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Abstract

We prove Strassen’s law of the iterated logarithm for sums
∑N

k=1 f(nkx),
where f is a smooth periodic function on the real line and (nk)k≥1 is an in-
creasing random sequence. Our results show that classical results of the theory
of lacunary series remain valid for sequences with random gaps, even in the
nonharmonic case and if the Hadamard gap condition fails.

1 Introduction

Let (nk)k≥1 be a sequence of positive integers satisfying the Hadamard gap condition

nk+1/nk ≥ q > 1. (1.1)

Salem and Zygmund [14] proved that (sin 2πnkx)k≥1 obeys the central limit theorem,
i.e.

1√
N/2

N∑
k=1

sin 2πnkx
d−→ N(0, 1) (1.2)

with respect to the probability space (0, 1) equipped with Borel sets and Lebesgue
measure. The corresponding law of the iterated logarithm

lim sup
N→∞

1√
N log logN

N∑
k=1

sin 2πnkx = 1 a.e. (1.3)

was proved by Erdős and Gál [7]. These results show that under the gap condition
(1.1) the functions sin 2πnkx behave like independent random variables. Erdős [6]
showed that the CLT (1.2) remains valid if we weaken the Hadamard gap condition
to

nk+1/nk ≥ 1 + ckk
−1/2, ck → ∞ (1.4)
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and this result is sharp, i.e. for any c > 0 there exists a sequence (nk) satisfying

nk+1/nk ≥ 1 + ck−1/2, k = 1, 2, . . .

such that the CLT (1.2) is false. The corresponding LIL was proved by Takahashi [18].
For sequences (nk)k≥1 growing slower than the speed defined by (1.4), the asymptotic
behavior of the partial sums of sin 2πnkx depends sensitively on the number theo-
retic properties of nk and deciding the validity of the CLT is requires giving precise
asymptotic estimates for the number of solutions of Diophantine equations of the form

nk ± nℓ = a, 1 ≤ k, ℓ ≤ N, (1.5)

which is a very difficult problem. (See Berkes [2] for a detailed discussion of this
number-theoretic connection.) On the other hand, the equation becomes manageable
for random nk (see e.g. Halberstam and Roth [11], Chapter 3) and thus it is natural to
investigate the asymptotic behavior of lacunary series with random gaps. Fukuyama
[8], [9] used such series to show the existence of a sequence (nk)k≥1 with bounded
gaps nk+1−nk, such that (sinnkx)k≥1 satisfies the CLT (1.2) with a limiting variance
less than 1. For a similar construction with slightly larger gaps, see Berkes [3]; for
constructions for the law of the iterated logarithm and metric discrepancy results,
see Aitleitner and Fukuyama [1], Fukuyama [8]. A simple model was investigated by
Schatte [16] who assumed that (nk)k≥1 is an increasing random walk, i.e. nk+1 − nk

are i.i.d. positive random variables. Schatte’s main interest was the behavior of the
discrepancy of {nkx}; his results were extended by Weber [19] and Berkes and Weber
[4]. The purpose of the present paper is to prove a functional law of the iterated
logarithm for sums

∑N
k=1 f(nkx) for the model.

Let X1, X2, . . . be i.i.d. positive random variables on some probability space (Ω,A,P)
and put Sk =

∑k
j=1Xj. Let f : R → R be a measurable function satisfying

f(x+ 1) = f(x),

∫ 1

0

f(x)dx = 0,

∫ 1

0

f 2(x)dx = 1. (1.6)

Put

Ax = 1 + 2
∞∑
k=1

Ef(U)f(U + Skx), (1.7)

where U is a uniform (0, 1) random variable, independent of (Xj)j≥1. Clearly, the
existence of such an U can always be guaranteed by an enlargement of the probability
space. The absolute convergence of the series in (1.7) will follow from the proof of
our theorem below. We shall establish the following version of Strassen’s law of the
iterated logarithm.

Theorem. Assume that X1 is bounded with bounded density and assume that f is
a Lipschitz function satisfying (1.6). For any x ∈ R define the sequence (Γx

n)n∈N of
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functions on [0, 1] by

Γx
n(0) = 0, Γx

n(k/n) = (2n log log n)−1/2

k∑
j=1

f(Sjx) (k = 0, . . . , n)

and Γx
n(t) is linear on [k/n, (k + 1)/n] (k = 0, . . . , n − 1). Then P-almost surely

(Γx
n)n∈N is relatively compact in C[0, 1] for almost all all x and the set of its limit

points coincides with the scaled Strassen set

Kx = {y(t) : y is absolutely continuous in [0, 1], y(0) = 0 and
∫ 2

0

y′(t)2dt ≤ Ax}.

As an immediate consequence, we get P-almost surely

lim sup
n→∞

(2n log log n)−1/2

n∑
k=1

f(Skx) = A1/2
x for almost all x. (1.8)

Note that the limsup in (1.8) is not a constant as in the law of the iterated logarithm
for i.i.d. random variables, but a function of x. In the nonrandom lacunary case, the
existence of nonconstant limits in the LIL was discovered by Erdős and Fortet (1949),
see [12], p. 655. On the other hand, Gaposhkin [10] proved that the LIL holds for∑N

k=1 f(nkx) with a constant limsup provided nk+1/nk → ∞ or if limk→∞ nk+1/nk =

α > 1 where αr is irrational for r = 1, 2, . . .. Very little is known in the nonrandom
case if nk grows slower than exponential. Nonconstant limits appear also in the LIL for
lacunary orthogonal series, see e.g. Weiss [20]. Theorem 1 also leads, just as Strassen’s
LIL in the i.i.d. case, to a whole class of asymptotic results for f(Sjx). For example
we get, setting Tk =

∑k
j=1 f(Sjx)

lim sup
n→∞

n−a/2(2 log log n)−1−a/2

n∑
k=1

|Tk|a = Aa/2
x

P-almost surely for almost all x ∈ R. Another consequence of Theorem 1 is P-almost
surely

lim sup
n→∞

1

n
#{k ≤ n : (2k log log k)−1/2Tk ≥ cA1/2

x } = 1− exp
{
−4
(
c−2 − 1

)}
a.e.

describing how frequently the ratio (2k log log k)−1/2Tk gets close to its limsup A
1/2
x .

For further consequences of Strassen type laws of the iterated logarithm see [17].
Note that we assumed the r.v.’s Xj to have a density, and thus the elements of

the random sequence Sk, k = 1, 2, . . . are not integers. Our method does not work for
lattice valued Xj and the existing results in the field (see e.g. Schatte [16], Berkes
and Weber [4]) are less precise.
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2 Proof of the theorem

Lemma 1. Fix l ∈ N, x ̸= 0 and define a sequence of sets by

I1 := {1, 2, . . . , β}
I2 := {p1, p1 + 1, . . . , p1 + β1} where p1 ≥ β + l + 2

...

In := {pn−1, pn−1 + 1, . . . , pn−1 + βn−1} where pn−1 ≥ pn−2 + βn−2 + l + 2

...

Then there exists a sequence δx1 , δ
x
2 , . . . of random variables satisfying the following

properties:

(i) |δxn| ≤ Cxe
−λxl for all n ∈ N, where λx and Cx are some positive quantities that

depend on x only.

(ii) The random variables∑
i∈I1

f(Six),
∑
i∈I2

f(Six− δx1 ), . . . ,
∑
i∈In

f(Six− δxn−1), . . .

are independent.

Proof. We will construct the sequence (δxn)n∈N by induction. Define

δx1 := {(Sβ+l − Sβ)x} − F{(Sβ+l−Sβ)x} ({(Sβ+l − Sβ)x}) .

By the assumptions of our theorem and Theorem 1 of Schatte [15] we have

sup
t

|F{Snx}(t)− t| ≤ Cxe
−λxn n ∈ N. (2.9)

Since Sβ+l − Sβ
d
= Sl for all β and all l, it follows easily that |δx1 | ≤ Cxe

−λxl. Further-
more, letting {·} denote fractional part, we have

{Sp1x− δx1} =
{
Sp1x− {(Sβ+l − Sβ)x}+ F{(Sβ+l−Sβ)x} ({(Sβ+l − Sβ)x})

}
=
{
(X1 + · · ·+Xβ)x+ (Xβ+l+1 + · · ·+Xp) x

+ F{(Sβ+l−Sβ)x} ({(Sβ+l − Sβ)x})
}
,

since {x} has period 1. Similarly,

{Sp1+1x− δx1} =
{
(X1 + · · ·+Xβ)x+ (Xβ+l+1 + · · ·+Xp1+1) x

+ F{(Sβ+l−Sβ)x} ({(Sβ+l − Sβ)x})
}

...
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{Sp1+β1x− δx1} =
{
(X1 + · · ·+Xβ)x+ (Xβ+l+1 + · · ·+Xp1+1) x

+ F{(Sβ+l−Sβ)x} ({(Sβ+l − Sβ)x})
}
.

Thus applying Lemma 1 of [16] with

X = (X1x,X2x, . . . , Xβx)

U = F{(Sβ+l−Sβ)x} ({(Sβ+l − Sβ)x})

(W1, . . . ,Wp1+β1) = ((Xβ+l+1 + . . . Xp1) x, . . . , (Xβ+l+1 + · · ·+Xp1+β1)x)

W = X1x+ · · ·+Xβx

it follows that ∑
j∈I1

f(Sjx) is independent of
∑
j∈I2

f(Sjx− δx1 ).

Now suppose δx1 , . . . , δ
x
n−1 have been constructed and define

Y x
n =

{(
Spn−1+βn−1+l − Spn−1+βn−1

)
x
}
, δxn = Y x

n − FY x
n
(Y x

n ).

As before, it follows easily that |δxn| ≤ Cxe
−λxl. We let

X =
(
X1x, . . . , Xpn−1+βn−1 , δ

x
1 , . . . , δ

x
n−1

)
U = FY x

n
(Y x

n )

W = X1x+ · · ·+Xpn−1+βn−1x

(W1, . . . ,Wpn+βn)

=
(
Xpn−1+βn−1+l+1x+ · · ·+Xpnx, . . . , Xpn−1+βn−1+l+1 + · · ·+Xpn+βnx

)
.

Then, again by Lemma 1 of [16] it follows that∑
i∈In+1

f(Six− δxn) is independent of
(∑

i∈I1

f(Six), . . . ,
∑
i∈In

f(Six− δxn−1)

)
,

which completes the induction step and the proof of the lemma.

Put m̃k =
k∑

j=1

⌊j1/2⌋, m̂k =
k∑

j=1

⌊j1/4⌋ and let mk = m̃k + m̂k. Using Lemma 1 we

can construct sequences (∆x
k)k∈N, (Πx

k)k∈N of random variables such that setting

Tk :=

mk−1+⌊
√
k⌋∑

j=mk−1+1

(
f(Sjx−∆x

k−1)− Ef(Sjx−∆k−1)
)

T ∗
k :=

mk∑
j=mk−1+⌊

√
k⌋+1

(
f(Sjx− Πx

k−1)− Ef(Sjx− Πx
k−1

)
we have

(i) ∆x
0 = 0; |∆x

k| ≤ Cxe
−λx

4√
k; (Tk)k∈N is a sequence of independent random

variables,
(ii) Πx

0 = 0; |Πx
k| ≤ Cxe

−λx

√
k; (T ∗

k )k∈N is a sequence of independent random
variables.
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Lemma 2.
n∑

k=1

Var(Tk) ∼ Axm̃n,
n∑

k=1

Var(T ∗
k ) ∼ Axm̂n.

where Ax is defined by (1.7).

Proof. In what follows Cx and λx will denote positive numbers, possibly different
at different places, depending (at most) on x and the Lipschitz constant α of the
function f . Clearly

Var(Tk) =

mk−1+⌊
√
k⌋∑

j=mk−1+1

Ef 2(Sjx−∆x
k−1)

+ 2

⌊
√
k⌋−1∑
ϱ=1

mk−1+⌊
√
k⌋−ϱ∑

l=mk−1+1

Ef(Slx−∆x
k−1)f(Sl+ϱx−∆x

k−1)− L(k)
x

where

L(k)
x :=

mk−1+⌊
√
k⌋∑

j=mk−1+1

Ef(Sjx−∆x
k−1)

2

.

By relation (i), (2.9) and the Lipschitz property of f we have∣∣f(Sjx−∆x
k−1)− f(Sjx)

∣∣ ≤ C|∆x
k−1|α ≤ Cxe

−λx
4√k−1

and ∣∣Ef(Sjx)
∣∣ = ∣∣Ef({Sjx}

)
− Ef

(
F{Sjx}

(
{Sjx}

))∣∣ ≤ Cxe
−λxj.

Putting these together yields

L(k)
x ≤ Cxke

−λx
4√k−1.

Let now

Λx
(k) :=

mk−1+⌊
√
k⌋∑

j=mk−1+1

γx
j , Ox

(k) :=

mk−1+
√
k∑

j=mk−1+1

εxj ,

where

γx
j = Ef 2(Sjx−∆x

k−1)− Ef 2(Sjx)

εxj = Ef 2(Sjx)− Ef 2
(
F{Sjx}({Sjx})

)
.

Repeating the argument above for the function f 2 − 1, we get

mk−1+⌊
√
k⌋∑

j=mk−1+1

Ef 2(Sjx−∆x
k−1) = ⌊

√
k⌋+ Λx

(k) +Ox
(k)

and
|Λx

(k)| ≤ Cx

√
ke−λx(k−1)1/4 , |Ox

k| ≤ Cxe
−λx(mk−1+1).
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We now turn to the cross terms. Define T l
ϱ = Xl+1 + · · ·+Xl+ϱ and split the product

expectation Ef(Slx−∆x
k−1)f(Sl+ϱx−∆x

k−1) into the sum of terms

exl := Ef(Slx−∆x
k−1)f(Sl+ϱx−∆x

k−1)− Ef(Slx)f(Sl+ϱx−∆x
k−1)

gxl := Ef(Slx)f(Sl+ϱx−∆k−1x)− Ef(Slx)f(Sl+ϱx)

hx
l := Ef(Slx)f(Sl+ϱx)− Ef

(
F{Slx}({Slx})

)
f(Sl+ϱx)

ixl := Ef
(
F{Slx}({Slx})

)
f(Slx+ Tϱ

lx)− Ef
(
F{Slx}({Slx})

)
f
(
F{Slx}({Slx}) + Tϱ

lx
)

C l,x
ϱ := Ef

(
F{Slx}({Slx})

)
f
(
F{Slx}({Slx}) + Tϱ

lx
)
.

Here F{Slx}({Slx}) is a uniformly distributed variable independent of T l
ϱ and thus

letting U denote a uniform random variable independent of (Xj)j≥1,

C l,x
ϱ = Cx

ϱ = Ef(U)f(U + Sϱ)

does not depend on l. Exactly as before,

|exl | ≤ Cxe
−λx(k−1)1/4 |gxl | ≤ Cxe

−λx(k−1)1/4 |hx
l | ≤ Cxe

−λxl |ixl | ≤ Cxe
−λxl.

Thus letting

Ex
(k) = 2

⌊
√
k⌋−1∑
ϱ=1

mk−1+⌊
√
k⌋−ϱ∑

l=mk−1+1

exl , Gx
(k) = 2

⌊
√
k⌋−1∑
ϱ=1

mk−1+⌊
√
k⌋−ϱ∑

l=mk−1+1

gxl

Hx
(k) = 2

⌊
√
k⌋−1∑
ϱ=1

mk−1+⌊
√
k⌋−ϱ∑

l=mk−1+1

hx
l , Ix

(k) = 2

⌊
√
k⌋−1∑
ϱ=1

mk−1+⌊
√
k⌋−ϱ∑

l=mk−1+1

ixl

we have

|Ex
(k)| ≤ Cxke

−λx(k−1)1/4 , |Gx
(k)| ≤ Cxke

−λx(k−1)1/4

|Hx
(k)| ≤ Cx

√
k e−αλx(mk−1+1), |Ix(k)| ≤ Cx

√
k e−αλx(mk−1+1).

Furthermore,

⌊
√
k⌋−1∑
ϱ=1

mk−1+⌊
√
k⌋−ϱ∑

l=mk−1+1

Cϱ
l,x =

⌊
√
k⌋−1∑
ϱ=1

mk−1+⌊
√
k⌋−ϱ∑

l=mk−1+1

Cx
ϱ =

= ⌊
√
k⌋

∞∑
ϱ=1

Cx
ϱ − ⌊

√
k⌋

∞∑
ϱ=⌊

√
k⌋

Cx
ϱ −

⌊
√
k⌋−1∑
ϱ=1

ϱCx
ϱ ,

Thus using the independence of the Tk we get

Var

(
n∑

k=1

Tk

)
=

n∑
k=1

Var(Tk) = O(1) +
n∑

k=4

Var(Tk)
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= O(1) +
n∑

k=4

(
⌊
√
k⌋+ Λx

(k) +Ox
(k) + 2Ex

(k) + 2Gx
(k) + 2Hx

(k) + 2Ix
(k)

+ ⌊
√
k⌋ · 2

∞∑
ϱ=1

Cx
ϱ − 2⌊

√
k⌋

∞∑
ϱ=⌊

√
k⌋

Cx
ϱ − 2

⌊
√
k⌋−1∑
ϱ=1

ϱCx
ϱ − Lx

(k)

)
.

Using the same techniques as before, we get |Cx
ϱ | ≤ Cxe

−λxϱ. Hence the previously
established inequalities yield

Var

(
n∑

k=1

Tk

)
∼ Axm̃n ∼ Axmn.

Similarly,

Var
( n∑

k=1

T ∗
k

)
∼ Axm̃n,

completing the proof of Lemma 2.

We now turn to the proof of Theorem 1. Put Bx
n =

n∑
k=1

Var(Tk) and define se-

quences (Ψx
n)n∈N, (ζxn)n∈N, (Φx

n)n∈N, (θxn) − n ∈ N) of random functions on [0, 1] such
that

Ψx
n(0) = 0, Ψx

n (B
x
k/B

x
n) = (2Bx

n log logB
x
n)

−1/2

k∑
j=1

Tj,

ζxn(0) = 0, ζxn (B
x
k/B

x
n) = (2Bx

n log logB
x
n)

−1/2

k∑
j=1

(Tj + T ∗
j ),

Φx
n(0) = 0, Φx

n (B
x
k/B

x
n) = (2Bx

n log logB
x
n)

−1/2

mk∑
j=1

f(Sjx)

θxn(0) = 0 θxn(B
x
k/B

x
n) = (2Axmn log logmn)

−1/2

mk∑
j=1

f(Sjx)

for k = 0, 1, . . . , n and Ψx
n, ζxn , Φx

n, θxn are linear on [Bx
k/B

x
n, B

x
k+1/B

x
n]; k = 0, . . . , n−1.

Clearly |Tj| ≤ Cj1/2, Bx
n ∼ Cn3/2 and thus Kolmogorov’s condition on the LIL is

satisfied for the sequence (Tj)j∈N. Thus by a result of Major [13] it follows that
(Ψx

n)n∈N is P-almost surely relatively compact in C[0, 1] and the set of its limit points
agrees with the Strassen set. Similarly, the LIL holds for (T ∗

j )j∈N, implying that
P-almost surely

sup
1≤k≤n

∣∣∣∣∣
k∑

j=1

T ∗
j

∣∣∣∣∣ = o(B2
n log logBn)

and consequently sup0≤t≤1 |Ψx
n(t) − ζxn(t)| → 0. On the other hand, the estimate for

δxn in Lemma 1 and the Lipschitz property of f imply that P-almost surely∣∣∣∣∣
k∑

j=1

(Tj + T ∗
j )−

mk∑
j=1

f(Sjx)

∣∣∣∣∣ = O(1)
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and consequently sup0≤t≤1 |ζxn(t)− Φx
n(t)| → 0. Thus (Φx

n)n∈N is also P-almost surely
relatively compact in C[0, 1] and the set of its limit points agrees with the Strassen
set. By the first relation of Lemma 2 this holds also for (θxn)n∈N.

Next we introduce the random function

ξxn(0) = 0, ξxn(mk/mn) = (2Axmn log logmn)
−1/2

mk∑
j=1

f(Sjx)

for k = 0, 1, . . . , n and ξxn is linear on [mk/mn,mk+1/mn], k = 0, . . . , n − 1. This is
the analogue of θxn when the breakpoints are the numbers mk/mn instead of Bx

k/B
x
n.

Let Tn : [0, 1] → [0, 1] be the transformation that maps [mk/mn,mk+1/mn] linearly to
[Bx

k/B
x
n, B

x
k+1/B

x
n] for k = 0, . . . , n. Clearly ξxn(t) = θxn(Tn(t)) and

sup
0≤t≤1

|Tn(t)− t| = max
0≤k≤n

|Bx
k/B

x
n −mk/mn|.

Since Bx
n ∼ Axmn the right hand side of the last relation tends to 0 as n → ∞. By

the P-a.s. equicontinuity of (θxn)n∈N this implies that ∥ξxn − θxn∥ → 0 P-almost surely,
where ∥ · ∥ denotes the sup norm. Thus (ξxn)n∈N itself is P-almost surely relatively
compact in C[0, 1] and the set of its limit points coincides with the Strassen set. This
proves the validity of the Theorem along the indices n = mk.

To prove the theorem for all n, let us note that by the Arzela-Ascoli theorem the
relative compactness of the sequence (Γx

n)n∈N in C[0, 1] is equivalent to its equiconti-
nuity, which, in turn, is equivalent to the statement that for any ε > 0 there exists a
δ = δ(ε) > 0 such that for any n ≥ 1 we have∣∣∣∣∣ ∑

k≤j≤ℓ

f(Sjx)

∣∣∣∣∣ ≤ ε(2n log log n)1/2

provided ℓ− k ≤ δn. By what we proved above, this statement is valid if n is of the
form mk for some k. But since

mk+1/mk → 1 and (log logmk+1)/(log logmk) → 1, (2.10)

this statement will be valid for all n, i.e. (Γx
n)n∈N is P-almost surely equicontinuous.

Note also that for 3 ≤ n ≤ n′ we have, as observed in [5],

Γx
n′

(
n′

n
t

)
=

(
n log log n

n′ log log n′

)1/2

Γx
n(t)

for points of the form t = k/n. Now if mk ≤ n < n′ ≤ mk+1 then the last formula,
(2.10) and the already proved equicontinuity of (Γx

n)n∈N imply that for k ≥ k(ε) we
have |Γx

n(t)−Γx
n′(t)| ≤ ε for all 0 ≤ t, t′ ≤ 1. Thus the class of limit points of (Γx

n)n∈N
in C[0, 1] along the whole sequence n is the same as along the subsequence (mk)k∈N,
i.e. Kx. This completes the proof of our theorem.
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