatureEnveloping
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076074
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-DigestMethod
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#def-SignatureDetached

3.4. VERIFYING CHAPTER 3. OASIS-DSS

however is not compatible with the view that the order of <dss:InputDocuments>’ children should not
matter (Figure 3.3.1).

A streaming implementation could nevertheless proactively calculate each <ds:Reference> it discovers,
assuming it points to nodes that follow in document order.

3.4.1 Basic processing for verifying using XMLDSIG

The allegedly simplest case is a <dss:SignatureObject> containing a detached or enveloping signature
that shall be verified. Otherwise SignaturePtr will refer to a <ds:Signature> enveloped in some
document. As noted, <dss:SignatureObject> is optional, and if omitted this represents a variant of
the basic processing for verifying XMLDSIG signatures. In this case only a single input document is
permitted and the OASIS-DSS server must find all <ds:Signature>s contained in the document. Then
either verify them all or respond with an error if multiple signatures are not supported.

As signatures conveyed inside <dss:SignatureObject>’s <ds:Signature> constitute some sort of in-
line XML payload, the same considerations as with <dss:InlineXML> apply (see also section 3.2.3).
So although it intuitively seems to be a simple case it is advisable to prefer SignaturePtr. The latter
will allow to take advantage of the different forms of payload.

Otherwise OASIS-DSS’ reference processing for verifying XML signatures is very similar to the basic
processing for signature creation.

It is also possible to enter it at various stages (cf. subsection 3.3.2) which works just like the processing
of <dss:SignRequest>. The basic processing for verifying XMLDSIG has one more finesse to offer
with respect to processing stages: The case of <ds:Reference>’ URI and Type matching multiple
elements (<dss:Document>, <dss:TransformedData> or <dss:DocumentHash>) in Step 2. d. If there
is a <dss:Document> in this set an error is issued. If the set only consists of <dss:TransformedData>
and <dss:DocumentHash> elements then an additional flag WhichReference must disambiguate.

This should avoid the case where the responsibility for processing the chain of transforms for one doc-
ument is on the server-side and at the client-side at the same time. A client could falsely expect that the
server would also match all the chain of transforms against those in the <ds:References> to find the
matching one, which would be too expensive. Or that the sever would check all those for consistency as
well. Usually there is a one to one mapping from URI to <ds:Document> to <ds:Reference> however.

3.4.2 Important optional inputs and outputs for signature verification

<dss:VerifyManifests> cause the verification of <ds:Manifest>. A <ds:Manifest> is a collection of
<ds:Reference>s like a <ds:SignedInfo>. The manifest is usually referred to by a <ds:Reference> of
the <ds:SignedInfo>. Manifest verification in XMLDSIG differs from <ds:SignedInfo> verification in
two major points:

• It is not part of XMLDSIG core verification.

72

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#def-SignatureEnveloped
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Signature
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-URI
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-References
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Document
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076081
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Manifest
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Manifest
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-SignedInfo
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-SignedInfo
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-SignedInfo

CHAPTER 3. OASIS-DSS 3.5. SIGNING, VERIFYING - CONCLUDING REMARKS

• some of the <ds:Reference>s in the <ds:Manifest> may fail, depending on the application.

This requires verbose reporting as specified in the < dss:VerifyManifestResults >, which reports on the
verification of each <ds:Reference>.

The <dss:UseVerificationTime> optional input is of significance for PKI path validation. I.e. checking
of the validity periods of all certificates up to the trust anchor.

The < dss:ReturnVerificationTimeInfo > causes the < dss:VerificationTimeInfo > to be returned, which
states what time was actually used for verifying the signature.

3.4.3 <dss:VerifyResponse>

A <dss:VerifyRequest> is answered by a <dss:VerifyResponse>.

290 <xs:element name="VerifyResponse" type="dss:ResponseBaseType"/>

Figure 3.4.2: <dss:VerifyResponse>

The <dss:VerifyResponse>’s ResultMajor just works like the one of the <dss:SignResponse> and
is inherited from dss:ResponseBaseType in subsection 3.3.9 on page 68.

A <dss:VerifyResponse> just reports on the outcome of verification and does this by means of a
ResultMinor URI.

The prefix urn:oasis:names:tc:dss:1.0:resultminor: is followed by either:

• valid:signature:OnAllDocuments

• valid:signature:NotAllDocumentsReferenced - indicating that some of the input
documents were not referenced.

• invalid:IncorrectSignature

3.5 Signing, Verifying - concluding remarks

A <dss:SignResponse> is in terms of its payload similar to a <dss:VerifyRequest>, but different with
respect to their base type. The question arises why the protocol is not symmetric with respect to doc-
ument payload. Having a <dss:PayloadDocuments> as the pendant to <dss:InputDocuments> would
allow <dss:SignRequest>, <dss:SignResponse> to share one type make the Schema smaller and easier
to implement. This triple could extend a type potentially called dss:MessageWithPayloadType and ex-
tend a dss:MessageType. The <dss:VerifyResponse> could extend the latter and <dss:Result> could
be added to <dss:SignResponse> and <dss:VerifyResponse> as a facet.

Nevertheless profiles can take advantage of the current asymmetry with client-side splicing (subsec-
tion 3.3.5.1). A client side-splicing profile would have to address concerns with respect to only signing

73

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Manifest
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076081
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076081
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076082
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076082

3.6. OASIS-DSS PROFILES CHAPTER 3. OASIS-DSS

what is seen [8][27][29] and constraining technologies such as XPath, XPointer and XSLT so that they
will behave correctly if evaluated on sub-documents instead of the complete document.

The OASIS-DSS TC hence decided not to build the basic processing on client-side splicing to avoid false
negatives and spurious validation errors. An OASIS-DSS server may even verify a signature outside the
OASIS-DSS context before returning it, able to warn a client if bad input had been specified. This avoids
that clients produce arbitrary signatures not verifiable outside the OASIS-DSS protocol. Nevertheless
profiles have the freedom to use client side-splicing.

3.6 OASIS-DSS Profiles

OASIS-DSS provides a way to profile and extend the core protocol and there is a requirement for exten-
sibility. OASIS-DSS-profiles are not profiles in the classical sense as they are not only constraining the
OASIS-DSS core but also extending it by adding optional inputs and outputs.

There are profiles for OASIS-DSS, but implementation support for them is hard to be estimated at this
point in time.

The profiles have not been examined in detail for correctness or compliance. This section just gives an
overview on how profiles constrain or extend the core.

A profile like the “German Signature Law Profile” is written in a very simple way and puts the require-
ment of legal conformance with the German signature law on a server supporting this profile. If and
how this requirement can be fulfilled in a client server architecture is not specified there and merely a
reference to the law is provided.

Otherwise this profile requires, that only <dss:Document> payload is to be used. An identifier for
the ProfileID has been defined and an optional input called <gsl:SignerRole>11 to transport at-
tribute certificates. Optional outputs have been defined and the <dss:InputDocuments> must be re-
turned (echoed) as optional output.

Other and more complex profiles are the “Advanced Electronic Signature Profiles”, a document for cre-
ating XAdES and CAdES signatures on an OASIS-DSS server. In these profiles the < dss:Properties >’s
<dss:SignedProperties> have been used extensively to communicate what XAdES or CAdES proper-
ties should be added to the signature that is to be created. A new optional input <ades:SignatureForm>

has been defined to request signatures ranging from a basic electronic signatures, over such including
policies, timestamps, properties for long term verification and archival formats [46]. The latter could
be seen as an electronic signature packaged with verification information, which was cached during a
verification. Finally the signature in archived form is timestamped. For more details refer to [46][48].

11Assuming “gsl:” would be the prefix associated with the profiles namespace.

74

http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076068

CHAPTER 3. OASIS-DSS 3.7. OASIS-DSS PROTOCOL EXTENSION POINTS

3.7 OASIS-DSS protocol extension points

The eXtensibility in XML (recall subsection 2.1.1) stands for the general principle to ignore [10] markup
not understood by an application logic and to continue to process the interpretable data12.

The WSS TC [63] explicitly did not want such “new” markup to be just ignored. A security language has
unique requirements and the consequences of ignored data can be severe [10]. OASIS-DSS in contrast
considers this to be implied and is not as explicit as WSS. OASIS-DSS provides the <dss:ResultMinor>
value urn:oasis:names:tc:dss:1.0:resultminor:NotSupported for markup that has
not been recognized. Whether profiles may specify uncritical optional inputs or what happens by default
is not specified.

OASIS-DSS uses Schema and a validating OASIS-DSS processor will only allow extensions in designated
locations specified in the Schema. These designated locations are called wild-cards.

<xs:complexType name="AnyType">
10 <xs:sequence>

<xs:any processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
12 </xs:sequence>

</xs:complexType>

Figure 3.7.1: dss:AnyType

The wild-card xs:any (Part 1 section 3.10.2 [20]) is redefined as a type called dss:AnyType in OASIS-

DSS shown in Figure 3.7.1. This type is used to match optional inputs and optional outputs (Figure 3.7.2)
from arbitrary namespaces including the target namespace.

<xs:element name="OptionalInputs" type="dss:AnyType"/>
135 <xs:element name="OptionalOutputs" type="dss:AnyType"/>

Figure 3.7.2: <dss:OptionalInputs> and <dss:OptionalOutputs>

The <dss:OptionalInputs> and the <dss:OptionalOutputs> are found in the <dss:RequestBaseType>
in Figure 3.2.3 on page 55 and in the <dss:ResponseBaseType> respectively. Other extension points
where dss:AnyType is used are <dss:InputDocuments>, <dss:SignatureObject>, <dss:KeySelector>
and <dss:Timestamp>, to provide a free content model via the <dss:Other> element containers. These
are locally defined as relevant to their parent elements.

3.7.1 Fixing the OASIS-DSS Schema

In OASIS-DSS WD30 page 10 extensibility was modeled differently and not conformant to Schema’s

unique particle attribution (UPA) rule. This rule requires that the content model of an element has to be
unambiguous about which element declaration matches the currently validated element, without having

12The X in XML is not to be confused with Schema’s type extension.

75

http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076029
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#declare-openness
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076039
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076039
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076029
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076090
http://www.oasis-open.org/committees/download.php/10081/oasis-dss-1.0-core-spec-wd-30.pdf#page=10
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#cos-nonambig

3.7. OASIS-DSS PROTOCOL EXTENSION POINTS CHAPTER 3. OASIS-DSS

to inspect its contents. This means a Schema validator will be able to continue validating an element
alone by its namespace and element name. An instance element can never be matched by more than one
particle of a Schema.
The wild card definitions in OASIS-DSS WD30 page 10 would have matched any element in any names-
pace and are hence not usable in a choice unless distinguished from other particles therein.

A common extension strategy for a choice is to use the following expression in Figure 3.7.3 to discrimi-
nate by namespace. It allows any top level defined element as long as it is from another namespace than
the target namespace.

<xs:any namespace="##other" processContents="lax"/>

Figure 3.7.3: Wild-card matching elements from outside the targetnamespace.

In case of <dss:InputDocuments> this would have been possible given that all other particles of the
choice are in the target namespace.
The case is different though for <dss:SignatureObject> element declaration (Figure 3.3.11 on page 70)
where this is not possible, because the choice contains elements from two namespaces. In this case a
construct like the following would be necessary. Schema lacks a way to describe a namespace constraint
by means of the complement of a set of namespaces.

<xs:any namespace="##not ##targetnamespace
http://www.w3.org/2000/09/xmldsig#"/>

Figure 3.7.4: Wild-card do not allow to match the complement of sets of namespaces.

For <dss:KeySelector> and <dss:Timestamp> particles from a foreign namespace this issue applies as
well as the only namespace negation allowed in Schema is the negation of the target namespace using
##other. This limitation of Schema was obviously not anticipated by the other members of the OASIS-

DSS TC and shows that Schema should maybe infer the complement set of namespaces automatically.
Schema only supports sets of namespaces which is not useful however as one cannot predict which
namespaces might be relevant in the future.
Although Figure 3.7.3 would have been possible for <dss:InputDocuments> and allowed profiles to
plug-in additional payload containers peer to the others, the OASIS-DSS TC decided to follow only one
strategy for extension points, namely <dss:Other>. <dss:Other> has its own content model and avoids
this problem by introducing yet another container element. Trading off document’s depth with clarity.

76

http://www.oasis-open.org/committees/download.php/10081/oasis-dss-1.0-core-spec-wd-30.pdf#page=10
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076067
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076090

Chapter 4

Signing XML, weaknesses, solutions

The work on OASIS-DSS has shown that unconstrained XML signatures are in need for full fidelity
round-trip1 support for transmitting data objects such as binary and XML content. The most robust form
of achieving this opaqueness is base64 encoding, however buying in the additional costs of encoding,
decoding and increased space. Depending on the encoding of the transport protocol the size increases
for instance to 133% for UTF-8 and 266% for UTF-16 [64] for binary data. Some of this increase would
also occur for UTF-8 encoded in-lined XML just for trans-coding an UTF-8 document to UTF-16 even
if carried in <dss:InlineXML>. The 66% increase is saved however. The base64 encoding further
disallows direct access to contents of such data objects on a SAX level.

If XML containing base64 encoding is parsed to DOM such blobs are not deflated until they are actually
used as binary data and are not held in the DOM tree any more. In a UTF-16 encoded Java™ String

such a blob consumes 266% of its original size until it is garbage collected.

We have learned in the previous chapters however that a clean separation of transport protocol and
payload is not only good practice, but is crucial to prevent XMLDSIG signatures from breaking due to
to inherited context.

Filtering in-line XMLDSIG signatures or signed documents on a lower level such as SAX and StAX is
possible, but gives away the architectural benefits of working on the level of tree model abstraction. A
hybrid approach disallows exchanging services or implementations at the various layers. Hence base64

encoding was chosen to be the default for conveyed payload.

enveloped ::= ’<xml’ (S Attribute)* S? ’>’ document ’</xml>’

content ::= CharData? ((enveloped|element|Reference|CDSect|PI|Comment)
CharData?)*

Figure 4.0.1: Rounding XML
√

2.0 2

1See later in section 5.3.1 on page 113.
2XML

√
2.0 is a public square where XML 2.0 should be rooted. This BNF is an amendment to the XML specification,

77

http://www.google.com/search?q=site%3Awikipedia.org+UTF-8&btnI=
http://www.google.com/search?q=site%3Awikipedia.org+UTF-16&btnI=
http://www.google.com/search?q=site%3Awikipedia.org+UTF-8&btnI=
http://www.google.com/search?q=site%3Awikipedia.org+UTF-8&btnI=
http://www.google.com/search?q=site%3Awikipedia.org+UTF-16&btnI=
http://www.google.com/search?q=site%3Awikipedia.org+UTF-16&btnI=
http://tools.ietf.org/html/rfc2616#section-10.4.2

4.1. CHANGE XML CHAPTER 4. SIGNING XML, WEAKNESSES, SOLUTIONS

With the ideas in the following sections we will try to “think” out of the box and propose needed
“minimal” changes to XML specifications to be able to have document level context separation and
opaqueness while avoiding the costs of base64 encoding.

4.1 Change XML

The prolog cannot be child of an element, simple inheritable attributes such as xml:lang and xml:space

get inherited as soon as one piece of XML is spliced into another one. The situation is even worse with
xml:base, suddenly the “place of an entity” is not actually its place any more, at least not with respect to
its contained references (or links). Namespace inheritance is another issue when one tries to envelope a
piece of XML in a <ds:Object> to create an enveloping XMLDSIG signature or embed a document in
some transport protocol like OASIS-DSS.

The approach to embed XML in a CDATA section suffers the problem that the embedded documents in
turn cannot contain CDATA sections. To be opaquely transmitted, at least some parts need to be escaped.
The XPath data model does not know CDATA sections. XML processing APIs like DOM or XPath are
allowed to convert CDATA sections to escaped character sequences and merge them with adjacent text
nodes.
The character data of a processing instruction seems to be a little more robust with respect to not
being touched by tools, if processed at all. It potentially allows signed documents referred to by a
<ds:Reference> with external URI references and no <ds:Transforms> (i.e. no implicit C14n) to be
transmitted as long as their character encoding remains the same. This however could be perceived
as a plain misuse of processing instructions and it is questionable whether tools would accept larger
quantities of data as the character data of a processing instruction. Further many tools do not consider
processing instructions as first class objects3. In Figure A.1.1 on page 120 these techniques can be
tried out by copying the contents to a COTS4 XML editor that supports syntax highlighting for CDATA
sections and processing instructions.

XML is not closed under the operation embed.

Yet accepting all the idiosyncrasies of an XML document, an idea would be to extend XML, perhaps call
it XML 1.4142 and let it roughly be what could eventually be the root of XML 2.0. It shall be closed
under the operation of embedding one document into another one, i.e. the result shall be a well formed
XML 1.4142 document again.
Separation of form and content [65] made XML revolutionary, however if used as a structured transport
protocol it lacks the separation of payload from protocol. Allowing XML documents to contain XML

explained in the next sections.
3Also, in new developments, all significant objects with any form of persistent identity should be ”first class objects” for

which a URI exists. [65]
4Commercial off-the-shelf

78

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#def-SignatureEnveloping
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://www.google.com/search?q=site%3Awikipedia.org+COTS&btnI=

CHAPTER 4. SIGNING XML, WEAKNESSES, SOLUTIONS 4.1. CHANGE XML

documents allows them to be passed by their true value preventing signature breakage and avoiding the
additional costs base64 encoding.

Architecturally URIs can then be dereferenced and passed by value in an XML protocol, retaining human
readability and increasing efficiency.

4.1.1 A Proposal for XML 1.4142

Many proposals for an XML 2.0 have been made in the past and Walsh [66] enumerates authors from
Tim Bray, who drafted XML-SW [67] to Liam Quin and mentions people that have written essays,
proposals to address the problems of XML and some suggest a successors of XML.

Walsh made an interesting proposal that the document production in XML should match the production
of an external parsed entity [68]. An external parsed entity is the element’s content production pre-
ceded by an optional text declaration5. Like a text document, without prolog having multiple document
elements comprising a “markup forest”6.

TextDecl ::= ’<?xml’ VersionInfo? EncodingDecl S? ’?>’

extParsedEnt ::= TextDecl? content

Figure 4.1.1: external parsed entity [6]

The disadvantage of this proposal is that the “TextDecl” is optional and hence external parsed entities
are not delimited and surrounding text merges when one document is placed in another one.

This thesis in contrast to previously made proposals is driven by the need for round tripping signed
documents without interfering with the payload. It also strives to achieve real opaqueness on a character
level yet allowing XML to be the container as well as the containment. It assures that also the payload
will not depend on surrounding context, which is an important architectural property.

document ::= prolog element Misc*

element ::= EmptyElemTag
| STag content ETag

content ::= CharData? ((element|Reference|CDSect|PI|Comment) CharData?)*

Figure 4.1.2: XML

The original definition of the “element” and “content” non-terminals can be found in Figure 4.1.2 and
are obviously in the XML recommendation [6].

5A text declaration is an xml declaration lacking the standalone declaration.
6To stick to the analogy: the outer text nodes like bushes between the trees.

79

http://norman.walsh.name/2008/02/20/xml20#p29
http://norman.walsh.name/2008/02/20/xml20#p29
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/#d0e4524

4.1. CHANGE XML CHAPTER 4. SIGNING XML, WEAKNESSES, SOLUTIONS

enveloped ::= ’<xml’ (S Attribute)* S? ’>’ document ’</xml>’

content ::= CharData? ((enveloped|element|Reference|CDSect|PI|Comment)
CharData?)*

Figure 4.1.3: Required changes to XML7

Figure 4.1.3 summarizes the proposal by taking advantage of the fact that the name “xml” is reserved
[6] in XML. It extends the content model of elements to be able to contain the non-terminal “enveloped”
which in turn allows elements to include XML documents when they are delimited by an “xml” element.
Whether such an element should be called “xml”, “xml:xml”, “xml:doc” or similar is not of importance.

By redefinition of the “content” non-terminal, documents would be allowed to reside in other documents.
Despite of the encoding these shall share nothing with their host document, but the base URI of the
containing element, essentially spawning a new parser.

Whether empty documents should be able to contain documents, meaning that <xml> can be child
to <xml> or the file entity is out of the scope of this proposal, but may be a useful result for query
languages wanting to report the empty document. Whether such should be well-formed XML 1.4142 is
however questionable.

The attributes inside the start tag should remain reserved for future standardization purposes as the name
“xml” is reserved now8. Such a change to the syntax of XML would allow a <dss:SignRequest> to look
like in the following Figure 4.1.4. It would allow for character level fidelity round-trip support in the
OASIS-DSS client server protocol.

In Schema simply an element declaration could be added potentially called xs:xml.

Given that documents can contain documents, path and query languages starting from context outside
of such an internal document node within a document shall view it as a special document node where
all context was lost and not being able to enter a document node unless doing so by a pseudo retrieval
action.

This would make things that are now artificially complex in XML cleaner and easier and one would not
have to change back and forth between base64 encoding, <dss:InlineXML>, SOAP with attachments
or zip files for packaging XML. It would be a little bit like one of the most successful data structures in
personal computing - the folder file concept - with the difference that the order would matter and between
the files text would be allowed. Maybe that would be the first real markup system. Technologies such as
Efficient XML Interchange (EXI) show that there is the possibility of efficiently encoding XML. Whether
it could be efficiently mapped on a file-system, would be a topic for research.

7Analogously to tag definitions in XML [6] the end tag should be probably ’</xml’ S? ’>’, but the author of this
thesis never quite understood what the whitespace in the end tag is good for.

8Maybe attributes could indicate if a change in encoding will appear or this is the only true place for xml:base, content-
length and other useful things now in HTTP. A change in encoding could make a document however unreadable, why such
would be useful on the wire only.

80

http://www.google.com/search?q=site%3Awikipedia.org+zip files&btnI=
http://tools.ietf.org/html/rfc2616#section-14.13
http://tools.ietf.org/html/rfc2616#section-14.13

CHAPTER 4. SIGNING XML, WEAKNESSES, SOLUTIONS 4.1. CHANGE XML

<dss:SignRequest xmlns:dss="urn:oasis:names:tc:dss:1.0:core:schema">
2 <dss:OptionalInputs>

<dss:SignatureType>urn:ietf:rfc:3275</dss:SignatureType>
4 </dss:OptionalInputs>

<dss:InputDocuments>
6 <dss:Document RefURI="http://www.example.org/foo.xhtml">

<xml xml:base="http://www.example.org/foo.xhtml"
8 ><?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
10 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
12 <head>

<title>XHTML</title>
14 </head>

<body>
16 <script type="text/javascript">

<![CDATA[
18 ... unescaped script content ...

]]>
20 </script>

<p id="same">Text</p>
22 </body>

</html>
24 </xml>

</dss:Document>
26 </dss:InputDocuments>
</dss:SignRequest>

Figure 4.1.4: A simple example of a <dss:SignRequest>

4.1.2 Alternative proposal - xml declaration

An alternative to the proposal in the previous section would make the xml declaration <?xml ...?>

an allowed syntactic element within an element. This element would then be the container for a complete
XML document including the prolog. However, as mentioned, despite of its encoding such a document
shall share nothing with its host document, but the base URI of the parent element.
This xml declaration would initiate a document child of an element and the document would be delim-
ited by the end-tag of that element or an optional closing xml declaration. A closing xml declaration

could be called enclosure9. This enclosure could have the form of a processing instruction <?xml /?>

9To avoid confusion with a closure.

81

4.1. CHANGE XML CHAPTER 4. SIGNING XML, WEAKNESSES, SOLUTIONS

4.1.3 Indention, Whitespace

Coming back from an enthusiastic introduction to the problems of signing markup. One of the best and
at the same time most irritating features of XML is its indention and the concept of ignorable whitespace.
XML is most well known for being an enabler to separate content from presentation and that is one of
the main reasons which makes it so much better than HTML, but that does not seem to be true for XML

itself. The XML specification until today lacks a simple dogmatic and clear statement of the form:

Every whitespace before and after a tag is purely for the readability of XML as such, even whitespace
between a tag and the beginning of text or multiple whitespace at the line end before and after a line
break should be considered indentation and hence not signed. Nevertheless processors shall leave it
unchanged. This is true unless the xml:space attribute is set to “preserve” in which case whitespace is
intended to be understood as carrying information and shall be signed.

Well isn’t this currently true for XML? No, but it should be10.

A clear and common understanding about this would make XML securer and XMLDSIG a lot more
flexible, because signatures would be more robust and thus better support actually signing the real
information electronically (subsection 2.1.2). Less signatures would break and hence less decisions
would have to be taken despite a broken signature, which could legally still be ok. It would further
make what is discussed in the following sections redundant.

Whitespace, who cares?

By Eastlake [11] was pointed out that all white space with respect to XMLDSIG is considered significant
and a poem is brought as an example. Whether a poem would ever be signed electronically is not
discussed in this source, but it would seem appropriate for poem writers or their typesetters to escape
or designate whitespace if it is significant. It may be a valid argument that in XML indention and
whitespace is a means of structuring the markup and carries as such information. But just as with the
poem it remains a very questionable use case for XMLDSIG. It is not contested that whitespace shall be
preserved, but it shall not be signed.

The use case more important for XMLDSIG is pre-formatted text. Currently all content in XML is
assumed to be pre-formatted with respect to XMLDSIG including structural elements and indention. So
in reality the majority of signed content is just indented markup. An opt-in policy would have been more
appropriate for C14n than a complex opt-out policy for removing whitespace via XPath-filter transforms
in a <ds:Transforms> with a filter-step as in Figure 4.1.5.
XML offers an attribute called xml:space that can be set to preserve whitespace, if it really really
matters. Thus allowing C14n to properly discriminate. XPath-filter transform can rather tediously also
keep such space by applying Figure 4.1.6.

10Readers may note that whitespace even in this document matters, but what is really here is \smallskip, \medskip and
\bigskip of LATEX, and not the whitespace of the source code, or how DocBook’s LiteralLayout is indented outside its contents.

82

http://books.google.com/books?id=70zdopVsNgQC&pg=PA10&#PPA49,M1
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://books.google.com/books?id=wQ3a1kBygkcC&pg=RA1-PA35&vq=LiteralLayout&dq=docbook&source=gbs_search_s&cad=0

CHAPTER 4. SIGNING XML, WEAKNESSES, SOLUTIONS 4.1. CHANGE XML

(//. | //@* | namespace::*)
[not(self::text()) or not(normalize-space(self::text())="")]

Figure 4.1.5: An XPath expression to filter whitespace nodes.

(//. | //@* | namespace::*)[
not(self::text()) or not(

normalize-space(self::text())="" and
not(ancestor-or-self::*/@xml:space[1]="preserve")

)
]

Figure 4.1.6: An XPath expression to filter whitespace nodes, yet respecting xml:space.

Problems with signed base64 encoded text remain however. The only interoperable means for nor-
malizing whitespace inside text nodes such as in base64 encoding, is the not very strongly supported
and lately tarnished [40][69] optional XSLT transform11. For nodes consisting entirely of whitespace
XPath-transform as shown above can be written. However to normalize space in base64 encoding, often
appearing in the <ds:KeyInfo>’s <ds:X509Data> or in XAdES properties for embedding certificates
in XML, is not possible. Here nodes need to be changed and not filtered and this requires XSLT as in
Figure A.2.1 on page 121.

The XMLDSIG Base64 decoding transform offers an alternative. And from a first look it is not clear why
for example XAdES in its latest version 1.3.2 [46] signs base64 encoding as is, ignoring the limitations
of base64 encoding indention and does not make use of the XMLDSIG’s Base64 decoding transform.
One reason may be that XMLDSIG section 6.1 mentions it as “Encoding” and not as “Decoding” and
only when reading further in section 6.6.2 one notes that this is actually a decoding. It is a useful mean to
robustly sign base64 encoding embedded in XML. XAdES however concatenates and interleaves base64
encoded certificates with other readable content to digest it. One could argue that such data is only
digested and mixing character data with binary data would not pose a real problem. This however makes
the theoretical possibility of inspecting the DigestInput unpractical and hence violates XMLDSIG’s

“See” What is Signed (section 8.1.3 [29]). So the problem of normalizing the base64 encoding re-arises
and XAdES simply does not normalize it, having to count on that such content is not to be touched. This
however may hinder the spread of technologies such as XMLDSIG and XAdES because they can not be
used safely with common tools.

Interestingly there exists no value for xml:space that allows applications to declare that whitespace like
in base64 encoding is not at all of significance, not even single ones, not even before or after line-breaks
including the line-breaks themselves, irrespective of whether such whitespace is preserved. All XML

defines is: If xml:space is set to default, that means a parser must pass all characters to an application,

11Selections in XMLDSIG unfortunately do not allow for this granularity and only optional transforms such as XSLT can be
used. We also remember that XPointersare still a working draft.

83

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-KeyInfo
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-X509Data
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Base-64
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Base-64
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-AlgID
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Base-64
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/dsig/Reference.html#getDigestInputStream()
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-See

4.1. CHANGE XML CHAPTER 4. SIGNING XML, WEAKNESSES, SOLUTIONS

however the application can then do whatever it wants to that whitespace. And “preserve” causes the
preservation of all whitespace.

So xml:space could be a means to achieve robustness at least for plain whitespace nodes12.

This looks like a promising solution, but has the limitation that it will only work for non-validated well
formed XML and valid XML whose grammar has anticipated the use of xml:space.

Schema and DTD add yet another way to discriminate whitespace by distinguishing between what is
called mixed content from element content what will be discussed in the next section.

Validation for whitespace removal

Pure XML that has not been validated against some DTD or Schema does not make a distinction between
whitespace that is used for indention of XML or the one that is used in a potentially pre-formatted text
that is actually significant.

DTD and Schema introduce the notion of mixed content vs. plain13 element content. The latter’s intent
is to flag all whitespace that exists between elements of such a parent element as “ignorable” and this
very information is part of the Post Schema Validation Infoset (PSVI)14.

Plain element content is when a valid element may only contain elements and no text nodes.

The opposite are elements having a simple type (i.e. an element contains only text, comments and
processing instructions) or mixed content. In Schema this is indicated by the mixed attribute in
xs:complexType. A DTD formulates mixed content like in expression Figure 4.1.7 by the union
of #PCDATA with elements and must be declared first. In mixed content as specified by DTD only the
kind of elements that may appear are constrained but not in what order or how often they appear.

<!ELEMENT e (#PCDATA|a|b|c)*>

Figure 4.1.7: Mixed content in DTDs

Schema further replaces default whitespace handling with two other options to provide a partial match
for the whitespace normalization rules that apply to attribute values [23]. It should be added that also
simple types can be controlled via the whiteSpace constraining facet, to preserve, replace or collapse
them.

12Assuming subsequent <ds:Transforms> do not depend on the existence of these nodes in the underlying document’s tree
model or a canonicalization is performed immediately afterwards yielding a new document.

13The word plain is added in this thesis to distinguish element-content from the more general meaning of the contents of an
element.

14http://www.w3.org/TR/xml-infoset/#infoitem.character

84

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://www.w3.org/TR/xml-infoset/#infoitem.character

CHAPTER 4. SIGNING XML, WEAKNESSES, SOLUTIONS 4.2. XMLDSIG AND C14n

4.2 XMLDSIG and C14n

Having criticized XML, the whitespace normalization with respect to Schema validation topic seamlessly
switches into the problem domain of XMLDSIG. In this section ScC14n is referred to as a rich source
for having identified problems surrounding XML canonicalization. This is however not an endorsement
of ScC14n. Its use is often not justified and the trade-off between canonicalizing more or less has to be
done on an application basis. Things like whitespace or data-type normalization can not be performed
separate from other normalizations because ScC14n does not give implementations the chance to only
implement certain subsets of its specification. Related work has been performed by Geuer-Pollmann,
who edited results of a workshop [70] where several issues in XMLDSIG were identified, they are in
German and in keyword style. They have however not made their way back to W3C. Things additionally
identified during the work on OASIS-DSS are mentioned hereafter.

For whitespace, namespace, attribute value and other normalization as described in ScC14n to work in
an interoperable fashion, signers and verifiers need to perform Schema assessment equally, for which
XMLDSIG once had a Schema validation transform [71]15 [11]. Until today it is only a working draft and
hence not supported by implementers of XMLDSIG. Schema Instance can be used to associate a Schema

with a document. XMLDSIG does not specify that the presence of hints16 for document validation
against a Schema or DTD have to be respected and validation to be performed. XMLDSIG only warns
to use Schema consistently, but does not provide any means to enforce this [27][29]:

Note, if the Signature includes same-document references, [XML] or [XML-schema] val-
idation of the document might introduce changes that break the signature. Consequently,
applications should be careful to consistently process the document or refrain from using
external contributions (e.g., defaults and entities).

For increased interoperability XMLDSIG should specify a default. For example that validation hints if
present in the document must be respected and processed.
Further a very simple parameter for dereferencing and parsing could clarify the situation. Current
markup however does not allow to parametrize parsing. Hence a <ds:Transform> would be required
and have the sole purpose to describe if parsing should be performed with validation and was performed
when parsing the resource during signing. It could have one element parameter indicating one of the
three options for a <ds:Reference>:

• DoNotValidate - just process as well formed XML document.

• ValidateWithHintsInDocument - use hints in the document.

• Validate - validate with supplied hints, ignoring potential hints in the document.

15 http://www.w3.org/Signature/Drafts/xmldsig-transform-xml-validation.html
16DOCTYPE in subsection 2.1.1 on page 5)

xsi:schemaLocation and/or xsi:noNamespaceSchemaLocation in subsection 2.2.2.1 on page 13

85

http://books.google.com/books?id=70zdopVsNgQC&pg=PA432&vq=19.2.7
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transform
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/Signature/Drafts/xmldsig-transform-xml-validation.html

4.2. XMLDSIG AND C14n CHAPTER 4. SIGNING XML, WEAKNESSES, SOLUTIONS

This could be modeled in a Schema construct as follows in Figure 4.2.1. The first two options would
reflect the current situation without requiring a verifying application to guess or derive a Schema from
the application context. The third would provide an additional mean to supply schema information
overriding the hints in the referred document. The third variant is not discussed in detail and a type
declaration example how this could be done is in section A.4 on page 124.

<xs:complexType name="ValidationParameterType">
13 <xs:choice>

<xs:element name="DoNotValidate"/>
15 <xs:element name="ValidateWithHintsInDocument"/>

<xs:element name="Validate" type="vp:ValidateType"/>
17 </xs:choice>

</xs:complexType>

Figure 4.2.1: ValidationParameterType

A signer could then deliberately either decide to ignore schema validation and prune information added
by Schema or alternatively explicitly require a signer to validate against a Schema. Having such a
discrimination would further enable system architects to locate signature validation either below or next
to the Schema validation and an application logic.
This is somewhat similar to the <dss:Schemas> referred to by SchemaRefs. Schema validation is not
only required for canonicalizing whitespace, but also to refer to external subresources by means of their
fragment. Having a Schema validation transform would enable the use ScC14n, which itself does not
provide any means to supply a schema, primarily because it also needs to be able to work on node-sets.

4.2.1 C14n, remove whitespace by default?

Schema assessment and ScC14n as the highest form of canonicalization are however very expensive.
C14n as the current default was not defined to be robust against changes in whitespace, re-indented
blocks of text or allowed whitespace in simple types such as base64 encoding.
XML users however have certain expectations concerning their freedom to indent and re-indent[70],
when authoring or generating XML. If this freedom is to be maintained in XMLDSIG, signatures need
to be made robust against such changes yet avoiding many of the costs of ScC14n.
So do we have to live with the following dogma, also for signing and verifying content?

Whitespaces do matter in XML. Adding a whitespace for indention changes an XML docu-
ment and it is not the same document anymore [9].

By default whitespace in an XML document is significant and should be preserved unless the parser is by
means of a DTD or Schema instructed to ignore it. Nevertheless, inconsistent whitespace handling is one
of the major sources for XMLDSIG verification and interoperability issues. Removing whitespace using
<ds:Transforms> preserves the original document yet assuring a normalized form to be signed. XPath-
transforms as the ones described previously in this chapter (Figure 4.1.6 on page 83) try to avoid as much

86

http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076045
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms

CHAPTER 4. SIGNING XML, WEAKNESSES, SOLUTIONS 4.2. XMLDSIG AND C14n

navigation as possible and could be easily implemented without employing a full XPath-implementation.
This however helps only for the <ds:References>, but is not applicable for the <ds:SignedInfo>. There
only a <ds:CanonicalizationMethod> is allowed and as C14n has decided to preserve all whitespace
(subsection 2.5.2) there seems to be a deadlock situation forcing XMLDSIG application designer to a
very inflexible: “Do not touch signed documents at all”.

Which is why there is the need for standardization in that area.

Technologies like XML binding frameworks or web service enabling technologies such as Axis (Axis) or
Glassfish17 are often used in applications. When these applications also use XMLDSIG signatures, such
tools often break the signatures due to their differences in whitespace handling. Which is with respect
to the default whitespace processing violating the XML specification.

An XML processor MUST always pass all characters in a document that are not markup
through to the application. (section 2.10 [6])

Sometimes even XSLT implementations vary with respect to their whitespace handling.

For many applications whitespace is insignificant and for XMLDSIG applications it almost always is, or
at least it should be given their slightly different interpretations in various tools.

The complexity of XPath-expressions needed to formulate an XPath-transform often keeps users from
consciously removing whitespace before they sign documents and reflect this in the <ds:Transforms>
of the <ds:Reference> in question.

4.2.2 Making signatures robust against changes in whitespace is crucial.

So after all it seem necessary appropriate to live with the whitespace dogma and the principle that signed
documents should not be touched. This shall not be contested, but extended. In the last few pages it was
shown that the treatment of whitespace is specified, but not in a manner that is easily interpretable by
the average user.

Making signatures robust against changes however, respects that instances of XMLDSIG applications
and its deviates are required to follow the web architecture [72] specifically tolerance . . . the life and

breath of Internet [65].

”Be liberal in what you require but conservative in what you do” [73].

Translated to XMLDSIG this means: “Refer only to what is necessary, and canonicalize as much as
possible by default!”

17An open source application server project for the Java™ enterprise edition.

87

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-References
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-SignedInfo
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-CanonicalizationMethod
http://www.google.com/search?q=site%3Awikipedia.org+Glassfish&btnI=
http://www.w3.org/TR/xml/#sec-white-space
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference

4.2. XMLDSIG AND C14n CHAPTER 4. SIGNING XML, WEAKNESSES, SOLUTIONS

Saying something is application dependant or expensive is a mere excuse of engineers not trying hard
to figure out to make it robust and efficient. Principles for designers of user agents such as browsers or
XMLDSIG applications have to be proxy for their end users. OASIS-DSS allows them to do this centrally
in office environments, but such should apply for decentralized application developers as well:

• “Signer, should be conservative in what they consider as being the Information they want to have
secured.”

• “Intermediaries, are invited to process signatures with whatever tools they find appropriate. Be
conservative in what you have to touch for processing, especially do not touch signed documents
and use opaque containers (subsection 3.2.3 on page 57). If yet available <xml> ... </xml>

(subsection 4.1.1 on page 79).”

• “Intermediaries and verifiers, do not touch what was meant to be signed, and hence has been
signed or the signature breaks.”

• “Verifiers, only what is signed (i.e. DigestInput) should be shown as signed or processed as
signed.”18

Balancing the trade-off between robustness, efficiency and simplicity can not mean only to resign and
hide behind a “Do not touch signed documents at all” principle. This will hinder the spreading, pro-
cessing and passing on of signed content, yes signed information entities that can be trusted, across the
Internet.

4.2.3 Broken Signatures

Ideally a signature should only break if at least one of the referred data objects has been changed in its
information contents. The creation of XMLDSIG signatures has a number of pitfalls. It is quite easy
to accidentally produce “false negatives”. After allowed processing has been applied that broke the
signature, it could nevertheless be valid and verify if for instance the correct Schema would be used for
parsing. Problems like attribute and namespace inheritance, data-type normalization, surrounding con-
text such as a SOAP protocol or different handling of whitespace, may cause the signature verification
to fail.

XML given, all its flexibility begs the need of a normal-form of canonicalization, that can in many cases
be application dependant and realized by custom transforms. Often the current normal-form (C14n11)
is perceived as not performing well in terms of speed and normalization capability. This thesis argues
that it is not normalizing enough.

It is after all also a matter of fact that “false positives” destroy trust, but “false negatives” do so as well.

18A modification of [29]. Note further that if no <ds:Transforms> or only trusted <ds:Transforms> are used there might
be equivalence between DereferencedData and DigestInput.)

88

http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/dsig/Reference.html#getDigestInputStream()
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/dsig/Reference.html#getDereferencedData()
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/dsig/Reference.html#getDigestInputStream()

CHAPTER 4. SIGNING XML, WEAKNESSES, SOLUTIONS 4.2. XMLDSIG AND C14n

The achievable robustness of a signature can only be exploited to its full potential on signing. When a
signature has been created and sent off the verification is merely reproducing what the signer prescribed
in the chain of transforms if present. So signing documents centrally in an office environment will allow
to make the right choices once for all users. A OASIS-DSS server can be a means to take this burden
of individuals and is however on the other hand side not preventing decentralized verification of signed
document, given that all data objects are made available.

Key discovery for the various cryptographic signature schemes from DSA to RSA over key distribution
concepts such as PGP, SPKI, PKI (X.509 encoded in ASN.1 BER, DER, CER) to the proper and secure
choice of hash functions, and so forth with trustworthy <ds:Transforms> eventually only showing
“what is signed”, constitute the complexities and choices that need to be taken off a client and are better
manageable centrally on just one system for a group of users.

If everything is done in the right way however signatures offer End-to-End integrity of data and authen-
ticity. They can be stored and as in the case of XAdES remain processable and secure over log periods
of time.

Their visual representation must be trustworthy as well, so “What You See Is What You Sign” [8].

4.2.4 Proper use of XSLT in XMLDSIG

Hill pointed out the the order in which XMLDSIG signatures are processed during signing should
be reversed on verification [40] [69]. This means that first a key should be selected and verified as
trusted. The the reference processing should only be executed after the <ds:SignatureValue> and the
<ds:SignedInfo> have been verified. Hence at least the authenticity of the signature value and the
integrity of the <ds:SignedInfo> would have been established.

Nevertheless it may be easy for an adversary to acquire a good existing signature. Let XSLT be fur-
ther be included by xsl:include or xsl:import (subsection 2.3.6 on page 33) in one of the
<ds:Reference>’s <ds:Transforms>. Then it has not been authenticated together with the verification
of the <ds:SignedInfo>, because only its location or the URI reference pointing to the imported trans-
form has been secured. Thus an adversary can supply a transform of arbitrary choice on verification
assuming that it is either a co-located by a relative URI reference or the adversary has control over the
referred location. Which is especially critical for OASIS-DSS.

Hence additionally to what Hill suggested [40] XSLT transforms external to the <ds:SignedInfo> should
only be executed on verification, if they have been covered in a <ds:Reference> (Rx) computed before
applied in another <ds:Reference>’s (Ry) <ds:Transforms>. Preferably Rx’s digest value should also
be compared against a “known good value” avoiding attacks by authenticated signers on a OASIS-DSS

sign request.

The data stream to acquire the XSLT transform secured by Rx should be the Rx’s DigestInput to
make sure the secured transform will be performed.

89

http://www.google.com/search?q=site%3Awikipedia.org+DSA&btnI=
http://www.google.com/search?q=site%3Awikipedia.org+RSA&btnI=
http://www.google.com/search?q=site%3Awikipedia.org+PGP&btnI=
http://www.google.com/search?q=site%3Awikipedia.org+SPKI&btnI=
http://www.google.com/search?q=site%3Awikipedia.org+X.509&btnI=
http://www.google.com/search?q=site%3Awikipedia.org+ASN.1&btnI=
http://www.google.com/search?q=site%3Awikipedia.org+BER&btnI=
http://www.google.com/search?q=site%3Awikipedia.org+DER&btnI=
http://www.google.com/search?q=site%3Awikipedia.org+CER&btnI=
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Processing
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-SignatureValue
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-SignedInfo
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-SignedInfo
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-SignedInfo
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-SignedInfo
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/dsig/Reference.html#getDigestInputStream()

4.2. XMLDSIG AND C14n CHAPTER 4. SIGNING XML, WEAKNESSES, SOLUTIONS

4.2.5 Enveloping legacy XML

As legacy XML, which has no default namespace declared, would inherit the default namespace of any
surrounding namespace scope, legacy signatures when embedded into a <ds:Object> should clear the
default namespace using xmlns=""19.

...
<dss:Inputdocuments>

...
<ds:Object xmlns="">

<legacyelement>
</legacyelement>

</ds:Object>
...

<dss:Inputdocuments>
...

Figure 4.2.2: Enveloping legacy XML with Exc-C14n

This (Figure 4.2.2) is sufficient when signed with Exc-C14n if used with either implicit C14n or explicit
C14n or explicit C14n11 the inherited namespaces will be rendered. In XMLNS 1.1 for XML 1.1 names-
pace undeclarations are allowed [74] enabling namespace context separation as shown in Figure 4.2.3.
Nevertheless as mentioned in Figure 2.1.1 on page 7 the XPath data model is not well defined for XML

1.1.

...
<dss:Inputdocuments>

...
<ds:Object xmlns="" xmlns:ds="" xmlns:dss="">

<legacyelement>
</legacyelement>

</ds:Object>
...

<dss:Inputdocuments>
...

Figure 4.2.3: Enveloping legacy XML with C14n and XML 1.1

Hence the only way in which legacy XML can be currently enveloped in a <ds:Object> without inher-
iting any namespaces is by means of re-declaring the default namespace and eventually undeclaring it
in a separator element as shown in Figure 4.2.4.

Similar considerations also apply for non legacy XML which is to embedded in a <ds:Object> using
C14n or C14n11. This section is hence yet another supporting argument for the need of being able to
opaquely envelope XML in XML.

19200504/msg00048

90

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Object
http://www.w3.org/TR/2006/REC-xml-names11-20060816/#scoping
http://www.w3.org/TR/2006/REC-xml-names11-20060816/#scoping
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Object
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Object
http://lists.oasis-open.org/archives/dss/200504/msg00048.html

CHAPTER 4. SIGNING XML, WEAKNESSES, SOLUTIONS 4.2. XMLDSIG AND C14n

...
<Inputdocuments xmlns="urn:oasis:names:tc:dss:1.0:core:schema">

...
<Object xmlns="http://www.w3.org/2000/09/xmldsig#"">

<separator xmlns="">
<legacyelement>
</legacyelement>

<separator
</ds:Object>
...

<Inputdocuments>
...

Figure 4.2.4: Enveloping legacy XML with C14n and XML

4.2.6 Wrapping Attacks - merely neglecting “See” What is Signed?

“See” What is Signed (section 8.1.3 [29]) is often not correctly implemented and has lead to what McIn-
tosh calls “Wrapping attacks” [75]. There multiple data objects having the same value for an xs:ID
are in the same XML document or similar ambiguity exists causing an XMLDSIG implementation to
dereference and secure other data, than will be processed by the application (see also Figure 2, page 3
given in [76]).
Wrapping attacks can appear, when XMLDSIG’s reference processing is used in “not-location-sensitive”
manner and the application uses a mechanism different than the one used by the <ds:Reference>. De-
spite warnings in the specification [29], various implementations and standards operate on data allegedly
referenced by a <ds:Reference>. The main reason for this is that different referencing mechanisms are
used by the application and XMLDSIG.
In the case of <ds:Reference>s without <ds:Transforms> or only simple trusted transforms20 the as-
sumption holds, that the DereferencedData, despite filtered nodes, equates to the DigestInput.
In this case the URIDereferencer can be overridden to either use the same mechanisms as the
application for locating data objects and passing them directly to the application to operate on.
In the case of more complex <ds:Transforms> one should only operate on the DigestInput, which
however contains the already canonicalized representation of the DereferencedData. The JSR105

API does not provide any means to access the pre-canonicalization node-set, which could be used either
directly as an iterator to process the secured parts of a request or by object comparison the secured nodes
can be selected as passed by on normal processing eventually.
In ([76] section 3.1) Gajek et al. propose a ”Strict Filtering approach”, which is from a first look not
different to what the standard says in (section 8.1.3 [29]) already:

[...] automated mechanism that trust the validity of a transformed document on the basis of
a valid signature should operate over the data that was transformed (including canonical-
ization) and signed, not the original pre-transformed data. [...][29]

20E.g. such performing only whitespace normalizations

91

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-See
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/dsig/Reference.html#getDereferencedData()
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/dsig/Reference.html#getDigestInputStream()
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/URIDereferencer.html
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/dsig/Reference.html#getDigestInputStream()
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/dsig/Reference.html#getDereferencedData()
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-See

4.2. XMLDSIG AND C14n CHAPTER 4. SIGNING XML, WEAKNESSES, SOLUTIONS

We hence call it the “See What is Signed approach”.

Such an approach, operating on the canonicalized data, requires that the data has to be self contained.

If the data is self contained however it is unlikely to be location dependent, which contradicts the pre-
condition of a “wrapping attack” for which the location is essential in that an application that locates a
different data object than the <ds:Reference>. McIntosh even claims [75]:

In practice we can think of no realistic examples of purely context independent semantics.

The statement likely has to be seen in a web services context, as opposed to for instance enveloping
signatures’ <ds:Object> contents. Such are very likely context independent. Similarly for signatures,
whose visual appearance is of significance as with such created by an XSLT transform for user agent
display in a trusted viewer. Here the precondition is that the data and its derivative is self contained.

The “See What is Signed approach” unfortunately is not respected very often for automated processes.

The data is often seen as pseudo self contained, mostly referred to by a short hand XPointer via an
attributes of type xs:ID and a <ds:Reference> without additional transform. Such is also the most
common use in web service frameworks, buying in the disadvantages mentioned in [76] and [75].

Example 6 in [75] proves that the use of XPath-filters is too complex as even security engineers do
not get them right. This current expressions used there would one of the two things: If there exists an
element as identified by the path the whole document including the signature itself (without signature
value, as did not exist) is signed, or if this element does not exist the hash of nothing would be computed.

wrong XPath-filtering:
...

<ds:XPath>
/soap:Envelope/soap:Header/wsa:ReplyTo

</ds:XPath>
...

right XPath-filtering:
...

<ds:XPath>
self::node() = /soap:Envelope/soap:Header/wsa:ReplyTo

</ds:XPath>
...

as this is equal to the XPath:
...
(//. | //@* | //namespace::*)

[self::node() = /soap:Envelope/soap:Header/wsa:ReplyTo]
...

Figure 4.2.5: <ds:XPath> confusion.

The signatures can never verify again as the signature value will always be in the computation of the
verification, which cannot have existed before signing. In short Examples 6 - 10 in [75] have a bug.

92

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#def-SignatureEnveloping
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Object
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-XPath

CHAPTER 4. SIGNING XML, WEAKNESSES, SOLUTIONS 4.2. XMLDSIG AND C14n

Nevertheless the general idea of locating the same objects as the ones being processed is right. What
the authors wanted to express is that the same location mechanisms used in the application shall also be
used in the signature by means of XPath-filtering. The easiest mean to do this however would be the
XPath subset of XPointers.

...
<ds:Reference URI="#xpointer(/soap:Envelope/soap:Header/wsa:ReplyTo)">

...
</ds:Reference>

...

Figure 4.2.6: XPointers are simpler.

[76] further proposes to return location hints, which could be equally achieved by referencing the rele-
vant parts in a location sensitive manner securely upfront as already suggested by [75].

This thesis claims that so called “Wrapping Attacks” are not a problem of the XMLDSIG standard, but of
the used APIs. Hence we propose to extend the JSR105 API about an access to the pre-canonicalization
node-set to allow implementations to operate on the actually canonicalized content. Further a method
determining if such is is still followed by <ds:Transform>s but a final canonicalization of some sort.

4.2.7 C14n and the XPath Data Model

One of the current bottlenecks in XMLDSIG is C14n [77]. The reason for this is that the namespace
fix-up in the C14n algorithm depends on the fact whether a namespace-node is in the node-set [52] [53]:

Namespace Nodes - A namespace node N is ignored if the nearest ancestor element of
the node’s parent element [O] that is in the node-set and has a namespace node in the
node-set with the same local name and value as N. Otherwise, process the namespace [. . .]

In tedious cases this can lead to documents that can only be canonicalized if it is known whether the
ancestor (N) of the namespace node owner (O) AND N’s namespace node have been selected to be in
the node set or not.

Interestingly a situation can appear where N’s parents namespace node will be rendered just as well
as O’s namespace node in question. Namely when N’s namespace node is not in the node-set and N’s
parent does not have the same situation as O looking upwards the ancestor axis or it is the root node.

Taking the example from the example 3.8 from C14n11 [53] in Figure 4.2.7:

Applying the following document subset expressions in Figure 4.2.8.

• . = parent::*/namespace::*
the current node lies in its parents namespace axis and is hence a namespace node

93

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transform

4.2. XMLDSIG AND C14n CHAPTER 4. SIGNING XML, WEAKNESSES, SOLUTIONS

<!DOCTYPE doc [
<!ATTLIST e2 xml:space (default|preserve) ’preserve’>
<!ATTLIST e3 id ID #IMPLIED>
]>
<doc xmlns="http://www.ietf.org" xmlns:w3c="http://www.w3.org"

xml:base="something/else">
<e1>

<e2 xmlns="" xml:id="abc" xml:base="bar/">
<e3 id="E3" xml:base="foo"/>

</e2>
</e1>

</doc>

Figure 4.2.7: Example 3.8 from C14n11.

• parent::*/*
the current nodes parent has children

• parent::*/parent::*
the current nodes has a grand parent

(//. | //@* | //namespace::*)
[not(. = parent::*/namespace::* and parent::*/* and

parent::*/parent::*)]

Figure 4.2.8: Document subset expression to show that C14n11 is too complex.

Taken together and negated this causes in the current example all namespace nodes but those of <doc>
and <e3> to be filtered away. So there is a gap consisting of <e1> and <e2> where the names-
paces have been “undeclared”21. What this causes however is that the namespace for the namespace
declaration xmlns:w3 is rendered in <doc> and <e3> as stipulated before.

<doc xmlns="http://www.ietf.org" xmlns:w3c="http://www.w3.org"
xml:base="something/else">
<e1 xmlns="">

<e2 xml:base="bar/" xml:id="abc" xml:space="preserve">
<e3 xmlns:w3c="http://www.w3.org" id="E3" xml:base="foo"></e3>

</e2>
</e1>

</doc>

Figure 4.2.9: Document subset expression to show that C14n is too complex.

Recalling now from subsection 2.3.3 on page 18 that namespace declarations in the XPath data model
are not normal attributes in contrast to DOM. In the XPath data model they are all spread to their de-
scendants. More precisely one could say they are accessible via the namespace axis from all descendant

21Such could only be represented in XML 1.1.

94

CHAPTER 4. SIGNING XML, WEAKNESSES, SOLUTIONS 4.3. OASIS-DSS

nodes of the element bearing the namespace declaration. They are “always there”, which however does
not mean that they have been selected to be in the node-set and C14n’s algorithm prevents us from being
ignorant about their existence in the node-set.

The currently used standard XPath implementation such as Xalan for Java™ requires the nodes to be
distributed across the document. This however consumes large amounts of memory and for large docu-
ments significantly slows down the processing as the namespace distribution is quite expensive.

It is a topic for future research to see whether it is possible in current or future versions of Xalan to get the
same node returned for all elements on which its scope falls. This would mean to have a namespace node
multiple times in the node-set, appearing on its descendant-or-self axis unless redeclared and not copies
thereof distributed across the node-set. This would significantly aid to lower memory consumption and
increase performance, especially for large documents.

If this is not possible however, a simplification of C14n would be the approach that has to be considered
for standardization.

4.2.8 Should fragment URI references strip comments?

In Figure 2.3.15 on page 26 it is mentioned that comments are stripped depending on the form of
<ds:Reference>’s URI as being either an external URI reference or a same-document reference. XMLD-

SIG however does not clarify whether comments are considered to be removed at parse time or whether
they are considered to be in the data model and just removed from the node-set. In the latter case, ex-
pressions in the <ds:Transforms> could still depend on the comments and XPath-filter 2.0 [49] could
even re-import them.

One can argue here that too much functionality is implicitly put into the special values of URIs, hence
making the standard unnecessary complex. It is not understandable following the principle of least
surprise, why the full XPointer #xpointer(’/’) should dereference a different resource than the
one returned by URI="".

4.3 OASIS-DSS

In chapter 3 OASIS-DSS has been introduced and an analysis of the protocol has been provided. Some
points however which will follow in the next sections are better located in this chapter as their level of
detail is higher.

4.3.1 Context Free Extraction and Opaqueness

Signature verification errors can occur due to inherited namespace declarations around the signature,
other than those when the signature was generated. Exc-C14n was devised to address this, however
additional problems can occur.

95

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-URI
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
""

4.3. OASIS-DSS CHAPTER 4. SIGNING XML, WEAKNESSES, SOLUTIONS

If expressions like for example XPath-Expressions inside XPath-Filters (section 6.6.3 [29]), XPath-
Filters 2.0 [49], Canonicalization (explicit, implicit C14n) or XSLT (section 6.6.5) are used in the chain
of transforms, so that they refer to parts of the transport protocol, signatures are sensitive to their con-
text. This may either happen accidentally, in which case we talk about “spurious verification errors”, or
on purpose, then we talk about “chosen context verification errors”.

Such transformations are not so uncommon as they simply walk up the XPath ancestor-axis or refer
to absolute parts, that may be changed by processing, and include or exclude elements depending on
the state of the transport protocol. XPath expressions that use the namespace axis (namespace::*),
xml:base, xml:space, xml:lang are also affected by the surrounding inherited context. Similarly for
XPath-Filters 2.022 and XSLT.

In short all non opaquely conveyed payload in OASIS-DSS needs some form of context free extraction,
before it is processed.

Such payload elements in OASIS-DSS are:

• <dss:InlineXML> - not allowed to be of mixed content and requires Exc-C14n (or equivalent in
memory processing).

• <dss:SignatureObject>’s <ds:Siganture>

• and if copied on an Infoset level:

– <ds:Transforms>

– <ds:KeyInfo>

– <ds:DigestMethod>

– <ds:DigestValue>

Avoiding this would enable the creation of signatures being valid in the context of one system, but
not valid in the context of another. If they are used in a way so that they may also refer to parts of
the surrounding context, for example a transport protocol such as OASIS-DSS, then the output will be
different depending on whether the document is inside that context or not. This can result in verification
errors.

Hence somebody may easily commit to create a valid signature in system A, if he or she has the pos-
sibility to choose or influence a system B with another context in which the signature is to be verified
(200608/msg00012). The person may still be legally bound to the commitment, but the advantage of
having a verifiable signature as evidence may be gone in system B. If system A ceased to exist debugging
a signature in system B can become very complex.

The means identified by the OASIS-DSS TC to assure consistent behavior is “context free extraction” of
signed in-line XML content as follows for <dss:InlineXML>.

22It is also questionable whether XPath-filter 2.0 [49] being allowed to re-include nodes that have been previously filtered
in the <ds:Transforms> is good design.

96

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-XPath
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-XSLT
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Siganture
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-KeyInfo
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-DigestMethod
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-DigestValue
http://lists.oasis-open.org/archives/dss/200608/msg00012.html
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms

CHAPTER 4. SIGNING XML, WEAKNESSES, SOLUTIONS 4.3. OASIS-DSS

4.3.1.1 Context Free Extraction from <dss:InlineXML>

<dss:InlineXML> is a means to transport documents inside XML opaquely in the lack of XML being
closed under the operation embed as discussed at the beginning of this chapter in section 4.1 on page
78. It effectively is the workaround taken by OASIS-DSS to opaquely transport XML in XML. It avoids
the need to specify extraction at an implementation level such as SAX or DOM.

In OASIS-DSS Working Draft 30 this element was called <dss:XMLData>23 and intended to transport
arbitrary intermediate results of <ds:Transforms>. How fragmented node-sets would be transmitted
and eventually canonicalized was unspecified as well as if and how the serialization at the client-side
(cf. subsection 2.5.3.1 on page 46) and the parsing at the server-side24 would work25. Problems like
context independence discussed in the previous section also applied.

Hence the OASIS-DSS TC decided to move the functionality sought by <dss:XMLData> into the
<dss:TransformedData>, which may be used in combination with <dss:SignedReference> (cf. client-
side splicing subsection 3.3.5.1 on page 66 and subsection 3.3.6 on page 66).

<dss:InlineXML> was retained for in-line transmission of complete documents. Its has the limitation
implied however by using Exc-C14n for extraction, not to use DOCTYPE, DTDs or QNames in content.
The OASIS-DSS TC should specify an additional parameter or optional input for Exc-C14n to mitigate
the latter limitation (cf. InclusiveNamespacePrefixList).

<xs:complexType name="InlineXMLType">
63 <xs:sequence>

<xs:any processContents="lax"/>
65 </xs:sequence>

<xs:attribute name="ignorePIs" type="xs:boolean" use="optional"
default="true"/>

67 <xs:attribute name="ignoreComments" type="xs:boolean" use="optional"
default="true"/>

</xs:complexType>

Figure 4.3.1: dss:InlineXMLType used in dss:DocumentType

<dss:InlineXML> defined locally inside dss:DocumentType (see Figure 3.2.7 on page 57) is of type
dss:InlineXMLType. Unlike optional inputs, optional outputs or extension points dss:InlineXMLType
has not been specified using dss:AnyType.

dss:AnyType has a mixed content type. When looking at the prolog and Figure A.5.1 on page 124
one can see that character content, before and after the document element is only allowed to contain
ignorable whitespace. dss:InlineXMLType is not of mixed content and contains only one element of

23In WD30 page 15, <dss:InlineXML> was called <dss:XMLData>
24Node-sets are not necessarily well formed XML and may carry information in their PSVI.
25Ambiguities concerning namespaces and the signing of InlineXML, if C14n and not Exc-C14n was used in WD30

page 15 section 3.3 step 1a. The same was true for 3.4 1a, if a DOM based parser is used extract the info from inside
<dss:XMLData>.

97

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076034
http://www.oasis-open.org/committees/download.php/10081/oasis-dss-1.0-core-spec-wd-30.pdf#page=15
http://www.oasis-open.org/committees/download.php/10081/oasis-dss-1.0-core-spec-wd-30.pdf#page=15
http://www.oasis-open.org/committees/download.php/10081/oasis-dss-1.0-core-spec-wd-30.pdf#page=15

4.3. OASIS-DSS CHAPTER 4. SIGNING XML, WEAKNESSES, SOLUTIONS

type xs:any, which assures its content is well-formed XML by itself lacking only the xml declaration.
Assuming it was serialized it could be parsed again yielding a proper XML document, however not
supporting a Document Type Declaration (DOCTYPE) and hence lacking support for external and local
DTDs.

DOM does not provide clear means for context free extraction, yet keeping used namespace-declarations
(200510/msg00003) and loosing inherited namespaces. Specifying context free extraction, by means of
DOM would further have bound OASIS-DSS to DOM.

The OASIS-DSS TC decided hence to specify “context free extractions” by means of Exc-C14n. Context
free extraction [62] section 3.3.2 mandates the use of Exc-C14n.

OASIS-DSS implementations using DOM can still use in memory extraction of <dss:InlineXML>. This
can be achieved by using the DOM methods “importNode”26 or “adoptNode”27 and the algorithm de-
fined in section 3.1 “Constrained Implementation” of Exc-C14n [55].

<dss:InlineXML> has two attributes ignorePIs and ignoreComments. They Indicate respec-
tively, if processing instructions or comments MAY be ignored. They shall reflect that XML processors
such as binding frameworks often do not pass processing instructions to the application [78]28 in viola-
tion to what is specified in XML [6].

[. . .] processing instructions are not part of the document’s character data, but MUST be
passed through to the application. [6]

For comments XML specifies only that processors may make them available for applications [6].
Things will hopefully be better in newer versions of binding frameworks.

When synchronizing changes to JAXB view back to related XML Infosetpreserving view,
every effort is made to preserve XML concepts that are not bound to JAXB objects, such
as XML Infosetcomments, processing instructions, namespace prefix mappings, etc [sic!]
[79]

26“http://www.w3.org/TR/DOM-Level-3-Core/core.html#Core-Document-importNode”
27“http://www.w3.org/TR/DOM-Level-3-Core/core.html#Document3-adoptNode”
28“http://markmail.org/message/mkpwr5fiwb3rzaji”

98

http://lists.oasis-open.org/archives/dss/200510/msg00003.html
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076056
http://www.w3.org/TR/DOM-Level-3-Core/core.html#Core-Document-importNode
http://www.w3.org/TR/DOM-Level-3-Core/core.html#Document3-adoptNode
http://www.w3.org/TR/xml-exc-c14n/#sec-Implementation
http://www.w3.org/TR/DOM-Level-3-Core/core.html#Core-Document-importNode
http://www.w3.org/TR/DOM-Level-3-Core/core.html#Document3-adoptNode
http://markmail.org/message/mkpwr5fiwb3rzaji

CHAPTER 4. SIGNING XML, WEAKNESSES, SOLUTIONS 4.4. CONCLUSIONS

4.4 Conclusions

• XML is not closed under the operation embed.

– It should be extended: The content model of element should be able to contain the non-
terminal “enveloped” which in turn allows elements to include XML documents when they
are delimited by an “xml” element.
enveloped ::= ’<xml’ (S Attribute)* S? ’>’ document ’</xml>’

content ::= CharData? ((enveloped|element|Reference|CDSect|PI|
Comment) CharData?)*

– Alternatively make the xml declaration <?xml ...?> an allowed syntactic element within
an element, followed by the prolog. A closing xml declaration called enclosure of the form
of a processing instruction <?xml /?> should optionally delimit a document.

– Otherwise the additional costs of base64 encoding remain inherent to transporting XML in
XML in the general case.

– Workarounds like <dss:InlineXML> work for a subset of XML documents and have their
limitations. They not even carry so common XML formats like XHTML.

• A simple dogmatic and clear statement in the XML standard of the form . . .

Every whitespace before and after a tag is purely for the readability of XML as such, even whites-
pace between a tag and the beginning of text or multiple whitespace at the line end before and
after a line break should be considered indentation, as such XML processors MUST preserve
it however. Unless otherwise indicated by some form of Schema language or by means of
xml:space="preserve" it does not carry information and hence SHOULD not be signed.

. . . would allow to retain XML’s user expectation about indenting and re-indenting XML for signed
documents.

• Making signatures robust against changes in whitespace is crucial, and XMLDSIG lacks a means
to do this at the <ds:SignedInfo> level.

• “False positives” destroy trust, but “false negatives” do so as well.

• We argued that “Wrapping Attacks” are not a problem of the XMLDSIG standard, but of the used
APIs and better access to the pre-canonicalization node-set “CanonInput” is required.

• “CanonInput” is necessary means to perform a “See What is Signed approach”.

• Additionally to reverting the order of XMLDSIG reference processing model for verifying (Hill
[40]), external XSLT transforms should be covered by a previous <ds:Reference> and the digest
value should be preferably compared against a “known good value” before applying the XSLT

transform retrieved from the previous <ds:Reference>’s CanonInput.

99

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-SignedInfo
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference

4.4. CONCLUSIONS CHAPTER 4. SIGNING XML, WEAKNESSES, SOLUTIONS

100

Chapter 5

OASIS-DSS prototype library

For this thesis the manner in which the necessary components are organized and integrated for OASIS-

DSS has been studied to derive an architecture for a OASIS-DSS software library in Java™. A design
has been made and implemented by means of evolutionary prototyping and yielded DssXp. Digital
Signature Services XML processor (DssXp) is the library created by the author of this thesis. It has
been successfully used and extended by Zwattendorfer and Zefferer for a reference implementation and
a demonstration project [80].

101

5.1. ARCHITECTURE CHAPTER 5. OASIS-DSS PROTOTYPE LIBRARY

5.1 Architecture

Architecture - Software architecture for a system is the structure or structures of the sys-
tem, which consist of elements and their externally visible properties, and the relationships
among them. [81]

<<component>> <<component>>

Figure 5.1.1: Architecture

This section describes the modular principle and structures of the OASIS-DSS software library we cre-
ated for this thesis. We show that a OASIS-DSS library can be implemented in Java™ using redis-
tributable software components. OASIS-DSS is a very open standard and provides a lot of freedom for
implementations. The presented OASIS-DSS library implementation is built on top of Java Architecture
for XML Binding (JAXB) and XML Security Toolkit (XSECT) as can be seen in Figure 5.1.1.

JAXB and XSECT offer APIs mostly in the javax.xml package and OASIS-DSS makes extensive use
of them.

XSECT in an XMLDSIG library that implements the Java Specification Request 105 XML Digital Sig-
nature APIs (JSR105) API. It is currently maintained by the author of this thesis.

JAXB is a standard API defined by the Java™ community process 222 and generates Java™ code con-
sisting of classes representing the Schema and a run-time and for marshalling and unmarshalling. JAXB

102

CHAPTER 5. OASIS-DSS PROTOTYPE LIBRARY 5.2. DESIGN

contains a Schema compiler that generates the set of classes reflecting the Schema in a class hierarchy.
It further generates a run-time that parses the XML and via SAX creates object instances reflecting the
data.

A very important part is the KeySelector, because an OASIS-DSS library cannot make any general
choice about key storage and protection. The KeySelector hence is the interface for application
developers to plug in their key management and certificate revocation checking. XSECT is scheduled to
contain complete certificate path validation within the first quarter of 2009 when the IAIK PKI module
will become available.

The URIDereferencer plays an equally outstanding role as OASIS-DSS dereferences URIs within
its protocol structure <dss:InputDocuments>.

5.2 Design

A hierarchical processor model has been chosen that coarsely reflects the structure of OASIS-DSS. JAXB

generates the binding classes from the OASIS-DSS Schema. A binding file (explained later) is used to
associate implementation classes, which are extended by the classes generated with an XML binding
framework. The classes have been generated on the level of the Schema anonymous types where possible
or particles otherwise. These implementation classes written by the author of this thesis are polymorphic
by their “getProcessedBy(DssXpProcessor proc)” method and “know” what processor will
handle them. By means of the binding file these have been injected into the type hierarchy of the “entity”
classes reflecting the OASIS-DSS Schema.
The processors in turn always have a “process(DssXpProcessable obj)” method, thus avoid-
ing to walk the object tree. It is more like the tree of unmarshalled objects walks down the processors
and the processors extract the needed information to generate the signature or verify it.

103

http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076032

5.2. DESIGN CHAPTER 5. OASIS-DSS PROTOTYPE LIBRARY

5.2.1 Components

DssXpIOFactory in Figure 5.2.1 produces DssXpIO Objects and each of them handles one request,
then responds and then dies. It receives a configuration and about what instance class implementing
KeySelector shall be instantiated by the KeySelectorFactory.

DssXpIOFactoryConfigurationType - is the top level configuration of the OASIS-DSS library.

DssXpIO - Dss XML processor Input Output. It is the core element an handles one request pulled from
an InputStream and writes to an OutputStream.

KeySelectorFactory - has a default implementation, which may however be overridden by means
of a configuration file. It provides the OASIS-DSS library with a JSR105 KeySelector when needed.

Attributes

Operations

Attributes

Operations

Attributes

Operations

Attributes

Operations

Attributes

Operations
Attributes

Operations

Figure 5.2.1: The DssXpIOFactory produces DssXpIO Objects.

104

http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/KeySelector.html
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/KeySelector.html

CHAPTER 5. OASIS-DSS PROTOTYPE LIBRARY 5.2. DESIGN

Attributes

Operations

Attributes

Operations

<<datatype>>

Attributes

Operations

Attributes

Operations

<<datatype>>

Attributes

Operations

Figure 5.2.2: A DssXpIO Objects, processes an InputStream and writes to an Outputstream.

DssXpIO

A DssXpIO processes one request, responds and then dies.

DssXpIOConfigurationType - is the request level configuration of the OASIS-DSS library. The
default signature configuration and whether payload shall be extracted at SAX level can be configured
in this object. Optional outputs providing debug information about the DereferencedData and
DigestInput can be enabled.

DssXpIOContext - holds the KeySelector and refers to JSR105 and JAXP libraries, capsuled
under the terms ConsignmentOfDsigGoods and ConsignmentOfXMLGoods respectively.

105

http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/dsig/Reference.html#getDereferencedData()
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/dsig/Reference.html#getDigestInputStream()
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/KeySelector.html

5.2. DESIGN CHAPTER 5. OASIS-DSS PROTOTYPE LIBRARY

Figure 5.2.3: Processors

5.2.2 Processors

DssXpRequesCoreProcessor(Impl) - gets passed control from DssXpIO. It is however not
held by any variable in DssXpIO so it can be garbage collected as soon as it finished its work to process
the request. It has an DssXpSignRequestOptionalInputsProcessor which first evaluates
the optional inputs to configure other processors.

The core processor further has a DssXpInputDocumentsProcessor,which performs the basic
processing as specified in Figure 3.3.1 on page 60, yet allowing several hooks and methods to amend
basic processing.

DssXpSignRequestOptionalInputsProcessor - has backward references to
the DssXpRequestCoreProcessor and to the DssXpInputDocumentsProcessor to be
able to amend the basic processing as indicated by optional inputs.

DssXpInputDocumentsProcessor - is the workhorse of this implementation with respect to the
actual XMLDSIG signature creation.

106

A
t
t
r
i
b
u
t
e
s

O
p
e
r
a
t
i
o
n
s

A
t
t
r
i
b
u
t
e
s

O
p
e
r
a
t
i
o
n
s

A
t
t
r
i
b
u
t
e
s

O
p
e
r
a
t
i
o
n
s

A
t
t
r
i
b
u
t
e
s

O
p
e
r
a
t
i
o
n
s

A
t
t
r
i
b
u
t
e
s

O
p
e
r
a
t
i
o
n
s

A
t
t
r
i
b
u
t
e
s

O
p
e
r
a
t
i
o
n
s

A
t
t
r
i
b
u
t
e
s

O
p
e
r
a
t
i
o
n
s

A
t
t
r
i
b
u
t
e
s

O
p
e
r
a
t
i
o
n
s

O
p
e
r
a
t
i
o
n
s

r
e
d
e
f
i
n
e
d

f
r
o
m

’
D
s
s
X
p
P
r
o
c
e
s
s
o
r
’

A
t
t
r
i
b
u
t
e
s

O
p
e
r
a
t
i
o
n
s

A
t
t
r
i
b
u
t
e
s

O
p
e
r
a
t
i
o
n
s

A
t
t
r
i
b
u
t
e
s

O
p
e
r
a
t
i
o
n
s

Figure 5.2.4: DssXpInputDocumentsProcessor
107

5.2. DESIGN CHAPTER 5. OASIS-DSS PROTOTYPE LIBRARY

Fidelity modes - DssXpInlineOrBase64XMLOrBase64DataProcessor

DssXpInlineOrBase64XMLOrBase64DataProcessor from Figure 5.2.4 on page 107 is un-
packing and packing the payload in the various fidelity modes ranging from <dss:Base64XML> over
<dss:EscapedXML> to <dss:InlineXML>.

DssXpInputDocumentProcessor prepares one DssXpReferenceProgress per document.

Stages - DssXpReferenceProgress

DssXpReferenceProgress matches the various stages of the chain of <ds:Transforms> from
Figure 3.3.2 on page 60 shown in Figure 5.2.5 on page 109 from left to right.

5.2.3 URIDerferencer Decoration

To dereference data objects in the protocol, the URIDerferencer of the given XMLDSIG imple-
mentation was decorated by the DssXpUriDereferencer and its subtypes. Depending on which
mechanism (JAXB, Sax Extraction) is to be used the DssXpUriDereferencer dereferences either
documents extracted on the SAX level or allows to use the extraction mechanism of JAXB.

108

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms

CHAPTER 5. OASIS-DSS PROTOTYPE LIBRARY 5.2. DESIGN

Attributes

Operations

Attributes

Operations

Attributes

Operations

Attributes

Operations

Attributes

Operations

Attributes

Operations
Attributes

Operations

Attributes

Operations

Attributes

Operations

Figure 5.2.5: ReferenceProgress

109

5.3. DATA BINDING CHAPTER 5. OASIS-DSS PROTOTYPE LIBRARY

5.3 Data binding

An OASIS-DSS server needs to process the XML data it receives and an OASIS-DSS library can approach
this task at different levels. Taking a look at the architecture again, we will see that JSR105 is designed
for DOM and XSECT is hence built on top of DOM. This becomes apparent because they support
random access to all parts of the document, which usually involves having the complete XML structure
in memory as in DOM.

Given the structure of an OASIS-DSS request we however note that the optional inputs at the beginning
will always refer to a dss:DocumentBaseType further on in the document order. Especially in the case of
a <dss:Document> without <ds:Transforms>, C14n111 plus a digest method could be applied directly
on a SAX level. Similarly in the basic processing only a digest method would be applied directly for
<dss:TransformedData>. This would not even require the server to have the document ever in memory.
Recalling what we discussed however in section 3.3.2.1 one should do such only with “known good”
values.

XML→ SAX→ → Processor→ → SAX→ XML

XML→ SAX→ gen. code→ Processor→ gen. code→ SAX→ XML

XML→ SAX→ DOM → Processor→ DOM → SAX→ XML

Figure 5.3.1: Unmarshalling→ Processing→Marshalling

We have to recognize that at the time we started developing this library neither SAX or StAX based
XMLDSIG nor such C14n11 implementations were available as of end 2008. The development of such
was considered out of scope for this thesis and constitutes potential future work.

A pure SAX based processing, albeit feasible, if only the basic processing has to be implemented, would
have the disadvantage of only being able to offer event based interfaces to higher level server logic.
Thus for flexibility and extensibility it is not the best choice for an implementation.

XSECT for instance uses a registry of classes matching the schema definitions of the Garden of Eden
Style (subsection 2.2.2.3) grammar of XMLDSIG. These custom classes are not very strictly typed and
constitute a considerable amount of code to be maintained. They are operating on an underlying DOM

tree.

An alternative to the “hard coded” DOM marshalling and unmarshalling was hence looked into and the
following binding frameworks were available at the time the implementation begun.

Castor, Javolution, JAXB, JBind, XMLBeans [19] are partly providing full data typing. As OASIS-DSS

at the time the implementation begun was still in the flux, a too tight coupling between library code and

1We recall that C14n has been superseded by C14n11 (subsection 2.5.2), and in the case on <dss:InlineXML> Exc-C14n
shall be used.

110

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://www.google.com/search?q=site%3Awikipedia.org+Javolution&btnI=
http://www.google.com/search?q=site%3Awikipedia.org+JBind&btnI=
http://www.google.com/search?q=site%3Awikipedia.org+XMLBeans&btnI=

CHAPTER 5. OASIS-DSS PROTOTYPE LIBRARY 5.3. DATA BINDING

standard grammar [19] was not desired. A data binding framework promises to require less memory
than DOM and faster access to data.

The use of an XML binding framework was considered as a Schema is available for OASIS-DSS.

An “XML binding framework” is a concept to represent XML in memory and perform the tasks of
marshalling and unmarshalling. It usually offers typing and typed access to attributes and tree structure.
Interestingly the document order is not preserved in a framework like JAXB. Which in the case of
OASIS-DSS is uncritical - with the exception of the payload.

Marshalling is the process of generating an XML representation for an object in mem-
ory. As with Java object serialization, the representation needs to include all dependent
objects: objects referenced by our main object, objects referenced by those objects, and so
on.[19]

Unmarshalling is the reverse process of marshaling, building an object (and potentially
a graph of linked objects) in memory from an XML representation. [19]

For the payload a concept called “DOM binding” is offered by JAXB and was used to bind the actual
payload in OASIS-DSS as parsed DOM trees.
A hierarchical structured processor approach, only coarsely reflecting the structure of OASIS-DSS, was
preferred against an implementation putting logic directly in the entity classes. Code re-generation from
a changed Schema should only affect methods in charge for processing the relevant elements or types.
JAXB was recommended in [19] and an important factor was that JAXB’s redistributable components
should be licensable for royalty free commercial use. This is the case as a reference implementation of
the JAXB API is available in the Java™ Web Service Development Pack (JWSDP) 1.62.

JAXB’s vendor customizations also promised to be able to subset the elements to be generated and
types as OASIS-DSS amongst two foreign Schemas imports the complete XMLDSIG Schema, which
is covered by JSR105 implementations already. It supports “DOM binding” for payload extraction as
well. JAXB also in the long run has the advantage of being a standard API. Hence an implementation
could potentially be ported to another implementation, which is because of extensive need for vendor
customization not certain.

2“http://java.sun.com/webservices/docs/1.6/jaxb/”
JAXB 2.0 was not available at the time the implementation started and introduces a dependency to Java™1.5 or higher.

111

http://www.google.com/search?q=site%3Awikipedia.org+JWSDP&btnI=
http://java.sun.com/webservices/docs/1.6/jaxb/

5.3. DATA BINDING CHAPTER 5. OASIS-DSS PROTOTYPE LIBRARY

5.3.1 Java API for XML Binding (JAXB)

JAXB supports to bind implantation classes, which has been used extensively.

Figure 5.3.2 shows how an element bound to an implementation class.

<jxb:bindings node="/xs:schema/xs:complexType[@name=’InlineXMLType’]">
42 <jxb:class name="InlineXMLType" implClass="iaik.dss.procable.

DssXpInlineXMLTypeImpl"/>
</jxb:bindings>

Figure 5.3.2: Binding an Implementation class

JAXB supports two kinds of customizations [82]:

• In-line Schema Customizations using xs:annotation/xs:appinfo

• External Schema Customizations using a Binding Customization Files

As it seems cleaner to have the Schema separated from the binding the second approach was taken.

The DOM vendor customization can be used to access wild-card content or other parts, which are either
annotated or bound using an external bindings file. JAXB generates a DOM binding by default for
accessing wild-card content with ”lax” handling and unknown content is discarded, the <xjc:dom/>
customization however preserves all content. [83]

DOM - Binding

Figure 5.3.3 shows how a wild-card is mapped by a DOM binding that has been annotated directly in
the Schema to bind a wild-card to a DOM document.

...
2 <xs:complexType>

<xs:sequence>
4 <xs:any>

<xs:annotation>
6 <xs:appinfo>

<xjc:dom/>
8 </xs:appinfo>

</xs:annotation>
10 </xs:any>

</xs:sequence>
12 </xs:complexType>

...

Figure 5.3.3: DOM Binding

JAXB’s vendor customizations allow using a special element either directly in the Schema or in a bind-
ings file. It tells JAXB that a certain part of the Schema shall not be unmarshalled, but rather be parsed

112

CHAPTER 5. OASIS-DSS PROTOTYPE LIBRARY 5.3. DATA BINDING

into an in memory representation of an XML document. The customization element is called xjc:dom
and can map parts of a Schema to a DOM tree representation. Wild-cards (xs:any), element declara-
tions (xs:element), xs:choice, xs:sequence and other particles can be bound and represented
as a DOM tree.

We identified in subsection 4.3.1 on page 96 the following <dss:InlineXML>, <ds:Transforms>,
<ds:KeyInfo>, <ds:DigestMethod>, <ds:DigestValue> and <dss:SignatureObject>’s child structure
<ds:Signature> to be handled as payload.
Extension points and optional inputs are also wild-cards, but are attempted to be parsed by JAXB.
Figure 5.3.4 shows how an element is mapped by a DOM binding in an external bindings file using an
XPath expression to point to the corresponding location in the Schema.

<jxb:bindings node="/xs:schema/xs:element[@name=’Signature’]">
216 <xjc:dom/>

</jxb:bindings>

Figure 5.3.4: DOM binding for <ds:Signature>

JAXB’s DOM binding passes the complete namespace context down into the DOM tree model, which
breaks all signatures not using Exc-C14n. At the time (WD30 page 15) this was a problem for all
payload conveyed in OASIS-DSS. However there exists an option that allows not having to regen-
erate the run-time classes when the Schema classes are regenerated. Hence we were able to patch
the run-time after intensive research and debugging of the code generated by JAXB. A class called
UnmarshallingEventHandlerAdaptor was identified as causing the passing on of namespace
context to the payload and has been patched.

JAXB’s documentation [83] claims as mentioned above, that the <xjc:dom/> customization preserves
all content. This is however not true for processing instructions and comments. At the time the imple-
mentation started this was not known and discovered by tests. Before that standardization effort, to in-
clude dss:InlineXMLType’s attributes ignorePIs and ignoreComments were performed, a patch
for JAXB was successfully researched.

Round-tripping

Albeit XMLDSIG signatures can be made robust against removed comments or processing instructions

a service like OASIS-DSS has a responsibility not to change the data it received from the client. When
applying an enveloped signature this should not imply that comments or processing instructions are
removed from the document where the signature will be placed. One has to clearly distinguish between
what is in the document and what the DereferencedData and DigestInput are.

In case of a <ds:Reference> dereferencing a same-document reference a node-set is retrieved ranging
form containing all nodes including the signature and/or the signature’s <ds:Object> to arbitrarily frag-
mented node-sets, everything is possible. If this node-set contains the nodes belonging to the signature

113

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Transforms
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-KeyInfo
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-DigestMethod
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-DigestValue
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Signature
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Signature
http://www.oasis-open.org/committees/download.php/10081/oasis-dss-1.0-core-spec-wd-30.pdf#page=15
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#def-SignatureEnveloped
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/dsig/Reference.html#getDereferencedData()
http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/dsig/Reference.html#getDigestInputStream()
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Reference
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Object

5.3. DATA BINDING CHAPTER 5. OASIS-DSS PROTOTYPE LIBRARY

at least those representing the <ds:DigestValue>s and the <ds:SignatureValue> have to be filtered or
the signature cannot verify. So what is signed in such a case is a canonicalization of a document-subset.

The document contains all nodes including such nodes that are not signed and have to be sent back to
the client as such. Just because nodes are not signed does not mean they can be removed.

5.3.2 Round-tripping and Infoset

The enveloped and enveloping digital signature creation requires to preserve equivalence, as one has to
work in place on the original document. Pure detached signature creation does not require to preserve
equivalence as one does not work in-place and documents will not be returned by an OASIS-DSS library
or server.

An author or user of a tool that generated some XML document that contains for instance an XSLT pro-
cessing instruction in the prolog to display it, sends the document to a OASIS-DSS server to get it signed.
This user would quite obviously not be very pleased, if adding the document to an enveloping signa-
ture or adding an enveloped XMLDSIG signature to the document, would strip off all of the processing

instructions and comments.

A definition for round-tripping at the SAXlevel:

Round-tripping a SAX event stream means turning it back into XML text and parsing the
result, without losing any data. [23]

Using base64 encoding should be the first choice in such a situation, but in WD30 page 15 this was not
the default and the case of transporting XML had to be solved.

Round tripping on a SAX level is already cumbersome3, one has to register all Handlers (cf. 2.3.1)
with the XMLReader. The XMLReader chunks well formed XML and “fires” the chunks at the event
handlers. It is so to say the “XMLTokenizer”.

Our Library defines an interface called SAXRoundTripHandler, that extends ContentHandler,
LexicalHandler, DeclHandler and DTDHandler as we recall from subsection 2.3.1 that the
information in an XML document is split up on the SAX level4.

As JAXB is built on top of SAX the next layer above is JAXB itself. JAXB does mention round-tripping
as a non-goal and with respect to round-tripping Infosets seem not to be a good choice any more for a
transport protocol such as OASIS-DSS.

3 A SAXparser allows to recreate the internal subset, but not any external parameter entities as they will be expanded.
Conditional sections in external parsed entities are evaluated and declarations built up from parameter entities will be in-
lined[23]. Round tripping unexpanded entities, conditional sections in declarations which appear at the SAX level are assumed
to be out of scope for this thesis. Especially as these cannot be navigated in the XPath data model.

4For <dss:InlineXML> the latter two could have been spared, but anticipating a technology that would allow to transport
the prolog inside XML we extended those as well.

114

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-DigestValue
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-SignatureValue
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#def-SignatureEnveloped
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#def-SignatureEnveloping
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#def-SignatureEnveloping
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#def-SignatureEnveloped
http://www.oasis-open.org/committees/download.php/10081/oasis-dss-1.0-core-spec-wd-30.pdf#page=15

CHAPTER 5. OASIS-DSS PROTOTYPE LIBRARY 5.3. DATA BINDING

Preserving equivalence of XML document when round tripping from XML document to
Java representation and back to XML document again. While the JAXB specification does
not require the preservation of the XML information set, it does not forbid the preservation
of it. [78]

With a posting5 to the JAXB users list we raised awareness for this problem when it comes to using
XMLDSIG in binding frameworks. JAXB version 2.1 [79] moved, despite not putting a hard requirement,
the following statements to its goals:

12. Preserving equivalence - Round tripping (Java to XML to Java) Transforming a Java
content tree to XML content and back to Java content again should result in an equivalent
Java content tree before and after the transformation.

13. Preserving equivalence - Round tripping (XML to Java to XML) While JAXB 1.0 spec-
ification did not require the preservation of the XML information set when round tripping
from XML document to Java representation and back to XML document again, it did not
forbid the preservation either. The same applies to this version of the specification. [79]

Round-tripping in JAXB

After intensive research the W3CDOMUnmarshallingEventHandler class was identified as using
a SAX2DOMEx class that ignored processing instructions and comments and did not get all the SAX

events passed.

Hence the JAXB run-time has been patched and the following classes are supplied by our library to
assure, with maximum independence of the Java™ version or XML library version (Xerces/Xalan), that
a maximum of exposure is achieved. Maximum exposure means in this context to get as many events as
possible through to the DOM binding while underneath reading form a SAX stream.

SAX2DOMEx could be replaced by our libraries with a SAX2DOMMaxDefaultHandler which im-
plements the previously mentioned SAXRoundTripHandler interface. It has a member called
_SAX2DOM of type Object which will be one of the following depending on what is found on the
Java™ class-path:

• org.apache.xalan.xsltc.trax.SAX2DOM

• com.sun.org.apache.xalan.internal.xsltc.trax.SAX2DOM

• org.apache.xml.utils.DOMBuilder

• com.sun.org.apache.xml.internal.utils.DOMBuilder

• org.apache.xml.internal.utils.DOMBuilder

5 “http://markmail.org/message/3kk5rq4ncq7frwfs”

115

http://markmail.org/message/3kk5rq4ncq7frwfs
http://markmail.org/message/3kk5rq4ncq7frwfs

5.3. DATA BINDING CHAPTER 5. OASIS-DSS PROTOTYPE LIBRARY

_SAX2DOM will be casted to whatever SAX handler is required and every SAX event is fired at it irre-
spective if it can handle it.
This allows it to be used despite not implementing the full functionality of SAXRoundTripHandler
as long as no input appears that it cannot handle. If such input however causes it to fail the OASIS-DSS

library is written in away where it catches all exceptions and exits gracefully with a response including
the warning message from the exception and a new request may be supplied.

This allows a very stable use, despite such a flexible technique.

Coming back to _SAX2DOM, it is expected to be of type SAX2DOMMaxExposure when looking at it
from top-down (DOM view) from a bottom-up (SAX view) it is of its base type
AbstractSAXHandlerMaxExposure.
It will be produced by an instance of an SAX2DOMHandlerMaxExposureFactory extending
AbstractSAXHandlerMaxExposureFactory provided by a of our library.
DssXpXMLFilter is registered with the underlying SAXSource and assured via its reference
_CurrentSAXHandlerMaxExposure, that the actual payload (multiple <dss:InlineXML>, mul-
tiple <ds:KeyInfo>, etc . . .) are being fed with the SAX events, Figure 5.3.6 shows this bottom-up
view.

Method: ‘‘unmarshalWithSAXPipelineAndSAXExtraction’’
2

...
4 XMLFilter dssXpXMLFilter = new DssXpXMLFilter(createXMLReader(),

saxHdlMaxExpFac, dssXpDocumentsStore);
6

8 /* Create a SAX Source to plug it into JAXB */
SAXSource source = new SAXSource(dssXp, in);

10 ...

Figure 5.3.5: Shows how the SAX level processing is plugged in.

116

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-KeyInfo

A
ttr

ib
ut

es

O
pe

ra
tio

ns

<
<

da
ta

ty
pe

>
>

A
ttr

ib
ut

es

O
pe

ra
tio

ns

O
pe

ra
tio

ns

A
ttr

ib
ut

es

O
pe

ra
tio

ns

O
pe

ra
tio

ns

A
ttr

ib
ut

es

O
pe

ra
tio

ns

A
ttr

ib
ut

es

O
pe

ra
tio

ns

Figure 5.3.6: DssXpXMLFilter for SAX level extraction or passing all events into the DOM binding.
117

5.4. IMPLEMENTATION - CONCLUSIONS CHAPTER 5. OASIS-DSS PROTOTYPE LIBRARY

5.4 Implementation - Conclusions6

• Architecture, design and implementation for creating an OASIS-DSS library prototype have been
carried out.

• The reference implementation of the JAXB API available in the Java™ Web Service Development
Pack (JWSDP) 1.6 has been patched for round-trip support. We have successfully modified the
run-time environment for JAXB 1.0.5.

• The software library prototype produced for this Master’s Thesis has been successfully used in
initial interoperability tests, carried out with other participants of the OASIS-DSS TC. The software
library prototype was also used by another project for an OASIS-DSS demo service[80].

6See also section 4.4 on page 99.

118

http://www.google.com/search?q=site%3Awikipedia.org+JWSDP&btnI=

Appendix A

Appendix

119

APPENDIX A. APPENDIX

A.1 XML in XML

<?xml version="1.0" encoding="UTF-8"?>
2 <dss:SignRequest xmlns:dss="urn:oasis:names:tc:dss:1.4142:core:schema">

<dss:InputDocuments>
4 <?lxml <?xml version="1.4142" encoding="UTF-8"+>

<foo:documentElement xmlns:foo="http://www.example.org/foo">
6 Hello World! <![CDATA[<xml> & </xml>]]>

</foo:documentElement>
8 <?lxml?>

<?lxml <?xml version="1.4142" encoding="UTF-8"+>
10 <foo:documentElement xmlns:foo="http://www.example.org/foo">

Hello Universe!
12 <?lxml <?xml version="1.4142" encoding="UTF-8"+>

<bar:documentElement xmlns:foo="http://www.example.org/bar">
14 Hello World!

<?lxml <?xml version="1.4142" encoding="UTF-8"+>
16 <?xml version="1.0" encoding="UTF-8"+>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
18 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
20 <head>

<title>XHTML Document</title>
22 </head>

<body>
24 <p id="same">In this World!</p>

</body>
26 </html>

<?lxml+>
28 </bar:documentElement>

<?lxml+>
30 </foo:documentElement>

<?lxml?>
32 <![CDATA[

<?xml version="1.0" encoding="UTF-8"+>
34 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
36 <html xmlns="http://www.w3.org/1999/xhtml">

<head>
38 <title>XHTML</title>

</head>
40 <body>

<script type="text/javascript">
42 <![CDATA[

... unescaped script content ...
44]]#>

</script>
46 <p id="same">Text</p>

</body>
48 </html>

]]>
50 </dss:InputDocuments>
</dss:SignRequest>

Figure A.1.1: Pitfalls of XML in XML

In figure Figure A.1.1 we can see various combinations of payload a service like OASIS-DSS should be
able to cope with. The internal subset of DTDs has been left out for keeping the example simple.
The contents of this file should be copied to a COTS XML editor supporting syntax highlighting. Then
the various combinations of replacing “+” with a “?” and deleting “#” can be tried out.
120

APPENDIX A. APPENDIX A.2. XSLT TO NORMALISE BASE64

A.2 XSLT to normalise base64

1 <?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet

3 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"

5 version="1.0">

7 <xsl:output indent="no" method="xml" omit-xml-declaration="yes"/>

9 <!-- First we need a template for an identity transformation copying all
nodes to the new document -->

11 <xsl:template match="node()|@*">
<xsl:copy>

13 <xsl:apply-templates select="@* | node()"/>
</xsl:copy>

15 </xsl:template>

17 <!-- Second, a template for transforming content of type xs:base64Binary
into a character sequence without linebreaks and whitespaces -->

19 <xsl:template
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

21 xmlns:dss="urn1:oasis:names:tc:dss:1.0:core:schema"
match="

23 //ds:Signature/ds:SignatureValue |
//ds:Signature/ds:SignedInfo/ds:Reference/ds:DigestValue |

25 ...
//ds:KeyInfo/ds:KeyValue/ds:DSAKeyValue/ds:P |

27 //ds:KeyInfo/ds:KeyValue/ds:DSAKeyValue/ds:P |
//ds:KeyValue/ds:DSAKeyValue/ds:P |

29 //ds:KeyValue/ds:DSAKeyValue/ds:Q |
//ds:KeyValue/ds:DSAKeyValue/ds:G |

31 //ds:KeyValue/ds:DSAKeyValue/ds:Y
"

33 >
<xsl:copy>

35 <xsl:value-of select="translate(normalize-space(.),’ ’,’’)"/>
</xsl:copy>

37 </xsl:template>

39 </xsl:stylesheet>

Figure A.2.1: XSLT to normalise base64

121

A.3. RECURSIVE SCHEMA APPENDIX A. APPENDIX

A.3 Recursive Schema

1 <?xml version="1.0" encoding="UTF-8"?>
<fs:Folder xmlns:fs="http://www.example.com/xml-filesys/" name="A"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.example.com/xml-filesys/

RecursiveSchemaComplexType.xsd">
5

<fs:Folder name="MyBinaryFiles">
7 <fs:BinaryFile name="x">

abc=
9 </fs:BinaryFile>

</fs:Folder>
11 <fs:Folder name="MyTextFiles">

<fs:TextFile name="myhtml">
13 <html>

<head>
15 <title>title of your HTML document</title>

</head>
17 <body>

<p>body text of your HTML document</p>
19 </body>

</html>
21 </fs:TextFile>

</fs:Folder>
23

</fs:Folder>

Figure A.3.1: instance document for recursive Schema

122

APPENDIX A. APPENDIX A.3. RECURSIVE SCHEMA

<?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:fs="http://www.example.com/xml-filesys/"
4 targetNamespace="http://www.example.com/xml-filesys/"

>
6

<xs:simpleType name="folderAndFileNameType">
8 <xs:restriction base="xs:string">

<xs:minLength value="1"/>
10 <xs:maxLength value="256"/>

<xs:pattern value="[A-Za-z].*"/>
12 </xs:restriction>

</xs:simpleType>
14 <xs:element name="Folder" type="fs:FolderType"/>

<xs:complexType name="FolderType">
16 <xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element ref="fs:Folder"/>
18 <xs:element ref="fs:TextFile"/>

<xs:element ref="fs:BinaryFile"/>
20 </xs:choice>

<xs:attribute name="name" type="fs:folderAndFileNameType"/>
22 </xs:complexType>

<xs:element name="TextFile" type="fs:TextFileType"/>
24 <xs:complexType name="TextFileType" mixed="true">

<xs:choice minOccurs="0" maxOccurs="unbounded">
26 <xs:any namespace="##local" processContents="lax"/>

<xs:any namespace="##other" processContents="lax"/>
28 <xs:any namespace="##targetNamespace" processContents="strict"/>

</xs:choice>
30 <xs:attribute name="name" type="fs:folderAndFileNameType"

use="required"/>
</xs:complexType>

32

<xs:element name="BinaryFile" type="fs:BinaryFileType"/>
34 <xs:complexType name="BinaryFileType">

<xs:simpleContent>
36 <xs:extension base="xs:base64Binary">

<xs:attribute name="name" type="fs:folderAndFileNameType"
use="required"/>

38 </xs:extension>
</xs:simpleContent>

40 </xs:complexType>

42 </xs:schema>

Figure A.3.2: recursive Schema

123

A.4. EXAMPLE OF A VALIDATETYPE APPENDIX A. APPENDIX

A.4 Example of a ValidateType

<xs:complexType name="ValidateType" abstract="true">
21 <xs:sequence>

<xs:element name="GrammarLanguage" type="xs:anyURI"/>
23 <xs:element name="Hint" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
25 <xs:sequence>

<xs:any minOccurs="0"/>
27 </xs:sequence>

<xs:attribute name="namespace" type="xs:anyURI" use="optional"/>
29 <xs:attribute name="hint" type="xs:NCName" use="optional"/>

<xs:attribute name="value" type="xs:anyURI" use="optional"/>
31 </xs:complexType>

</xs:element>
33 </xs:sequence>

</xs:complexType>

Figure A.4.1: Example of a ValidateType

A.5 An Example of a very complex XML document.

<?xml version="1.0" encoding="UTF-8"?>
2 <!-- comments followed by insignificant whitespace

processing instructions -->
4 <?ProcessingInstructionTarget content?>
<!DOCTYPE documentElement [

6 <!ELEMENT documentElement (#PCDATA | firstChild | secondChild)*>
<!ELEMENT firstChild (#PCDATA)>

8 <!ELEMENT secondChild (#PCDATA)>
]>

10 <!-- more comments-->
<documentElement> A man has two children, one is called

12 <firstChild> Alice
</firstChild > and the other one is called

14 <secondChild> Bob </secondChild>.
</documentElement>

16 <!-- more comments -->

18 <?ProcessingInstructionTarget content?>

20 <!-- more comments -->

Well-formed complex XML document, with processing instructions comments and insignificant whites-
pace, before and after the document element and a mixed content model.

Figure A.5.1: Well-formed complex XML document.

124

APPENDIX A. APPENDIX A.6. XML DERIVATIVES AND ALTERNATIVES

A.6 XML Derivatives and Alternatives

Most of the information in this section is derived from a web page by someone who calls himself PaulT 1

http://www.pault.com/xmlalternatives.html 2. A shortened and edited version, where
XML shorthands and subsets have been left out intentionally follows:

Name Short Description Language
lml Lambda Markup Language, William D. Lindsey’s Stupid Net

Tricks proposal.
SEXP S-expressions are a variation on LISP S-expressions by Ron

Rivest
C

sfsexp small, fast s-expression library lighter weight than the Rivest
s-expression parser

C/C++

SXML SXML is an abstract syntax tree of an XML document. SXML
is also a concrete representation of the Infoset in the form of
S-expressions

Scheme

Figure A.6.1: XML Alternatives based on LISP-like or Scheme-like Expressions

1PauT may be Paul Tchistopolskii the co-author of ”‘Professional Xsl”’ and version 0.1 of a web server called Hiawatha
2Accessed via a web archive http://web.archive.org/web/20060409100013/http://www.pault.

com/xmlalternatives.html

125

http://www.pault.com/xmlalternatives.html
http://web.archive.org/web/20060409100013/http://www.pault.com/xmlalternatives.html
http://web.archive.org/web/20060409100013/http://www.pault.com/xmlalternatives.html

A.6. XML DERIVATIVES AND ALTERNATIVES APPENDIX A. APPENDIX

Name Short Description Language
Boulder hierarchical name=value structures Perl,Java
config JSON-like syntax, allows cross-referencing, imports Python
GODDAG General Ordered-Descendant Directed Acyclic Graph allows

overlapping hierarchies in a plausible data structures for rep-
resenting documents with overlap

HDF Hierarchical Data Format, XML and XSLT alternative C, Java, Perl,
Python

JSON JavaScript Object Notation (JSON), lightweight data-
interchange format

Java, C, C++, . . .

OGDL Ordered Graph Data Language, uses indention, nodes are
strings, arcs or edges are spaces or indentation

C, Perl, Java

ONX text-based, no mixed content, can contain binary C++
SDL Simple Data Language, elements, attributes, designed for con-

figuration
Java

SMEL inspired by XML, has elements, values, comments and direc-
tives.

Euphoria

SSYN Structured SYntax is intended to be a simpler alternative to
data-centric XML and YAML

Python

XML plist XML plist significant in Mac OS X. Property lists come from
NeXTStep (OS from NeXT 1989, founder Steve Jobs)

Objective-C, Java,
C

YAML ”YAML Ain’t Markup Language”(recursive acronym), uses
indention, human readable, chiefly for scripting languages

JavaScript, Perl,
Python, Ruby, C

Figure A.6.2: XML Alternatives

Name Short Description Language
APT Almost Plain Text, uses paragraph indentation for simple

article-like documents
Markdown Markdown text to valid XHTML (or HTML) Perl
txt2tags txt2tags converts text to XHTML, LaTeX, moinmoin, man

pages and others
Python

WikiMl Wiki text as Markup Language equivalent, transform to
XHTML, SAX events, XSLT transformations

Java

Figure A.6.3: XML Alternatives mainly for simple text2html publishing

126

APPENDIX A. APPENDIX A.6. XML DERIVATIVES AND ALTERNATIVES

A.6.1 Bug in Xalan

<xsl:variable name="precedingLeafNodes"
select="count(preceding::node()[not(child::node())]))"/>

S
<xsl:variable name="precedingLeafNodes"

select="count(
ancestor-or-self::node()/
preceding-sibling::node()/
descendant-or-self::node()
[not(child::node())]

)"/>

Figure A.6.4: Xalan returns different results for those, why?

A.6.2 Bug in JAXB

“http://www.nabble.com/BUG-in-DefaultJAXBContextImpl.newInstance(java.
lang.Class-javaContentInterface)-td6287291.html#a6287291”

127

http://www.nabble.com/BUG-in-DefaultJAXBContextImpl.newInstance(java.lang.Class-javaContentInterface)-td6287291.html#a6287291
http://www.nabble.com/BUG-in-DefaultJAXBContextImpl.newInstance(java.lang.Class-javaContentInterface)-td6287291.html#a6287291

A.6. XML DERIVATIVES AND ALTERNATIVES APPENDIX A. APPENDIX

128

Bibliography

[1] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design. ACM Trans.

Comput. Syst., 2(4):277–288, 1984.

[2] OASIS. FAQ, OASIS Digital Signature Services TC. “http://www.oasis-open.org/
committees/dss/faq.php”. accessed December 2nd 2004.

[3] OASIS. Charter, OASIS Digital Signature Services TC. “http://www.oasis-open.org/
committees/dss/charter.php”. accessed December 1st 2004.

[4] ETSI. XML format for signature policies. “http://webapp.etsi.org/WorkProgram/
Report_WorkItem.asp?WKI_ID=13350”, April 2002. accessed March 28th 2008.

[5] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of Applied Cryptog-

raphy. CRC Press, Inc., Boca Raton, FL, USA, 1996.

[6] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Franois Yergeau. Exten-
sible Markup Language (XML) 1.0 (Fifth Edition). “http://www.w3.org/TR/2008/
REC-xml-20081126/”, November 2008.

[7] James Clark. Comparison of SGML and XML. “http://www.w3.org/TR/
NOTE-sgml-xml-971215”, December 1997.

[8] Karl Scheibelhofer. Signing XML Documents and the Concept of What You See Is What You Sign.
Master’s thesis, IAIK, Graz University of Technology, January 2001. “http://www.iaik.
tugraz.at/teaching/11_diplomarbeiten/archive/scheibelhofer.pdf”.

[9] Elliotte Rusty Harold. Processing XML with Java: A Guide to SAX, DOM, JDOM, JAXP, and

TrAX. Addison-Wesley, November 2002. “http://www.cafeconleche.org/books/
xmljava/”.

[10] David Orchard. Extensibility, XML Vocabularies, and XML Schema. “http://www.xml.
com/pub/a/2004/10/27/extend.html”, October 2004. accessed 1st of Febuary 2005.

[11] Donald E. Eastlake III and Kitty Niles. Secure XML, The New Syntax for Signatures and Encryp-

tion. Addison Wesley, 2003.

129

http://www.oasis-open.org/committees/dss/faq.php
http://www.oasis-open.org/committees/dss/faq.php
http://www.oasis-open.org/committees/dss/charter.php
http://www.oasis-open.org/committees/dss/charter.php
http://webapp.etsi.org/WorkProgram/Report_WorkItem.asp?WKI_ID=13350
http://webapp.etsi.org/WorkProgram/Report_WorkItem.asp?WKI_ID=13350
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/NOTE-sgml-xml-971215
http://www.w3.org/TR/NOTE-sgml-xml-971215
http://www.iaik.tugraz.at/teaching/11_diplomarbeiten/archive/scheibelhofer.pdf
http://www.iaik.tugraz.at/teaching/11_diplomarbeiten/archive/scheibelhofer.pdf
http://www.cafeconleche.org/books/xmljava/
http://www.cafeconleche.org/books/xmljava/
http://www.xml.com/pub/a/2004/10/27/extend.html
http://www.xml.com/pub/a/2004/10/27/extend.html

BIBLIOGRAPHY BIBLIOGRAPHY

[12] Kurt Cagle, John Duckett, Oliver Griffin, Stephen Mohr, Francis Norton, Nikola Ozu, Ian Stokes-
Rees, Jeni Tennison, and Kevin Williams. Professional XML Schemas. Wrox Press, 2003.

[13] Elliotte Rusty Harold and W. Scott Means. XML in a Nutshell. O’Reilly & Associates, second
edition edition, June 2002.

[14] Elliotte Rusty Harold. Effective XML: 50 Specific Ways to Improve Your XML. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2003. “http://www.cafeconleche.
org/books/effectivexml/”.

[15] Jonathan Marsh and Joanne Tong. XML Path Language (XPath) Version 1.0 Specification Er-
rata. “http://www.w3.org/1999/11/REC-xpath-19991116-errata/”, November
2005. accessed December 16th 2008.

[16] Steven Murdoch. Survey of general-purpose data-representation formats and markup lan-
guages. “http://www.cl.cam.ac.uk/˜sjm217/projects/markup/survey/”. ac-
cessed 4th of May 2007.

[17] Gregor Karlinger. Digital Signatures in XML. An Implementation in Java. Master’s thesis, IAIK,
Graz University of Technology, January 2000. Written in German and not availiable online.

[18] Michael Kay. XPath 2.0 Programmer’s Reference. Wiley, 2004.

[19] Dennis M. Sosnoski. XML and Java technologies: Data binding, Part 1: Code genera-
tion approaches – JAXB and more. ”‘http://www-106.ibm.com/developerworks/
library/x-databdopt/index.html”’. accessed 20th of January 2005.

[20] W3C. XML Schema Second Edition. Part-0 Primer: “http://www.w3.org/TR/
2004/REC-xmlschema-0-20041028/”, Part-1 Structures: “http://www.w3.org/
TR/2004/REC-xmlschema-1-20041028/”, Part-2 Datatypes: “http://www.w3.
org/TR/2004/REC-xmlschema-2-20041028/”. accessed March 17th 2005.

[21] Eric van der Vlist. XML Schema. O’Reilly & Associates, first edition, german translation edition,
January 2003.

[22] Roger L. Costello et al. XML Schemas: Best Practices - Global versus Local - A Col-
lectively Developed Set of Schema Design Guidelines. “http://web.archive.
org/web/20010405144847/www.xfront.com/BestPractices.html”, April
2001. “http://web.archive.org/web/20010405154801/www.xfront.com/
GlobalVersusLocal.html”.

[23] David Brownell. SAX2. O’Reilly & Associates, first edition edition, January 2002.

[24] Jonathan Marsh, Daniel Veillard, and Norman Walsh. xml:id Version 1.0. “http://www.w3.
org/TR/xml-id/”, September 2005.

130

http://www.cafeconleche.org/books/effectivexml/
http://www.cafeconleche.org/books/effectivexml/
http://www.w3.org/1999/11/REC-xpath-19991116-errata/
http://www.cl.cam.ac.uk/~sjm217/projects/markup/survey/
http://www-106.ibm.com/developerworks/library/x-databdopt/index.html
http://www-106.ibm.com/developerworks/library/x-databdopt/index.html
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://web.archive.org/web/20010405144847/www.xfront.com/BestPractices.html
http://web.archive.org/web/20010405144847/www.xfront.com/BestPractices.html
http://web.archive.org/web/20010405154801/www.xfront.com/GlobalVersusLocal.html
http://web.archive.org/web/20010405154801/www.xfront.com/GlobalVersusLocal.html
http://www.w3.org/TR/xml-id/
http://www.w3.org/TR/xml-id/

BIBLIOGRAPHY BIBLIOGRAPHY

[25] Tim Berners-Lee, Ron Fielding, and Larry Masinter. Uniform Resource Identifier (URI):
Generic Syntax. “http://tools.ietf.org/html/rfc3986”, January 2005. obsoletes:
RFC1808, RFC2732, RFC2396.

[26] Tim Berners-Lee, Ron Fielding, and Larry Masinter. Uniform Resource Identifiers (URI):
Generic Syntax. “http://tools.ietf.org/html/rfc2396”, August 1998. obsoleted
by RFC3986[25].

[27] W3C. XML-Signature Syntax and Processing. “http://www.w3.org/TR/2002/
REC-xmldsig-core-20020212/”, 2002. Recommendation, accessed December 10th 2004.

[28] R. Hinden, B. Carpenter, and Larry Masinter. Format for Literal IPv6 Addresses in
URL’s. “http://tools.ietf.org/html/rfc2732”, December 1999. obsoleted by
RFC3986[25].

[29] W3C. XML Signature Syntax and Processing (Second Edition). “http://www.w3.org/TR/
2008/REC-xmldsig-core-20080610/”, March 2008. Proposed Edited Recommendation,
accessed May 5th 2008.

[30] W3C. XPointer Framework. “http://www.w3.org/TR/2003/
REC-xptr-framework-20030325/”, March 2003. Recommendation, accessed De-
cember 10th 2007.

[31] Steven DeRose, Eve Maler, and Ron Daniel Jr. XML Pointer Language (XPointer)
Version 1.0 W3C Candidate Recommendation. “http://www.w3.org/TR/2001/
CR-xptr-20010911/”, 2001. accessed December 10th 2007.

[32] James Clark and Steve DeRose. XML Path Language (XPath) Version 1.0. “http://www.w3.
org/TR/xpath”, November 1999. accessed December 10th 2007.

[33] Steve DeRose, R. Daniel, Eve Maler, and Jonathan Marsh. XPointer xmlns() Scheme. W3C
Recommendation. “http://www.w3.org/TR/2003/REC-xptr-xmlns-20030325/”,
March 2003. accessed December 10th 2007.

[34] Paul Grosso, Eve Maler, Jonathan Marsh, and Norman Walsh. XPointer ele-
ment() Scheme. W3C Recommendation. “http://www.w3.org/TR/2003/
REC-xptr-element-20030325/”, March 2003. accessed December 10th 2007.

[35] Steve DeRose, R. Daniel, and Eve Maler. XPointer xpointer() Scheme. W3C Working
Draft. “http://www.w3.org/TR/2002/WD-xptr-xpointer-20021219/”, Decem-
ber 2002. accessed December 10th 2007.

[36] Ian Jacobs and Norman Walsh. Architecture of the World Wide Web, Volume One. “http:
//www.w3.org/TR/webarch/”, December 2004. accessed August 1st 2008.

131

http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc2396
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://tools.ietf.org/html/rfc2732
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/
http://www.w3.org/TR/2003/REC-xptr-framework-20030325/
http://www.w3.org/TR/2003/REC-xptr-framework-20030325/
http://www.w3.org/TR/2001/CR-xptr-20010911/
http://www.w3.org/TR/2001/CR-xptr-20010911/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/2003/REC-xptr-xmlns-20030325/
http://www.w3.org/TR/2003/REC-xptr-element-20030325/
http://www.w3.org/TR/2003/REC-xptr-element-20030325/
http://www.w3.org/TR/2002/WD-xptr-xpointer-20021219/
http://www.w3.org/TR/webarch/
http://www.w3.org/TR/webarch/

BIBLIOGRAPHY BIBLIOGRAPHY

[37] W3C. XPointer Implementations. “http://www.w3.org/XML/2002/10/
LinkingImplementations.html”, 2002. accessed May 5th 2008.

[38] Leigh Dodds. XPointer and the Patent. “http://www.xml.com/pub/a/2001/01/17/
xpointer.html”, January 2001. accessed 1st of Febuary 2005.

[39] Arno Hollosi, Gregor Karlinger, Thomas Rssler, Martin Centner, and al. Die sterre-
ichische Brgerkarte. “http://www.buergerkarte.at/konzept/securitylayer/
spezifikation/20080220/”, February 2008.

[40] Bradley W. Hill. Command Injection in XML Signatures and Encryption. “http://www.
isecpartners.com/files/XMLDSIG_Command_Injection.pdf”, July 2007.

[41] Hakon W. Lie and Bert Bos. Cascading Style Sheets. Pearson Addison Wesley, June 2004.

[42] Arjen K. Lenstra and Eric R. Verheul. Selecting Cryptographic Key Sizes. Journal of Cryptol-

ogy: the journal of the International Association for Cryptologic Research, 14(4):255–293, 2001.
“http://www.win.tue.nl/˜klenstra/key.pdf”.

[43] Konrad Lanz, Dieter Bratko, and Peter Lipp. RSA-PSS in XMLDSig. “http://www.w3.org/
2007/xmlsec/ws/papers/08-lanz-iaik/”, September 2007.

[44] Florian Mendel, Christian Rechberger, and Vincent Rijmen. Update on SHA-1.
“http://www.iaik.tugraz.at/aboutus/people/rechberger/talks/
Rechberger_SHA1BOINC_V07.pdf”, January 2007. accessed May 5th 2008.

[45] Florian Mendel, Christian Rechberger, and Vincent Rijmen. New SHA-1 Collision Attacks,
and Applications. “http://wiki.uni.lu/esc/docs/NewSHA1CollisionSearch.
pdf”, January 2008. accessed May 5th 2008.

[46] ETSI. XML Advanced Electronic Signatures (XAdES). “http://webapp.etsi.org/
WorkProgram/Report_WorkItem.asp?WKI_ID=21353”, March 2006. TS 101 903, ac-
cessed March 28th 2008.

[47] ETSI. CMS Advanced Electronic Signatures (CAdES) . “http://webapp.etsi.org/
workprogram/Report_WorkItem.asp?wki_id=28069”, November 2007. TS 101 733,
accessed May 5th 2008.

[48] Martin Centner. XML Advanced Electronic Signatures (XAdES) - Implementation
and Interoperability. Master’s thesis, IAIK, Graz University of Technology, Septem-
ber 2003. “http://www.iaik.tu-graz.ac.at/teaching/11_diplomarbeiten/
archive/mcentner.pdf”.

132

http://www.w3.org/XML/2002/10/LinkingImplementations.html
http://www.w3.org/XML/2002/10/LinkingImplementations.html
http://www.xml.com/pub/a/2001/01/17/xpointer.html
http://www.xml.com/pub/a/2001/01/17/xpointer.html
http://www.buergerkarte.at/konzept/securitylayer/spezifikation/20080220/
http://www.buergerkarte.at/konzept/securitylayer/spezifikation/20080220/
http://www.isecpartners.com/files/XMLDSIG_Command_Injection.pdf
http://www.isecpartners.com/files/XMLDSIG_Command_Injection.pdf
http://www.win.tue.nl/~klenstra/key.pdf
http://www.w3.org/2007/xmlsec/ws/papers/08-lanz-iaik/
http://www.w3.org/2007/xmlsec/ws/papers/08-lanz-iaik/
http://www.iaik.tugraz.at/aboutus/people/rechberger/talks/Rechberger_SHA1BOINC_V07.pdf
http://www.iaik.tugraz.at/aboutus/people/rechberger/talks/Rechberger_SHA1BOINC_V07.pdf
http://wiki.uni.lu/esc/docs/NewSHA1CollisionSearch.pdf
http://wiki.uni.lu/esc/docs/NewSHA1CollisionSearch.pdf
http://webapp.etsi.org/WorkProgram/Report_WorkItem.asp?WKI_ID=21353
http://webapp.etsi.org/WorkProgram/Report_WorkItem.asp?WKI_ID=21353
http://webapp.etsi.org/workprogram/Report_WorkItem.asp?wki_id=28069
http://webapp.etsi.org/workprogram/Report_WorkItem.asp?wki_id=28069
http://www.iaik.tu-graz.ac.at/teaching/11_diplomarbeiten/archive/mcentner.pdf
http://www.iaik.tu-graz.ac.at/teaching/11_diplomarbeiten/archive/mcentner.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[49] John Boyer, Merlin Hughes, and Joseph Reagle. XML-Signature XPath Filter 2.0 W3C Recom-
mendation. “http://www.w3.org/TR/xmldsig-filter2/”, November 2002. accessed
July 5th 2008.

[50] D. Eastlake 3rd, J. Reagle, and D. Solo. XML-Signature Syntax and Processing. “http://
tools.ietf.org/html/rfc3075”, March 2001. Obsoleted by [57].

[51] D. Eastlake 3rd. Additional XML Security Uniform Resource Identifiers (URIs). “http://
tools.ietf.org/html/rfc4051”, April 2005. Errata: “http://www.rfc-editor.
org/errata_search.php?rfc=4051”, likely to be obsoleted by “http://tools.
ietf.org/html/draft-eastlake-additional-xmlsec-uris-00”.

[52] John Boyer. Canonical XML Version 1.0 W3C Recommendation. “http://www.w3.org/
TR/xml-c14n”, March 2001. accessed December 12th 2004.

[53] John Boyer and Glenn Marcy. Canonical XML Version 1.1 W3C Recommendation. “http://
www.w3.org/TR/xml-c14n11”, March 2001. contributions by Konrad Lanz [54], accessed
December 20th 2006.

[54] Konrad Lanz and José Kahan. Known Issues with Canonical XML 1.0 (C14N/1.0) W3C Work-
ing Group Note. “http://www.w3.org/TR/C14N-issues/”, December 2006. accessed
December 12th 2004.

[55] John Boyer, Donald E. Eastlake 3rd, and Joseph Reagle. Exclusive XML Canonicalization Version
1.0 W3C Recommendation. “http://www.w3.org/TR/xml-exc-c14n/”, July 2002. ac-
cessed December 15th 2004.

[56] Bob Atkinson. Schema Centric XML Canonicalization Version 1.0. “http://uddi.org/
pubs/SchemaCentricCanonicalization-20050523.htm”, May 2001. accessed De-
cember 10th 2005.

[57] D. Eastlake 3rd, J. Reagle, and D. Solo. XML-Signature Syntax and Processing. “http://
tools.ietf.org/html/rfc3275”, March 2002. Obsoletes by [50].

[58] Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin. Namespaces in XML 1.0 (Sec-
ond Edition). “http://www.w3.org/TR/2006/REC-xml-names-20060816/”, Au-
gust 2006.

[59] Norman Walsh. Using Qualified Names (QNames) as Identifiers in XML Content. “http://
www.w3.org/2001/tag/doc/qnameids”, March 2004. accessed September 22nd 2008.

[60] DSS Overview, Working Draft 04. “http://www.oasis-open.org/committees/
download.php/20051/oasis-dss-1.0-overview-wd-04.doc”, August 2005. con-
tribution by Konrad Lanz, accessed August 29th 2005.

133

http://www.w3.org/TR/xmldsig-filter2/
http://tools.ietf.org/html/rfc3075
http://tools.ietf.org/html/rfc3075
http://tools.ietf.org/html/rfc4051
http://tools.ietf.org/html/rfc4051
http://www.rfc-editor.org/errata_search.php?rfc=4051
http://www.rfc-editor.org/errata_search.php?rfc=4051
http://tools.ietf.org/html/draft-eastlake-additional-xmlsec-uris-00
http://tools.ietf.org/html/draft-eastlake-additional-xmlsec-uris-00
http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/xml-c14n11
http://www.w3.org/TR/xml-c14n11
http://www.w3.org/TR/C14N-issues/
http://www.w3.org/TR/xml-exc-c14n/
http://uddi.org/pubs/SchemaCentricCanonicalization-20050523.htm
http://uddi.org/pubs/SchemaCentricCanonicalization-20050523.htm
http://tools.ietf.org/html/rfc3275
http://tools.ietf.org/html/rfc3275
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/2001/tag/doc/qnameids
http://www.w3.org/2001/tag/doc/qnameids
http://www.oasis-open.org/committees/download.php/20051/oasis-dss-1.0-overview-wd-04.doc
http://www.oasis-open.org/committees/download.php/20051/oasis-dss-1.0-overview-wd-04.doc

BIBLIOGRAPHY BIBLIOGRAPHY

[61] OASIS Open. Advanced Electronic Signature Profiles of the OASIS Digital Sig-
nature Service Version 1.0. “http://docs.oasis-open.org/dss/v1.0/
oasis-dss-profiles-AdES-spec-v1.0-os.html”, April 2007. accessed Febuary
10th 2008.

[62] OASIS. Digital Signature Service Core Protocols, Elements, and Bindings Version 1.0 (OASIS
Standard), 11 April 2007. “http://www.oasis-open.org/committees/dss”, April
2007. accessed Febuary 10th 2008.

[63] OASIS. Web Services Security: SOAP Message Security 1.1 (WS-Security 2004).
“http://www.oasis-open.org/committees/download.php/16790/wss-v1.
1-spec-os-SOAPMessageSecurity.pdf”, February 2006.

[64] Adam Bosworth, Don Box, Martin Gudgin, Mark Nottingham, David Orchard, and Jeffrey Schlim-
mer. XML, SOAP and Binary Data. “http://www.xml.com/pub/a/2003/02/26/
binaryxml.html”, February 2003. accessed April 12th 2005.

[65] Tim Berners-Lee. Web Architecture from 50,000 feet. “http://www.w3.org/
DesignIssues/Architecture.html”, September 1998. updated October 1999, cvs dated
February 2002.

[66] Norman Walsh. XML 2.0. “http://norman.walsh.name/2004/11/10/xml20”,
November 2004. modified 11 Sep 2005.

[67] Tim Bray. Extensible Markup Language - SW (XML-SW). “http://www.textuality.
com/xml/xmlSW.html”, February 2002. retrieved via “http://web.archive.org/
web/*/www.textuality.com/xml/xmlSW.html”.

[68] Norman Walsh. XML 2.0? No, seriously. “http://norman.walsh.name/2008/02/20/
xml20”, February 2008. modified 09 May 2008.

[69] Bradley W. Hill. Attacking XML Security. http://www.isecpartners.com/files/

XMLDSIG_Command_Injection.pdf”, July 2007.

[70] Christian Geuer-Pollmann. Anwender-Probleme mit XML Signature. “http:
//www.nue.et-inf.uni-siegen.de/˜geuer-pollmann/publications/

20030403_XMLSignaturWorkshop/”, April 2003. retrieved via “http://web.
archive.org/web/*/www.nue.et-inf.uni-siegen.de/˜geuer-pollmann/

publications/20030403_XMLSignaturWorkshop/”.

[71] Joseph Reagle. XML Validation Transforms for XML Signature W3C Working Draft. “http:
//www.w3.org/Signature/Drafts/xmldsig-transform-xml-validation.

html”, October 2001. accessed September 22nd 2008.

134

http://docs.oasis-open.org/dss/v1.0/oasis-dss-profiles-AdES-spec-v1.0-os.html
http://docs.oasis-open.org/dss/v1.0/oasis-dss-profiles-AdES-spec-v1.0-os.html
http://www.oasis-open.org/committees/dss
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.xml.com/pub/a/2003/02/26/binaryxml.html
http://www.xml.com/pub/a/2003/02/26/binaryxml.html
http://www.w3.org/DesignIssues/Architecture.html
http://www.w3.org/DesignIssues/Architecture.html
http://norman.walsh.name/2004/11/10/xml20
http://www.textuality.com/xml/xmlSW.html
http://www.textuality.com/xml/xmlSW.html
http://web.archive.org/web/*/www.textuality.com/xml/xmlSW.html
http://web.archive.org/web/*/www.textuality.com/xml/xmlSW.html
http://norman.walsh.name/2008/02/20/xml20
http://norman.walsh.name/2008/02/20/xml20
http://www.isecpartners.com/files/XMLDSIG_Command_Injection.pdf
http://www.isecpartners.com/files/XMLDSIG_Command_Injection.pdf
http://www.nue.et-inf.uni-siegen.de/~geuer-pollmann/publications/20030403_XMLSignaturWorkshop/
http://www.nue.et-inf.uni-siegen.de/~geuer-pollmann/publications/20030403_XMLSignaturWorkshop/
http://www.nue.et-inf.uni-siegen.de/~geuer-pollmann/publications/20030403_XMLSignaturWorkshop/
http://web.archive.org/web/*/www.nue.et-inf.uni-siegen.de/~geuer-pollmann/publications/20030403_XMLSignaturWorkshop/
http://web.archive.org/web/*/www.nue.et-inf.uni-siegen.de/~geuer-pollmann/publications/20030403_XMLSignaturWorkshop/
http://web.archive.org/web/*/www.nue.et-inf.uni-siegen.de/~geuer-pollmann/publications/20030403_XMLSignaturWorkshop/
http://www.w3.org/Signature/Drafts/xmldsig-transform-xml-validation.html
http://www.w3.org/Signature/Drafts/xmldsig-transform-xml-validation.html
http://www.w3.org/Signature/Drafts/xmldsig-transform-xml-validation.html

BIBLIOGRAPHY BIBLIOGRAPHY

[72] Joseph Reagle Jr. XML-Signature Requirements, W3C Working Draft . “http://www.w3.
org/TR/xmldsig-requirements”, October 1999.

[73] Tim Berners-Lee. Principles of Design. “http://www.w3.org/DesignIssues/
Principles.html”, September 1998. last change:16th January 2008.

[74] Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin. Namespaces in XML 1.1 (Second
Edition). “http://www.w3.org/TR/2006/REC-xml-names11-20060816/”, August
2006.

[75] Michael McIntosh and Paula Austel. XML Signature Element Wrapping Attacks and Countermea-
sures. “http://domino.research.ibm.com/library/cyberdig.nsf/papers/
73053F26BFE5D1D385257067004CFD80/”, August 2005.

[76] Sebastian Gajek, Lijun Liao, and Jrg Schwenk. Towards a Semantic of XML Signature. “http:
//www.w3.org/2007/xmlsec/ws/papers/07-gajek-rub/”, September 2007.

[77] Jeff Hodges and Scott Cantor. XML Canonicalization: The Weakest Link. “http://www.w3.
org/2007/xmlsec/ws/papers/06-zhang-ximpleware/”, September 2007.

[78] Sekhar Vajjhala and Joe Fialli. The Java™ Architecture for XML Binding (JAXB) - Final, V1.0.
“http://jcp.org/en/jsr/detail?id=31”, January 2003.

[79] Kohsuke Kawaguchi, Sekhar Vajjhala, and Joe Fialli. The Java™ Architecture for XML Binding
(JAXB) 2.1 - Final Release. “http://jcp.org/en/jsr/detail?id=222”, December
2006.

[80] Bernd Zwattendorfer and Thomas Zefferer. PROJEKTBERICHT - OASIS-DSS DIGITAL
SIGNATURE SERVICE. “http://www.isecpartners.com/files/XMLDSIG_
Command_Injection.pdf”, December 2007. “http://demo.a-sit.at/el_
signatur/dss/index.html”.

[81] Clements et al. Documenting Software Architectures. Addison Wesley. ISBN 0201703726.

[82] Sun. Web Services - Praktikum aus Softwareentwicklung 2. “http://java.sun.com/
webservices/docs/1.4/tutorial/doc/JAXBUsing4.html”. accessed 27th of Jan-
uary 2005.

[83] Sun. JavaTM Architecture for XML Binding, JAXB RI Vendor Extensions Cus-
tomizations. “http://java.sun.com/webservices/docs/1.5/jaxb/
vendorCustomizations.html#dom”. accessed 1st of Febuary 2005.

[84] Jonathan Marsh. XML Base. “http://www.w3.org/TR/xmlbase/”, June 2001.

135

http://www.w3.org/TR/xmldsig-requirements
http://www.w3.org/TR/xmldsig-requirements
http://www.w3.org/DesignIssues/Principles.html
http://www.w3.org/DesignIssues/Principles.html
http://www.w3.org/TR/2006/REC-xml-names11-20060816/
http://domino.research.ibm.com/library/cyberdig.nsf/papers/73053F26BFE5D1D385257067004CFD80/
http://domino.research.ibm.com/library/cyberdig.nsf/papers/73053F26BFE5D1D385257067004CFD80/
http://www.w3.org/2007/xmlsec/ws/papers/07-gajek-rub/
http://www.w3.org/2007/xmlsec/ws/papers/07-gajek-rub/
http://www.w3.org/2007/xmlsec/ws/papers/06-zhang-ximpleware/
http://www.w3.org/2007/xmlsec/ws/papers/06-zhang-ximpleware/
http://jcp.org/en/jsr/detail?id=31
http://jcp.org/en/jsr/detail?id=222
http://www.isecpartners.com/files/XMLDSIG_Command_Injection.pdf
http://www.isecpartners.com/files/XMLDSIG_Command_Injection.pdf
http://demo.a-sit.at/el_signatur/dss/index.html
http://demo.a-sit.at/el_signatur/dss/index.html
http://java.sun.com/webservices/docs/1.4/tutorial/doc/JAXBUsing4.html
http://java.sun.com/webservices/docs/1.4/tutorial/doc/JAXBUsing4.html
http://java.sun.com/webservices/docs/1.5/jaxb/vendorCustomizations.html#dom
http://java.sun.com/webservices/docs/1.5/jaxb/vendorCustomizations.html#dom
http://www.w3.org/TR/xmlbase/

BIBLIOGRAPHY BIBLIOGRAPHY

136

Glossary

acronym (ACR)

Acronyms written in italics can be found in this glossary.* page(s) viii, 1, 6, 157

italics

Terms written in italics in the text can be found in this glossary.* page(s) 1, 6, 157

anonymous type

An anonymous type in Schema is either a simple type or complex type that is specified in-line
and has local scope. The elements of local types are affected by the elementFormDefault
attribute.
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#Element_Declaration_

details* page(s) 11, 54, 55, 159

Application Program Interface (API)

Abbreviation of application program interface, a set of routines, protocols, and tools for building
software applications. A good API makes it easier to develop a program by providing all the
building blocks. A programmer puts the blocks together.
http://www.webopedia.com/TERM/A/API.html* page(s) 8, 14–16, 18, 24, 35, 37,
60, 67, 78, 91, 93, 99, 102, 111, 118, 149, 157

AbstractSyntaxNotationOne (ASN.1)

Abstract Syntax Notation One is used to define abstract data types and formats. http://asn1.
elibel.tm.fr/en/introduction/index.htm* page(s) 8, 138

Apache Axis

Apache Axis is Web service framework and XML based. It is an open source SOAP server.
http://www.axis* page(s) 87

base URI reference

The URI of the containing entity, like the file or an element.

137

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#Element_Declaration_details
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#Element_Declaration_details
http://www.webopedia.com/TERM/A/API.html
http://asn1.elibel.tm.fr/en/introduction/index.htm
http://asn1.elibel.tm.fr/en/introduction/index.htm
http://www.axis

Glossary Glossary

• section 4.4 RFC3986[25]

• section 4.2 RFC2396[26]

* page(s) 149, 157

Base64 Content-Transfer-Encoding (base64 encoding)

A subset of US-ASCII is used to encode arbitrary binary data using 64 characters and encodes 6
bits per character. It is used to encode binary data in text formats like XML.
http://tools.ietf.org/html/rfc2045#section-6.8

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/#base64Binary*
page(s) 57, 58, 61, 69, 70, 77, 78, 80, 82, 83, 86, 99, 114

Backus Naur Form (BNF)

The BackusNaur Form (BNF) defines a syntax for expressing context-free grammars.* page(s)
11, 31, 37, 77, 153

CMS Advanced Electronic Signatures (CAdES)

CMS Advanced Electronic Signatures (CAdES) defines various properties for CMS Signatures
encoded in ASN.1. These properties range from the signing time and signature policy over the
signing certificate to properties needed for long term verification and archival of electronic signa-
tures. [47] http://tools.ietf.org/html/rfc5126* page(s) 36, 53,
74

Canonical XML Version 1.0 W3C Recommendation 15 March 2001

Converts an XPath node-set into an octet stream that has a canonical form[52]. The degree nor-
malization that is achieved is however limited especially when it comes to namespaces. See
subsection 2.5.2.* page(s) 2, 15, 18, 22, 41–45, 47–49, 62, 63, 67, 78, 82, 84, 86, 90, 93–95, 97,
110, 138, 150, 153–155, 157

Canonical XML Version 1.1 W3C Recommendation

Converts an XPath node-set into an octet stream that has a canonical form. C14n11 is the successor
of C14nand fixes problems with xml:id and xml:base [54] [53]. See subsection 2.5.2.* page(s)
42–44, 46, 49, 88, 90, 93, 94, 110, 138, 150, 153, 155

CDATA sections

A special section <![CDATA[...]]> that can contain unescaped text including verbatim
markup.
http://www.w3.org/TR/xml/#sec-cdata-sect* page(s) 15, 16, 18, 158

138

http://tools.ietf.org/html/rfc3986#section-4.4
http://tools.ietf.org/html/rfc2396#section-4.2
http://tools.ietf.org/html/rfc2045#section-6.8
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/#base64Binary
http://tools.ietf.org/html/rfc5126
http://www.w3.org/TR/xml/#sec-cdata-sect

Glossary Glossary

Cryptographic Message Syntax (CMS)

Cryptographic Message Syntax (CMS) is a signature format defined by the IETF and is based on
PKCS#7.
http://tools.ietf.org/html/rfc3369

http://tools.ietf.org/html/rfc3370* page(s) 39, 53, 138

comment

An XML comment <!-- comment -->, see expression 2.1.7.
http://www.w3.org/TR/xml/#sec-comments* page(s) 4, 6, 15, 18, 22, 33, 41, 95,
98, 113–115, 124, 157

complex type

A complex type in Schema can have attributes and elements and specify the order and quantity of
the latter by means of sequences and choices
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/#rf-defn* page(s)
12, 55, 137, 158, 159

Crimson

Crimson was the parser preceding Xerces in SUN’s JDK.
http://xml.apache.org/crimson/* page(s) 16, 157

Certificate Revocation List (CRL)

A Certificate Revocation List (CRL) is a signed list of references (serial numbers) to certificates
that have been revoked. http://tools.ietf.org/html/rfc3280* page(s) 51, 157

Computer supported cooperative work (CSCW)

Computer supported cooperative work (CSCW) is a research domain covering technology sup-
porting inter human interaction. The CSCW Matrix was introduced in 1988 by Johansen.*
page(s) 2

Cascading Style Sheets (CSS)

Cascading Style Sheets (CSS) is a style sheet language that allows authors and users to attach
style to structured documents (e.g., HTML documents and XML applications). By separating the
presentation style of documents from the content of documents, CSS simplifies Web authoring
and site maintenance.
http://www.w3.org/Style/CSS/

http://www.w3.org/TR/CSS21/* page(s) 4, 15, 35

139

http://tools.ietf.org/html/rfc3369
http://tools.ietf.org/html/rfc3370
http://www.w3.org/TR/xml/#sec-comments
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/#rf-defn
http://www.google.com/search?q=site%3Awikipedia.org+SUN's JDK&btnI=
http://xml.apache.org/crimson/
http://tools.ietf.org/html/rfc3280
http://www.w3.org/Style/CSS/
http://www.w3.org/TR/CSS21/

Glossary Glossary

Data Flow Diagram (DFD)

The Data Flow Diagram allows to show a system as functions or processes represented by cir-
cles that are connected via streams or pipelines represented as arcs between them and should
be mostly self explaining. Two lines represent a data store. http://www.yourdon.com/
jesa/jesa.php* page(s) 37, 41, 153

Document Type Declaration (DocType)

The W3C’s Definition: The XML document type declaration contains or points to markup decla-
rations that provide a grammar for a class of documents. This grammar is known as a document
type definition, or DTD. The document type declaration can point to an external subset (a special
kind of external entity) containing markup declarations, or can contain the markup declarations
directly in an internal subset, or can do both. The DTD for a document consists of both subsets
taken together. http://www.w3.org/TR/REC-xml/#dt-doctype* page(s) 5, 6, 17,
85, 97, 153

document element

The document element is the top most element in an XML document and should not be confused
with the document root as specified in the XPath data model which is at the top of a document.
Hence the term root element should be avoided.
http://www.w3.org/TR/xml/#dt-root* page(s) 5, 6, 16, 18, 22, 43, 44, 97, 145, 157

document node

The document node in DOM corresponds to the root node in XPath and to an XML file/stream.*
page(s) 17, 18, 146, 157

document order

The document order, is the order of nodes in an XML document determined by the appearance of
the first character within XML’s serial form. Attribute nodes are not counted and are conceptually
sets that hang laterally off their owning element node. http://www.w3.org/TR/xpath#
dt-document-order* page(s) 17, 59, 110, 111, 157

Document Object Model (DOM)

The Document Object Model is a platform- and language-neutral interface that will allow pro-
grams and scripts to dynamically access and update the content, structure and style of documents.
The document can be further processed and the results of that processing can be incorporated
back into the presented page.
http://www.w3.org/DOM/

http://www.w3.org/TR/DOM-Level-2-Core/* page(s) 4, 14–18, 44, 77, 78, 94, 96,
98, 110–113, 115–117, 140, 146, 149, 155

140

http://www.yourdon.com/jesa/jesa.php
http://www.yourdon.com/jesa/jesa.php
http://www.w3.org/TR/REC-xml/#dt-doctype
http://www.w3.org/TR/xml/#dt-root
http://www.w3.org/TR/xpath#dt-document-order
http://www.w3.org/TR/xpath#dt-document-order
http://www.w3.org/DOM/
http://www.w3.org/TR/DOM-Level-2-Core/

Glossary Glossary

OASIS Digital Signature Services (DSS)

OASIS Digital Signature Services (DSS) is a client-server request response protocol for signature
creation, verification and time-stamping. See chapter 3.* page(s) 1–3, 5, 8, 9, 11, 13, 15,
23–25, 27, 28, 35, 51–54, 57–68, 70, 72, 74–78, 80, 84, 87–89, 95–98, 101–105, 110, 111, 113,
114, 116, 118, 120, 141, 153, 154, 157

Digital Signature Standard (DSS)

This Standard specifies a Digital Signature Algorithm (DSA) appropriate for applications requir-
ing a digital rather than written signature.
http://www.itl.nist.gov/fipspubs/fip186.htm* page(s) 2

OASIS Digital Signature Services eXtended (DSS-X)

OASIS-DSS-X is the successor TC of the OASIS-DSS TC and is concerned with maintaining
OASIS-DSS and specifying new profiles.* page(s) 52, 141

Digital Signature Services XML processor (DssXp)

The Digital Signature Services XML processor (DssXp) is a library that implements the OASIS-

DSS protocol and supports the creation and verification of XMLDSIG signatures.* page(s)
101

Document Type Definition (DTD)

The Document Type Definition is the grammar specified by the markup declarations for a class
of documents. The document type declaration (DOCTYPE) may contain internal and also re-
fer to external markup declarations. The DTD is then comprised of the union of internal and
external markup declarations. (see also DOCTYPE) http://www.w3.org/TR/REC-xml/
#dt-markupdecl* page(s) 2, 5, 6, 11, 13, 15, 36, 42–44, 47, 84–86, 97, 120, 154, 157

Electronic Banking Internet Communication (EBICS)

The Zentraler Kreditausschuss (ZKA) in Germany enhanced the Banking Communication Stan-
dard (BCS) processes to make them suitable for Internet-based use. It claims to cover credit
transfers, direct debits and the whole spectrum of the corporate customers cash management.
http://www.ebics-zka.de/english/index.htm* page(s) 31

European Telecommunications Standards Institute (ETSI)

The European Telecommunications Standards Institute (ETSI) is an independent, non-profit orga-
nization, whose mission is to produce telecommunications standards for today and for the future.
http://www.etsi.org/* page(s) 9, 53

141

http://www.itl.nist.gov/fipspubs/fip186.htm
http://www.w3.org/TR/REC-xml/#dt-markupdecl
http://www.w3.org/TR/REC-xml/#dt-markupdecl
http://www.google.com/search?q=site%3Awikipedia.org+EBICS&btnI=
http://www.ebics-zka.de/english/index.htm
http://www.etsi.org/

Glossary Glossary

Exclusive XML Canonicalization Version 1.0 W3C Recommendation 18 July 2002

Converts an XPath node-set into an octet stream that has a canonical form avoiding to inherit
namespaces and inheritable attributes. This however only has an effect on the DigestInput if
used in XMLDSIG. See subsection 2.5.3.* page(s) 42, 44–49, 57, 58, 90, 95–98, 110, 113, 150,
153, 154

Efficient XML Interchange (EXI) Format 1.0

The Efficient XML Interchange (EXI) format is a very compact representation for Infoset intended
to optimize performance and utilization of computational resources.
http://www.w3.org/TR/exi/* page(s) 80

Keyed-Hash Message Authentication Code (HMAC)

HMAC is a symmetric signature or message authentication method using a shared secret for au-
thentication. http://csrc.nist.gov/publications/fips/fips198/fips-198a.
pdf http://tools.ietf.org/html/rfc2104* page(s) 35, 39

Hyper Text Markup Language (HTML)

The HyperText Markup Language (HTML) is the publishing language of the World Wide Web.
http://www.w3.org/TR/html401/* page(s) 5, 32, 35, 82, 149

Hyper Text Transfer Protocol (HTTP)

The Hyper Text Transfer Protocol (HTTP) is an application-level (Layer 5) stateless request re-
sponse protocol. http://tools.ietf.org/html/rfc2616* page(s) 53, 68,
80

Institute for Applied Information Processing and Communications (IAIK)

The abbreviation comes from its German name ‘Institut für Angewandte Informationsverarbeitung
und Kommunikationstechnologie’ at the Graz University of Technology (TU-Graz) and is active
in the areas:
Applied research in computer networking, embedded systems, system-on-chip design, computer
security and information security.
Observing rapidly-evolving technologies like information security, networking, and system-on-
chip design.
Teaching students in project-oriented work following an inter-disciplinary approach.
http://www.iaik.tugraz.at/* page(s) ii, vii, 15, 103, 151

The Internet Engineering Task Force (IETF)

The Internet Engineering Task Force (IETF) is a large open international community of network
designers, operators, vendors, and researchers concerned with the evolution of the Internet archi-

142

http://javadoc.iaik.tugraz.at/xsect/1.15/apidocs/105/javax/xml/crypto/dsig/Reference.html#getDigestInputStream()
http://www.w3.org/TR/exi/
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf
http://tools.ietf.org/html/rfc2104
http://www.w3.org/TR/html401/
http://tools.ietf.org/html/rfc2616
http://www.iaik.tugraz.at/

Glossary Glossary

tecture and the smooth operation of the Internet. It is open to any interested individual.
http://www.ietf.org/* page(s) 36, 138

XML Information Set (Infoset)

The Infosetprovides a set of definitions to descibe the information in an XML document. The
main intent is to be used in other specifications. Some specifications like ScC14n also makes use
of the Infoset as a data-model.
http://www.w3.org/XML/* page(s) 47, 62, 96, 98, 114, 125, 142, 143, 145, 146, 150, 157

Internationalized Resource Identifiers (IRI)

Internationalized Resource Identifier (IRI) are an extension of Uniform Resource Identifier (URI)
about characters from the Universal Character Set (Unicode/ISO 10646). A mapping from IRIs
to URIs is defined. http://tools.ietf.org/html/rfc3987* page(s) 32, 143, 157

Java Architecture for XML Binding (JAXB)

Java Architecture for XML Binding (JAXB) provides a way to bind an XML schema to a rep-
resentation in Java code. This enables to incorporate XML data and processing functions in
applications based on Java technology without having to deal with a lot of XML’s idiosyncrasies.
http://java.sun.com/xml/jaxb/* page(s) 16, 98, 102, 103, 108, 110–115, 118, 127,
157

Java API for XML Processing (JAXP)

The Java API for XML Processing (JAXP) enables applications to parse and transform XML
documents independent of a particular XML processing implementation.
http://java.sun.com/webservices/jaxp/* page(s) 15, 18, 32, 105

Java Specification Request 105: XML Digital Signature APIs (JSR105)

JSR105 defines high-level APIs for XMLDSIG. http://jcp.org/en/jsr/detail?id=
105* page(s) 2, 28, 37, 41, 59–61, 67, 91, 93, 102, 104, 105, 110, 111, 151

Legacy extended IRIs for XML resource identification (IRI)

A LEIRI is allowed to have spaces, delimiters and some other characters, disallowed in IRIs in
their non percent-encoded form. A mapping to IRIs is defined. http://www.w3.org/TR/
2008/NOTE-leiri-20081103/* page(s) 32, 157

MAY

RFC 2119 MAY: Used to identify truly optional items.
http://tools.ietf.org/html/rfc2119#section-5* page(s) 59, 157

143

http://www.ietf.org/
http://www.w3.org/XML/
http://tools.ietf.org/html/rfc3987
http://java.sun.com/xml/jaxb/
http://java.sun.com/webservices/jaxp/
http://jcp.org/en/jsr/detail?id=105
http://jcp.org/en/jsr/detail?id=105
http://www.w3.org/TR/2008/NOTE-leiri-20081103/
http://www.w3.org/TR/2008/NOTE-leiri-20081103/
http://tools.ietf.org/html/rfc2119#section-5

Glossary Glossary

Minimal Canonicalization (MC14n) PROPOSED STANDARD Obsoleted by: RFC3275[57]

Minimal Canonicalization is a character level text canonicalization defined in RFC3075[50], ob-
soleted by RFC3275[57] which does not contain it anymore.
http://tools.ietf.org/html/rfc3075#section-6.5.1* page(s) 42, 43, 49, 58,
59

mixed content

We talk about mixed content, if an element in an XML document has text and element children.
http://www.w3.org/TR/xml/#sec-mixed-content* page(s) 4, 6, 40, 43, 55, 68,
84, 96, 97, 124, 125, 157

Organization for the Advancement of Structured Information Standards (OASIS)

The Organization for the Advancement of Structured Information Standards is a not-for-profit,
international consortium that drives the development, convergence, and adoption of e-business
standards. The consortium produces more Web services standards than any other organization
along with standards for security, e-business, and standardization efforts in the public sector and
for application-specific markets. Founded in 1993, OASIS has more than 4,000 participants rep-
resenting over 600 organizations and individual members in 100 countries.
http://www.oasis-open.org/

http://en.wikipedia.org/wiki/OASIS_(organization)* page(s) 1, 9, 47,
146, 147

Online Certificate Status Protocol (OCSP)

The Online Certificate Status Protocol (OCSP) is used to retrieve the revocation state of a Certifi-
cate. http://tools.ietf.org/html/rfc2560* page(s)
51

Portable Document Format (PDF)

The Adobe Portable Document Format is the native file format of the Adobe Acrobat family of
products and relies on the same imaging model as the PostScript page description language. PDF
also includes objects, hyperlinks and other features. http://www.adobe.com/devnet/
pdf/pdf_reference.html* page(s) 5, 9, 32

Public Key Cryptography Standards (PKCS)

Public Key Cryptography Standards is set of de facto standards issued by RSA Laboratories.
http://www.rsa.com/rsalabs/node.asp?id=2124* page(s) 35

Public-Key Infrastructure (PKI)

Public-Keys are bound to real entities by a Certification Authority (CA) aka. Trusted Third Party
issuing certificates and revocation information according to the ITU X.509 specifications. X.509:

144

http://tools.ietf.org/html/rfc3075#section-6.5.1
http://www.w3.org/TR/xml/#sec-mixed-content
http://www.oasis-open.org/
http://en.wikipedia.org/wiki/OASIS_(organization)
http://tools.ietf.org/html/rfc2560
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.rsa.com/rsalabs/node.asp?id=2124

Glossary Glossary

http://www.itu.int/rec/T-REC-X.509-200508-I/en* page(s) vii, 35, 39, 53,
73, 89, 103, 158

prefixed name

A prefixed name is a QName composed of a prefix and a local name separated by a colon.
http://www.w3.org/TR/2006/REC-xml-names-20060816/#NT-PrefixedName*
page(s) 10, 11, 45, 46, 145, 158

processing instruction

An XML processing instruction <?target content?>, see expression 2.1.8.
http://www.w3.org/TR/xml/#sec-comments* page(s) 4, 6, 15, 17, 18, 33, 35, 78,
98, 113–115, 124, 158

prolog

The prolog is the beginning of an XML document and it ends with the document element.
http://www.w3.org/TR/xml/#NT-prolog* page(s) 5, 6, 40, 78–80, 97, 114, 149, 158

properly nested

Structures in an XML document are properly nested, so no element, comment, processing instruc-
tion, character reference, or entity reference can begin in one entity and end in another.
http://www.w3.org/TR/xml/#sec-documents

http://www.w3.org/TR/xml/#wf-entities* page(s) 4, 158

Post Schema Validation Infoset (PSVI)

The Post Schema Validation Infoset is the Infoset of the well-formed XML plus any additional
information derived from a Schema during asessment (validation). Things like attributes of type
xs:ID or default attributes are added.
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#key-psvi

* page(s) 13–15, 84, 97, 158

public identifier

The public identifier is a publicly known name or value that can be used to to retrieve a file or
data stream containing the contents of some entity.
http://www.w3.org/TR/xml/#dt-pubid* page(s) 6, 158

Qualified Name (QName)

A qualified name is either a normal name or a prefixed name. A name is either in no namespace
or in the default namespace, whereas a prefixed name is always in some namespace.
http://www.w3.org/TR/2006/REC-xml-names-20060816/#NT-QName

145

http://www.itu.int/rec/T-REC-X.509-200508-I/en
http://www.w3.org/TR/2006/REC-xml-names-20060816/#NT-PrefixedName
http://www.w3.org/TR/xml/#sec-comments
http://www.w3.org/TR/xml/#NT-prolog
http://www.w3.org/TR/xml/#sec-documents
http://www.w3.org/TR/xml/#wf-entities
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#key-psvi
http://www.w3.org/TR/xml/#dt-pubid
http://www.w3.org/TR/xml/#dt-pubid
http://www.w3.org/TR/2006/REC-xml-names-20060816/#NT-QName

Glossary Glossary

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/#QName* page(s)
10, 11, 45, 46, 48, 49, 58, 97, 145, 158

relative URI reference

A relative URI reference section 4.2 RFC3986[25] section 5 RFC2396[26]* page(s) 25, 27, 44,
89, 148, 153, 158

root node

The root node in XPath corresponds to the document node in DOM and to an XML file/stream.*
page(s) 16–18, 140, 159

same-document reference

A URI reference that refers within the same-document. See section 2.3.4 and Figure 2.3.15.

• section 4.4 RFC3986[25]

• section 4.2 RFC2396[26]

* page(s) 17, 25–29, 41, 56, 59, 65, 66, 95, 113, 153, 158

Simple API for XML (SAX)

SAX is the Simple API for XML, originally a Java-only API. SAX was the first widely adopted
API for XML in Java, and is a de facto standard. The current version is SAX 2.0.1, and there are
versions for several programming language environments other than Java.
http://sax.sourceforge.net/* page(s) 14–16, 44, 77, 96, 102, 105, 108, 110,
114–117, 149, 155, 158

Schema Centric XML Canonicalization Version 1.0 OASIS UDDI Spec TC 5 May 2005

An Infoset based canonicalization [56] that normalizes valid XML that has been assessed by
Schema. See subsection 2.5.4.* page(s) 42, 47–49, 84–86, 143, 158

Standard Generalized Markup Language (SGML ISO 8879)

The Standard Generalized Markup Language is an ISO standard for representing text in electronic
form, independent of device or system.
http://www.w3.org/MarkUp/SGML/,
http://www.w3.org/TR/NOTE-sgml-xml-971215.html* page(s) 4

simple inheritable attribute

Simple inheritable attributes, whose value that requires only a simple redeclaration, like xml:lang

and xml:space.
http://www.w3.org/TR/xml-c14n11/#dt-SimpleHeritableAtts

146

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/#QName
http://tools.ietf.org/html/rfc3986#section-4.2
http://tools.ietf.org/html/rfc2396#section-5
http://tools.ietf.org/html/rfc3986#section-4.4
http://tools.ietf.org/html/rfc2396#section-4.2
http://sax.sourceforge.net/
http://www.w3.org/MarkUp/SGML/
http://www.w3.org/TR/NOTE-sgml-xml-971215.html
http://www.w3.org/TR/xml-c14n11/#dt-SimpleHeritableAtts

Glossary Glossary

http://lists.w3.org/Archives/Public/public-xml-core-wg/2006Mar/0040.

html* page(s) 44, 58, 150, 158

simple type

A simple type in Schema provides a lexical or value space.
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/#rf-defn* page(s)
12, 84, 137, 158, 159

SOAP

SOAP formerly was an acronym for Simple Object Access Protocol or Service Oriented Archi-
tecture Protocol but is today not using any of these acronyms any more. It is an XML protocol for
decentralized, distributed environments.
http://www.w3.org/TR/soap/* page(s) 53, 80, 88, 137

Streaming API for XML (StAX)

http://www.xml.com/pub/a/2003/09/17/stax.html* page(s) 14–16, 77, 110

system identifier

The system identifier is converted to a URI to be dereferenced to retrieve a file or data stream.
http://www.w3.org/TR/xml/#dt-sysid* page(s) 6, 158

Technical Architecture Group (TAG)

The TAG is concerned with the Web architecture. http://www.w3.org/2001/tag/* page(s)
48, 147

Technical Committee (TC)

The OASIS term for working group (WG).* page(s) 1, 2, 47, 52, 53, 66, 74–76, 96–98, 118, 141,
148, 158

Transport Layer Security (TLS)

Transport Layer Security (TLS) http://tools.ietf.org/html/rfc4346* page(s) 53,
68

Transformation API for XML (TrAX)

The Transformation API for XML is an APIs for processing transformation instructions, and
performing a transformation like XSLT.
http://java.sun.com/webservices/jaxp/* page(s) 32, 35

147

http://lists.w3.org/Archives/Public/public-xml-core-wg/2006Mar/0040.html
http://lists.w3.org/Archives/Public/public-xml-core-wg/2006Mar/0040.html
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/#rf-defn
http://www.w3.org/TR/soap/
http://www.xml.com/pub/a/2003/09/17/stax.html
http://www.w3.org/TR/xml/#dt-sysid
http://www.w3.org/2001/tag/
http://tools.ietf.org/html/rfc4346
http://java.sun.com/webservices/jaxp/

Glossary Glossary

Uniform Resource Identifier (URI)

Is an Identifier of a certain syntax that is used as identify or resource identifier. See 2.3.4.
http://tools.ietf.org/html/rfc2396

http://tools.ietf.org/html/rfc2732

http://tools.ietf.org/html/rfc3986* page(s) 13, 15, 16, 23–32, 37, 39–41, 49,
52, 55, 58, 62, 65, 72, 73, 79, 80, 95, 103, 137, 147, 148, 153, 158

URI reference

A URI reference is either already a URI or it can be a relative URI reference. section 4.1
RFC3986[25] section 4 RFC2396[26]* page(s) 6, 25–28, 31, 41, 52, 56, 59, 60, 78, 89, 95, 146,
151, 158

visibly utilized namespace declaration

An Element visibly utilizes a namespace declaration if itself or one of its attributes uses the prefix
declared by the namespace declaration. A namespace declaration is visibly utilized by its parent
element if the parent or one of its attributes uses the prefix declared by the namespace declaration.
http://www.w3.org/TR/xml-exc-c14n/#def-visibly-utilizes* page(s)
44–46, 158

working group (WG)

The W3C term for TC.* page(s) 42, 147

Web Services Security (WSS)

Web Services Security (WSS) specifies set of SOAP extensions for securing web services by
means of SAML, Kerberos, X.509, username tokens etc.
http://www.oasis-open.org/committees/wss/* page(s) 53, 75

OASIS Web Services Secure Exchange (WS-SX)

Web Services Secure Exchange OASIS WS-SX TC defines extensions to OASIS Web Services
Security to enable trusted SOAP message exchanges.
http://www.oasis-open.org/committees/ws-sx* page(s) 53

World Wide Web Consortium (W3C)

The World Wide Web Consortium develops inter-operable technologies (specifications,guidelines,
software, and tools) to lead the Web to its full potential. W3C is a forum for information, com-
merce, communication, and collective understanding.
http://www.w3.org/* page(s) 3, 6, 7, 9, 11, 22, 28, 30, 32, 35, 36, 49, 84, 148, 151

148

http://tools.ietf.org/html/rfc2396
http://tools.ietf.org/html/rfc2732
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986#section-4.1
http://tools.ietf.org/html/rfc3986#section-4.1
http://tools.ietf.org/html/rfc2396#section-4
http://www.w3.org/TR/xml-exc-c14n/#def-visibly-utilizes
http://www.google.com/search?q=site%3Awikipedia.org+SAML&btnI=
http://www.oasis-open.org/committees/wss/
http://www.oasis-open.org/committees/ws-sx
http://www.w3.org/

Glossary Glossary

XML Advanced Electronic Signatures (XAdES)

XML Advanced Electronic Signature (XAdES) defines various properties for XMLDSIG signa-
tures. These properties range from the signing time and signature policy over the signing certifi-
cate to properties needed for long term verification and archival of electronic signatures. [46]*
page(s) 9, 13, 36, 53, 74, 82, 83, 89

Xalan

Apache Xalan is a project providing an API for evaluation of XPath expressions and an XSLT

processor for transforming XML documents into HTML, text, or other XML document types.It is
built on SAX 2 and DOM level 3.
http://xml.apache.org/xalan-j/* page(s) 95, 115, 127, 155, 158

Xerces

Apache Xerces is a project providing XML parsers, however in the context of this document, we
are only concerned with the Xerces2 Java Parser
http://xerces.apache.org/xerces2-j/* page(s) 14, 16, 18, 115, 139, 158

XHTML 1.0 The Extensible HyperText Markup Language (Second Edition)

XHTML is a reformulation of HTML 4 as an XML 1.0 application.
http://www.w3.org/XML/* page(s) 4–6, 32, 62, 99, 153

Extensible Markup Language (XML)

Extensible Markup Language is a simple, very flexible text format derived from SGML (ISO
8879). Originally designed to meet the challenges of large-scale electronic publishing, XML is
also playing an increasingly important role in the exchange of a wide variety of data on the Web
and elsewhere.
http://www.w3.org/XML/* page(s) viii, 2–5, 7–19, 22, 27–29, 31, 32, 34, 35, 37–49, 51,
53, 54, 57–59, 61, 62, 64, 72, 74, 77–80, 82–90, 96–99, 102–104, 110–112, 114, 115, 120, 124,
139, 140, 144–146, 149–151, 154, 155, 158

xml declaration

The XML declaration is optional and the first element the prolog. It contains information about
the version, optional information about the character encoding and an optional validity constraint
able to assure a document is self-contained.
http://www.w3.org/TR/xml/#NT-XMLDecl* page(s) 6, 44, 79–81, 97, 99, 158

XML namespace

The namespace value http://www.w3.org/XML/1998/namespace is bound by defini-
tion to the xml: prefix.* page(s) 44, 149, 150,
158

149

http://xml.apache.org/xalan-j/
http://xerces.apache.org/xerces2-j/
http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.w3.org/TR/xml/#NT-XMLDecl
http://www.w3.org/XML/1998/namespace

Glossary Glossary

xml:base

The attribute xml:base is an attribute defined in the XML namespace, that is used in XML docu-
ments to establish a base URI reference that is distinct from the surrounding file or parsed entity
on the granularity of an element.[84]* page(s) 44–46, 58, 78, 80, 96, 138, 149, 150, 158

xml:id

The attribute xml:id is an ID attribute defined in the XML namespace, that is used in XML docu-
ments to associate the type ID with the attribute in the absence of validation.[24]* page(s) 15,
44, 138, 150, 158

xml:lang

Is a simple inheritable attribute and identifies the natural or formal language in which the content
is written.
http://www.w3.org/TR/REC-xml/#sec-lang-tag[6]* page(s) 44, 46, 58, 78, 96,
146, 158

xml:space

The value default signals that applications’ default white-space processing modes are acceptable
for this element; the value preserve indicates the intent that applications preserve all the white
space. http://www.w3.org/TR/REC-xml/#sec-white-space[6]* page(s) 44, 46,
58, 78, 82–84, 96, 99, 146, 154, 158

XML Core Working Group (XMLCORE)

Is chartered to consider comments on the following specifications: XML, XML 1.1, XMLNS,
XMLNS 1.1, Infoset, xml:base, xml:id, C14n, Exc-C14n, and others. http://www.w3.org/
XML/Core/* page(s) 7, 32, 42

XML-Signature Syntax and Processing (XMLDSIG)

XML-Signature Syntax and Processing specifies XML digital signature processing rules and syn-
tax. XML Signatures provide integrity, message authentication, and/or signer authentication
services for data of any type, whether located within the XML that includes the signature or
elsewhere.[29]* page(s) 2, 3, 9, 11, 13, 15, 17, 18, 22–25, 27–32, 35–39, 41, 43, 47, 52, 53, 55,
59–61, 63, 64, 66, 69, 72, 77, 78, 82–91, 93, 95, 99, 102, 106, 108, 110, 111, 113–115, 141, 143,
148, 150, 151, 153, 158

XML Signature Syntax and Processing - Second Edition - (XMLDSIG SE)

XML Signature Syntax and Processing - Second Edition - is a revision of XMLDSIG. It includes
and addresses errata, differences between [RFC 4514] and [RFC 2253], recommends C14n11 and
recognizes the defect that XPointer is only a working draft. [29]* page(s) 23, 27–30, 32, 44

150

http://www.w3.org/TR/REC-xml/#sec-lang-tag
http://www.w3.org/TR/REC-xml/#sec-white-space
http://www.w3.org/XML/Core/
http://www.w3.org/XML/Core/
http://tools.ietf.org/html/rfc4514
http://tools.ietf.org/html/rfc2253

Glossary Glossary

Extensible Markup Language 1.1

Extensible Markup Language 1.1 extended the character set for names in XML 1.1 but since XML

fifth edition this has been pulled into XML 1.0 as an erratum. Despite some additional control
characters and their escaping the only real difference is that namespace prefix undeclarations are
allowed in XML 1.1. http://www.w3.org/TR/xml11/* page(s) 7, 10, 11, 90, 94, 150,
154

Namespaces in XML 1.0 (Second Edition)

Namespaces allow to use multiple markup vocabularies by associating them with a namespace
hence avoiding name collisions and allowing their recognition. http://www.w3.org/TR/
REC-xml-names/* page(s) 9–11, 43, 48, 49, 150, 159

Namespaces in XML 1.1 (Second Edition)

Namespaces in XML 1.1 allow to undeclare a namespace binding. http://www.w3.org/
TR/xml-names11/* page(s) 10, 11, 90, 150

XML Schema (XMLSchema)

The purpose of a schema is to define a class of XML documents, and so the term instance docu-
ment is often used to describe an XML document that conforms to a particular schema.
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/#Intro* page(s)
viii, 2, 5–9, 11–14, 16, 23, 32, 36, 42–44, 47–49, 51, 56, 57, 68, 71, 73–76, 80, 84–86, 88, 102,
103, 111–113, 122, 123, 137, 139, 145–147, 153, 155, 158, 159

XML Path Language (XPath) Version 1.0

XPath is primarily used to address parts of an XML document and manipulates strings, numbers
and booleans. [32]* page(s) 4, 7, 11, 14, 15, 17–22, 28–30, 32–34, 38, 39, 44–46, 48, 49, 73,
78, 82, 86, 87, 90, 92–96, 113, 114, 138, 140, 141, 146, 149, 153, 154, 159

XML Pointer Language (XPointer) Version 1.0

XPointer is used to identify fragments by means of a URI reference locating a resource that is
an XML document. XPointer until today never became a W3C recommendation and has the
status of a candidate recommendation. Hence it shouldn’t be normatively referenced. http:

//www.w3.org/TR/2001/CR-xptr-20010911/ It has been superseded by the XPointer
Framework. http://www.w3.org/TR/xptr-framework/* page(s) 16, 18, 27–31, 40,
41, 48, 73, 82, 92, 93, 95, 150, 155, 159

XML Security Toolkit (XSECT)

IAIK XML Security Toolkit (XSECT) implements the JSR105 API for XMLDSIG in Java™ and
JSR106 APIs for XML Encryption. http://jce.iaik.tugraz.at/sic/products/

xml_security/xsect/* page(s) 15, 30, 60, 102, 103, 110

151

http://www.w3.org/TR/xml11/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xml-names11/
http://www.w3.org/TR/xml-names11/
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/#Intro
http://www.w3.org/TR/2001/CR-xptr-20010911/
http://www.w3.org/TR/2001/CR-xptr-20010911/
http://www.w3.org/TR/xptr-framework/
http://jce.iaik.tugraz.at/sic/products/xml_security/xsect/
http://jce.iaik.tugraz.at/sic/products/xml_security/xsect/

Glossary Glossary

Extensible Stylesheet Language (XSL)

Extensible Stylesheet Language (XSL), a language for expressing stylesheets. It consists of two
parts: 1. a language for transforming XML documents, and 2. an XML vocabulary for specifying
formatting semantics. An XSL stylesheet specifies the presentation of a class of XML documents
by describing how an instance of the class is transformed into an XML document that uses the
formatting vocabulary.
http://www.w3.org/TR/xsl/* page(s) 5, 32, 33

Extensible Stylesheet Language (XSL-FO)

see XSL* page(s) 32

Extensible Stylesheet Language for Transformation (XSLT)

XSLT is designed for use as part of XSL, which is a stylesheet language for XML. In addition
to XSLT, XSL includes an XML vocabulary for specifying formatting. XSL specifies the styling
of an XML document by using XSLT to describe how the document is transformed into another
XML document that uses the formatting vocabulary.
http://www.w3.org/TR/xslt/* page(s) 5, 15, 18, 32–35, 73, 82, 87, 89, 92, 95, 96, 99,
114, 121, 149, 155, 159

XML Security Specifications Maintenance Working Group (XSSMWG)

The mission of this Working Group is to perform limited maintenance work on the basic XML
Security specifications, and suggest a charter for further work.
http://www.w3.org/2007/xmlsec/* page(s) 30, 36

152

http://www.w3.org/TR/xsl/
http://www.w3.org/TR/xslt/
http://www.w3.org/2007/xmlsec/

List of Figures

1.0.1 signed electronic documents . 2

1.0.2 OASIS-DSS itself . 2

2.1.1 A simple well-formed XML document . 4

2.1.5 DOCTYPE declaration defines the document type for XHTML 1.0 6

2.1.6 A local entity declaration overrides an external entity declaration 6

2.1.9 A well-formed complex and untidy XML document 7

2.2.2 An example showing the use of namespaces and namespace declarations. 10

2.2.7 Anonymous simple type and the simple top-level type 12

2.2.8 The complex top level type named PointNDType 12

2.2.10 targetNamespace in xmldsig-core-schema.xsd 13

2.2.11 recursive Schema . 14

2.2.12 Schema Patterns . 14

2.3.1 DOM Tree Representation . 17
2.3.2 XML document represented as XPath tree in Figure 2.3.4 19

2.3.3 XPath Tree Representation Legend . 19

2.3.4 XPath Tree Representation for Figure 2.3.2 . 20

2.3.14 Examples of relative URI references. 25

2.3.15 same-document reference vs external URI (reference) 26

2.3.16 Are those same-document references? . 26

2.3.17 Examples of fragment-only URI references. 27

2.3.24 RFC2396 [26] BNF relevant for URI fragment . 32

2.3.25 RFC2732 [28] BNF relevant for URI fragment . 32

2.3.26 Built-in Template Rules . 33

2.4.1 XML Digital Signatures Overview [27] with minor update. 37

2.4.2 XMLDSIG DFD Level 1 . 38

2.4.3 XMLDSIG DFD Level 2: The Processing Model (sign) 39

2.4.4 XMLDSIG DFD Level 2: The Processing Model (verify) 40

2.4.5 XMLDSIG DFD Level 3: The Reference Processing Model (sign) 41

2.5.1 Example outputs for C14n and C14n11 . 45

153

http://www.w3.org/TR/xmldsig-core/xmldsig-core-schema.xsd

LIST OF FIGURES LIST OF FIGURES

2.5.2 Example outputs from Exc-C14n and C14n11 . 47

2.5.3 Canonicalizations overview . 50

3.1.1 Signature processing with OASIS-DSS . 52

3.2.1 An simple example of a <dss:SignRequest> . 54

3.2.3 dss:RequestBaseType . 55

3.2.4 <dss:InputDocuments> . 56

3.2.5 <dss:Document> . 56

3.2.6 dss:DocumentBaseType . 56

3.2.7 <dss:DocumentType> . 57

3.2.8 Payload in various forms . 58

3.3.1 Simplified Basic Processing . 60

3.3.2 The reference processing can be split between clients and severs 60

3.3.3 <dss:TransformedData> . 61

3.3.4 <dss:DocumentHash> . 63

3.3.5 <dss:IncludeObject> . 65

3.3.6 <dss:SignaturePlacement> . 65

3.3.7 <dss:DocumentWithSignature> . 66

3.3.8 <dss:SignedReference> . 67

3.3.9 dss:ResponseBaseType . 69

3.3.10 <dss:SignResponse> . 70

3.3.11 <dss:SignatureObject> . 70

3.4.1 <dss:VerifyRequest> . 71

3.4.2 <dss:VerifyResponse> . 73

3.7.1 dss:AnyType . 75

3.7.2 <dss:OptionalInputs> and <dss:OptionalOutputs> 75

3.7.3 Wild-card matching elements from outside the targetnamespace. 76

3.7.4 Wild-card do not allow to match the complement of sets of namespaces. 76

4.0.1 Rounding XML
√

2.0 3 . 77

4.1.1 external parsed entity [6] . 79

4.1.2 XML . 79

4.1.3 Required changes to XML4 . 80

4.1.4 A simple example of a <dss:SignRequest> . 81

4.1.5 An XPath expression to filter whitespace nodes. 83

4.1.6 An XPath expression to filter whitespace nodes, yet respecting xml:space. 83

4.1.7 Mixed content in DTDs . 84

4.2.1 ValidationParameterType . 86

4.2.2 Enveloping legacy XML with Exc-C14n . 90

154

http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc157225013
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076032
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076034
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076033
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076034
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc114309498
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076035
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076036
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076069
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076071
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076071
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076072
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076049
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076053
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076037
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076074
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076029
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076039
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076039
http://tools.ietf.org/html/rfc2616#section-10.4.2

LIST OF FIGURES LIST OF FIGURES

4.2.3 Enveloping legacy XML with C14n and XML 1.1 90
4.2.4 Enveloping legacy XML with C14n and XML . 91
4.2.5 <ds:XPath> confusion. 92
4.2.6 XPointers are simpler. 93
4.2.7 Example 3.8 from C14n11. 94
4.2.8 Document subset expression to show that C14n11 is too complex. 94
4.2.9 Document subset expression to show that C14n is too complex. 94
4.3.1 dss:InlineXMLType used in dss:DocumentType . 97

5.1.1 Architecture . 102
5.2.1 The DssXpIOFactory produces DssXpIO Objects. 104
5.2.2 A DssXpIO Objects, processes an InputStream and writes to an Outputstream. . . . 105
5.2.3 Processors . 106
5.2.4 DssXpInputDocumentsProcessor . 107
5.2.5 ReferenceProgress . 109
5.3.1 Unmarshalling→ Processing→Marshalling . 110
5.3.2 Binding an Implementation class . 112
5.3.3 DOM Binding . 112
5.3.4 DOM binding for <ds:Signature> . 113
5.3.5 Shows how the SAX level processing is plugged in. 116
5.3.6 DssXpXMLFilter for SAX level extraction or passing all events into the DOM binding. 117

A.1.1 Pitfalls of XML in XML . 120
A.2.1 XSLT to normalise base64 . 121
A.3.1 instance document for recursive Schema . 122
A.3.2 recursive Schema . 123
A.4.1 Example of a ValidateType . 124
A.5.1 Well-formed complex XML document. 124
A.6.1 XML Alternatives based on LISP-like or Scheme-like Expressions 125
A.6.2 XML Alternatives 126
A.6.3 XML Alternatives mainly for simple text2html publishing 126
A.6.4 Xalan returns different results for those, why? . 127

155

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-XPath
http://docs.oasis-open.org/dss/v1.0/oasis-dss-core-spec-v1.0-os.html#_Toc159076034
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/#sec-Signature

LIST OF FIGURES LIST OF FIGURES

156

Index

API, 15

acronym (ACR), 6
API, 8, 16, 24, 78, 93, 99, 102

base URI reference, 150

C14n

default, 44
implicit, 44

C14n, 95
C14n

minimal, see minimal canonicalization
comment, 4, 6, 15, 16, 18, 22, 33, 41, 95, 98, 113–

115, 124
Content-type, see Internet media type, see Internet

media type
Crimson, 16
CRL, 51

default namespace, 10
declaration, 10

Digital Signature Services, see OASIS-DSS
Digital Signatures, 35

different from Handwritten Electronic Signa-
tures, 35

Directive, see EU Directive 1999/93/EC
document element, 6, 17, 18, 22, 43, 44, 97, 145
document node, 17, 18, 146
document order, 17, 59, 110, 111
DSS

different from OASIS-DSS, 2
OASIS-DSS, 67, 72
DTD, 5, 6, 47, 84, 98, 120

EU Directive 1999/93/EC, 36
European Directive, see EU Directive 1999/93/EC

fragment
interpretation, 30

Handwritten Electronic Signatures
different from Digital Signatures, 35

Infoset, 114
Internet media type, 27, 30
IRI, 32, 143
italics, 1, 6

JAXB, 111–113

Law, see EU Directive 1999/93/EC
LEIRI, 32

Markup-System, 80
MAY, 59
MIME type, see Internet media type, see Internet

media type
minimal canonicalization, 43

as <ds:Transform>, 43
mixed content, 4, 6, 40, 43, 55, 68, 84, 96, 97, 124,

126

namespace
declaration

superfluous, 43
unused, 43

prefix, 10
Namespace Prefix Desensitization, 48
non-deterministic content models, 13

157

INDEX INDEX

OASIS-DSS
different from DSS, 2

parser
Crimson, 16
Xerces, 16

PKI, 35
prefixed name, 10, 11, 45, 46, 145
processing instruction, 4, 6, 15, 18, 33, 35, 78, 98,

113–115, 124
prolog, 5, 6, 40, 78, 79, 81, 97, 114, 149
properly nested, 4
PSVI, 13
public identifier, 6

QName, 10, 11, 45, 46, 48, 49, 59, 97, 156
QNames

in content, 48

RELAX, 13
RELAX NG, 13

same-document reference, 27, 66
SAX, 15
ScC14n, 48
Schema, 11

instance, 12
patterns, 14

Schema

instance document, 13
complex type, 55, 137
simple type, 84, 137
simple inheritable attribute, 44, 58, 150
system identifier, 6

TC, 53
TREX, 13

Unique Particle Attribution Rule, 13
UPA-Rule, 13
URI

fragment

interpretation, 27

relative URI reference, 25, 27, 44, 89, 148,
153

same-document reference, 17, 25–29, 41, 57,
59, 65, 95, 113, 153

URI reference, 6, 25–28, 31, 41, 52, 57, 59,
60, 78, 89, 95, 146, 151

URI, 13, 15, 16, 23–32, 37, 39–41, 49, 52, 55, 58,
62, 65, 72, 73, 79–81, 95, 103, 137, 147,
148, 153, 156

visibly utilized namespace declaration, 45, 46

Xalan, 95, 115, 127

Xerces, 14, 16, 18, 115, 139

XML

binding framework, 111

marshalling, 111

notation, 15

unmarshalling, 111

XML

associate with Schema, 13

CDATA sections, 15–18

document, 4

extensibility, 5

forward compatibility, 5

Must Ignore Pattern, 5

parsed tree representation, 4

serialized representation, 4

XML, 4, 5, 7, 42, 99

xml:base, 44–46, 58, 78, 80, 96, 138, 150

xml:id, 16, 44, 138, 150

xml:lang, 44, 46, 58, 59, 78, 96, 146

xml:space, 44, 46, 58, 59, 78, 82–84, 96, 99, 146

xml declaration, 6, 44, 79, 81, 98, 99

XMLDSIG

core processing model, 38

reference processing model, 41

158

INDEX INDEX

XMLDSIG, 16, 36, 38, 59, 61, 63, 64, 83, 91
XML namespace, 44, 150
XMLNS

prefix, 11
prefix wild-cards not specified, 11

Schema

anonymous type, 12, 54, 55
complex type, 12
simple type, 12
Schema, viii, 2, 5, 7–9, 11–14, 16, 32, 36, 42–

44, 47–51, 57, 68, 70, 71, 73, 75, 76, 80,
84–86, 88, 102, 103, 111–113, 122, 123,
137, 139, 145–147, 153, 156, 157

Schema, 14, 23, 57, 68, 75, 111
XPath

root node, 17, 18, 140
XPath, 28
XPath 2.0, 23
XPointer

bare-name, 16
shorthand, 16

XPointer, 28, 31
XSLT

extensions, 35
XSLT 2.0, 35

159

	Statement
	Abstract
	Kurzfassung
	Acknowledgements
	Introduction
	Background
	The Extensible Markup Language (XML)
	The X and typing in XML
	XML, a good choice for a signature

	Namespaces and Types
	Namespaces help to extend XML grammars
	XML Schema (Schema)

	XML Technologies for Processing
	Simple API for XML (SAX)
	Document Object Model (DOM)
	XML Path Language Version 1.0 (XPath)
	Uniform Resource Identifier (URI)
	XML Pointer Language Version 1.0 (XPointer)
	Extensible Stylesheet Language for Transformation (XSLT)
	Cascading Style Sheets (CSS)

	Digital Signatures
	XML Digital Signatures

	Canonicalization
	Minimal Canonicalization (MC14n)
	C14n and C14n11
	Exclusive XML Canonicalization Version 1.0 (Exc-C14n)
	Schema Centric XML Canonicalization Version 1.0 (ScC14n)
	Canonicalizations overview

	OASIS-DSS
	Incentives for using OASIS-DSS
	Basics
	[language=XML,basicstyle=,keywordstyle=,breaklines=false,keepspaces=true]dss:RequestBaseType
	[language=XML,basicstyle=,keywordstyle=,breaklines=false,keepspaces=true]dss:DocumentBaseType
	[language=XML,basicstyle=,keywordstyle=,breaklines=false,keepspaces=true]dss:DocumentType - Forms of payload

	Signing
	Basic processing for signing using XMLDSIG
	Enter the processing at various stages
	Important optional inputs and outputs for signature creation
	[language=XML,basicstyle=,keywordstyle=,breaklines=false,keepspaces=true]<dss:IncludeObject> - Creating enveloping signatures
	[language=XML,basicstyle=,keywordstyle=,breaklines=false,keepspaces=true]<dss:SignaturePlacement> - Creating enveloped signatures
	[language=XML,basicstyle=,keywordstyle=,breaklines=false,keepspaces=true]<dss:SignedReference> - More control on reference generation
	Further optional inputs and outputs for signature creation
	Other optional inputs
	[language=XML,basicstyle=,keywordstyle=,breaklines=false,keepspaces=true]dss:ResponseBaseType - Returning signed documents
	[language=XML,basicstyle=,keywordstyle=,breaklines=false,keepspaces=true]<dss:SignResponse>

	Verifying
	Basic processing for verifying using XMLDSIG
	Important optional inputs and outputs for signature verification
	[language=XML,basicstyle=,keywordstyle=,breaklines=false,keepspaces=true]<dss:VerifyResponse>

	Signing, Verifying - concluding remarks
	OASIS-DSS Profiles
	OASIS-DSS protocol extension points
	Fixing the OASIS-DSS Schema

	Signing XML, weaknesses, solutions
	Change XML
	A Proposal for XML 1.4142
	Alternative proposal - xml-declaration
	Indention, Whitespace

	XMLDSIG and C14n
	C14n, remove whitespace by default?
	Making signatures robust against changes in whitespace is crucial.
	Broken Signatures
	Proper use of XSLT in XMLDSIG
	Enveloping legacy XML
	Wrapping Attacks
	C14n and the XPath Data Model
	URI References and Comments

	OASIS-DSS
	Context Free Extraction and Opaqueness

	Conclusions

	OASIS-DSS prototype library
	Architecture
	Design
	Components
	Processors
	URIDerferencer Decoration

	Data binding
	Java API for XML Binding (JAXB)
	Round-tripping and Infoset

	Implementation - Conclusions

	Appendix
	XML in XML
	XSLT to normalise base64
	Recursive Schema
	Example of a ValidateType
	An Example of a very complex XML document.
	XML Derivatives and Alternatives
	Bug in Xalan
	Bug in JAXB

	Bibliography
	Glossary
	Index

