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‘ 1. Model and Methods I

e FM Heisenberg model
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e Full diagonalization

e Time Evolving Block Decimation (TEBD)[L 2
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B Matrix Product State representation of |¢)

B Suzuki-Trotter expansion: U ~ [ Liceven Uiit1 1 Licodd Ui,i+1
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B Time evolution H H>

B Observables and

Correlators
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Time evolution of single-spin excitation from fer-

WL

romagnetic state

att=0, a spinis flipped from the aligned state in the middle
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Time evolution of two-spin excitation from ferro-
magnetic state

2. Evolution of excitations from FM

ground state

<S?>(t) for Heisenberg chain with ny =-1J, =0
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<S?>(t) for Heisenberg chain with ny =-1,J,=1

att=0, a spinis flipped from the aligned state in the middle
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(S)(t), =0

lution of <SZ>(t) in heisenberg chain with 51 sites, n 2, withJxy =1,jz=0.7
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exact time evolution of <S_>(t) in heisenbe
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(S*)(t), J, = 0.7

in heisenberg chain, n
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(S7)(t), J. = 1.0
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Integrated spin density of upper branch

spin density fo Heisenberg chain (JZ = 0.5,JXy =1). Att=0,

two spins were flipped from the ferromagnetic state. This is a snapshot at t = 20 —0.455
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Spin density of the chain at t = 20 after two-spin excitation at  Integrated spin density of the fast propagation branch as a
t =0 function of J,

Entanglement (J.=1.2)
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Time evolution of the entanglement entropy. Two-spin excitation,
J, =1.2.

Time evolution of three-spin
excitation from ferromagnetic
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probability of finding second and third nearest neighbours in an up—up-up state
nup =3,withJxy=1,jz=1.2
startstate: saturated FM state with 3 up spins in the middle
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B Three propagation branches: single, two and three particle
branches at different velocities

M Dispersion relation for M-string excitations 4]
E(k) = _Sir??]l\;u) (cos(Mp) — (=1)™ cos(k)), where A= — cos(u)

Speed of propagation
M Group velocity v(k) = ‘fi—% and DOS p(v) = [ (v — ‘é—%)dk

B Single-magnon states
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density of states p(v) for as a function of the group velocity v
for the single magnon and two bound magnons dispersion

DOS:

B Two-magnon bound states

at v = +1
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B Three-magnon bound states :
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Bound state velocities
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o, Velocity of [111) branch as a function of J,, evaluated by

measuring the time when the corresponding maximum arrives
at the boundary of the system.

Velocity of [11) branch as a function of J,, evaluated by
measuring the time when the corresponding maximum arrives
at the boundary of the system.

ldentical behavior for AF and FM

B Same time evolution for AF and FM when starting from same
initial state with real coefficients
e H(A) - —H(—A) by bipartite rotation
e i/ and —H have same time evolution

(O(t)) = (0@))" = (Yle™ O™ )" = (Yle™ O™ |y)) = (O(-1))

B ror J, > 0: Repulsively bound states
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(S*)(t), J, = 2.8

Nearest-neighbor correlations

Pt or |[41), J, =1.2

B Two distinct propagation branches: single and two particle

branches at different velocities

P(\Tﬂ), Jz = 1.2

.Velocity of upper branch independent of J,

-Velocity of lower branch decreases with increasing J,

B At large J, bound states dominate

‘ 3. Analytical considerations |

Bethe ansatz for FM excitations
. General wave function ansatz
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N Single spin flip excitations: one-magnon states

E(k) = (cos(k) — A)

B Two spin flip excitations: two-magnon states

BTwo spin excitation spec- S . q
trum of isotropic Heisenberg :
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— two-magnon scattering SRR
states (C; and C,) IR
— two-magnon bound states LI
(C3)— 2-strings =

o o p °
@ &

o o a S -
CCCCC

BDispersion relation of two-
magnon bound states/4 .
For A < 1: not all values of il
k are allowed .

4. Evolution of excitations from AF

ground state at finite densities

PO)(t), J. = 1.2
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B Initial state: AF ground state at fill-
ing factor n = 0.3 with rectangular
magnetic field at two sites

B Anti bound states stable at finite
densities n < 0.5.

* B—field

B No distinct anti bound states seen for
n > 0.5.

B Decrease of speed of propagation
with increasing n

sites
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‘ 5. Conclusions |

.Strings of M flipped spins in FM background form bound
states, for both AF and FM coupling

B Linearly propagating branches of 1,2,...M bound spins for |A|
beyond threshold

B Bound states dominate at large J,

.Velocity of the lowest propagation branch:
e Two-spin bound states: v =1/(2J.)
e Three-spin bound states: v =1/(4J — 1)

B Bound two-spin states in AF are also stable at finite densi-
ties n < 0.5, speed of propagation of the two spin excitations
decreases with increasing n




