Propagation of Bound States in Heisenberg XXZ Chains

M. Ganahl, E. Rabel, H.G. Evertz

TU GRAZ, Austria

1. Model and Methods

- FM Heisenberg model

$$
\begin{aligned}
H & =J_{x y} \sum_{i} \Delta S_{i}^{z} S_{i+1}^{z}+\frac{1}{2}\left(S_{i}^{+} S_{i+1}^{-}+S_{i}^{-} S_{i+1}^{+}\right) \\
\Delta & =\frac{J_{z}}{J_{x y}}, \quad J_{x y}=-1
\end{aligned}
$$

- Full diagonalization
- Time Evolving Block Decimation (TEBD) ${ }^{[1,2}$
- Matrix Product State representation of $\langle\psi\rangle$

Suzuki-Trotter expansion: $\hat{U} \approx \prod_{i=\text { even }} \hat{U}_{i, i+1} \prod_{i=o d d} \hat{U}_{i, i+1}$

Observables and

Evolution of excitations from FM ground state

Time evolution of single-spin excitation from ferromagnetic state

$\left\langle S^{z}\right\rangle(\mathbf{t}), J_{z}=0$

$\left\langle S^{z}\right\rangle(\mathbf{t}), J_{z}=1$

Time evolution of two-spin excitation from ferromagnetic state

$\left\langle S^{z}\right\rangle(\mathbf{t}), J_{z}=1.0$
$\left\langle S^{z}\right\rangle(\mathbf{t}), J_{z}=0.9$

$\left\langle S^{z}\right\rangle(\mathrm{t}), J_{z}=2.8$

Nearest-neighbor correlations

$\mathcal{P}(|\uparrow \downarrow\rangle$ or $|\downarrow \uparrow\rangle), J_{z}=1.2$

$\mathcal{P}(|\uparrow \uparrow\rangle), J_{z}=1.2$

Two distinct propagation branches: single and two particle branches at different velocities
Velocity of upper branch independent of J_{z}
Velocity of lower branch decreases with increasing J_{z} At large J_{z} bound states dominate

Integrated spin density of upper branch

Entanglement ($J_{z}=1.2$)

Time evolution of three-spin excitation from ferromagnetic

$\left\langle S^{z}\right\rangle(\mathbf{t}), J_{z}=1.2$
 branches at different velocities

3. Analytical considerations

Bethe ansatz for FM excitations
General wave function ansatz

$$
\psi\left(x_{1}, \ldots, x_{M}\right)=\sum_{\mathcal{P}} A(\mathcal{P}) \prod_{j=1}^{M} e^{x_{j} k_{\mathcal{P}}}
$$

- Single spin flip excitations: one-magnon states
$E(k)=(\cos (k)-\Delta)$
Two spin flip excitations: two-magnon states
-Two spin excitation spectrum of isotropic Heisenberg chain with pbc, 36 sites [3] \rightarrow two-magnon scattering states (C_{1} and C_{2})
\rightarrow two-magnon bound states $\left(\mathrm{C}_{3}\right) \rightarrow 2$-strings

Dispersion relation of two-
For $\Delta<1$: not all values of k are allowed
$E(k)=-J_{x y}\left(\Delta-\frac{1}{2 \Delta}-\frac{1}{2 \Delta} \cos (k)\right)$

References

[1] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003); 93, 040502 (2004) [2] A.J. Daley et al., J. Stat. Mech. 2004, P04005 (2004).
[3] M. Karbach and G. Müller, Computers in Physics 11, 36 (1997), cond mat/9809162 (1998).
[4] B. Sutherland, Beautiful Models (World Scientific, 2004) [5] R. G. Pereira, S. R. White, and I. Affleck, Phys. Rev. B 79, 165113 (2009).
\square Dispersion relation for M-string excitations ${ }^{[4]}$ $E(k)=-\frac{\sin \mu}{\sin (M \mu)}\left(\cos (M \mu)-(-1)^{M} \cos (k)\right), \quad$ where $\quad \Delta \equiv-\cos (\mu)$

Speed of propagation
\square Group velocity $v(k)=\frac{d E}{d k}$ and DOS $\rho(v)=\int \delta\left(v-\frac{d E}{d k}\right) d k$

- Single-magnon states

DOS: singularities at $v= \pm 1$

- Two-magnon bound states

DOS: for $|\Delta|<1 / \sqrt{2}$:
singularities at $v= \pm \frac{1}{2 \lambda}$

$$
\begin{aligned}
& v(k)=-\frac{1}{2 J_{z}} \sin (k) \\
& \rho(v)=\frac{2 \Delta}{\sqrt{1-(2 \Delta v)^{2}}}
\end{aligned}
$$

$v(k)=-\sin (k)$
$\rho(v)=\frac{N}{2 \pi} \quad \begin{gathered}1 \\ \sqrt{1-v}\end{gathered}$

- Three-magnon bound states

DOS: singularities at $v= \pm \frac{1}{4, t^{2}-1}$
Bound state velocities

$$
v(k)=-\frac{\sin (\mu)}{\sin (3 \mu)} \sin (k)
$$

$$
\rho(v)=\frac{\sin (\mu)}{\sin (3 \mu)} \frac{1}{\sqrt{1-\left(\frac{\sin (3 \mu)}{\sin (\mu)} v\right)^{2}}}
$$ vs. numerica results

Identical behavior for AF and FM
\square Same time evolution for AF and FM when starting from same initial state with real coefficients

- $H(\Delta) \rightarrow-H(-\Delta)$ by bipartite rotation
- H and $-H$ have same time evolution
$\langle O(t)\rangle=\langle O(t)\rangle^{*}=\langle\psi| e^{i H t} O e^{-i H t}|\psi\rangle^{*}=\langle\psi| e^{-i H t} O e^{i H t}|\psi\rangle=\langle O(-t)\rangle$
\square For $J_{z}>0$: Repulsively bound states

4. Evolution of excitations from AF ground state at finite densities

5. Conclusions

\square Strings of M flipped spins in FM background form bound states, for both AF and FM coupling
\square Linearly propagating branches of $1,2, \ldots \mathrm{M}$ bound spins for $|\Delta|$ beyond threshold
\square Bound states dominate at large J_{z}
\square Velocity of the lowest propagation branch -Two-spin bound states: $v=1 /\left(2 J_{z}\right)$ -Three-spin bound states: $v=1 /\left(4 J_{z}^{2}-1\right)$

Bound two-spin states in AF are also stable at finite densities $n<0.5$, speed of propagation of the two spin excitations decreases with increasing n

