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1. Model and Methods
• FM Heisenberg model

H = Jxy
∑

i

∆Szi S
z
i+1 +

1

2
(S+i S

−
i+1 + S−i S

+
i+1)

∆ =
Jz
Jxy

, Jxy = −1

• Full diagonalization
• Time Evolving Blok Deimation (TEBD)[1, 2]

�Matrix Produt State representation of |ψ〉
� Suzuki-Trotter expansion: Û ≈ ∏

i=even Ûi,i+1
∏

i=odd Ûi,i+1

�Time evolution Ui i+1Ui i+1 Ui i+1
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�
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2. Evolution of exitations from FM
ground state

Time evolution of single-spin exitation from fer-romagneti state
<Sz>(t) for Heisenberg chain with J

xy
 = −1, J

z
 =0

at t = 0, a spin is flipped from the aligned state in the middle
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〈Sz〉(t), Jz = 0

<Sz>(t) for Heisenberg chain with J
xy

 = −1, J
z
 = 1

at t = 0, a spin is flipped from the aligned state in the middle
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〈Sz〉(t), Jz = 1

Time evolution of two-spin exitation from ferro-magneti state
exact time evolution of <S

z
>(t) in heisenberg chain with 51 sites, n

up
 = 2, with Jxy = 1, jz = 0.7
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〈Sz〉(t), Jz = 0.7

exact time evolution of <S
z
>(t) in heisenberg chain with 51 sites, n

up
 = 2, with Jxy = 1, jz = 0.9
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〈Sz〉(t), Jz = 0.9
<S

z
> in heisenberg chain, n

up
 = 2, with Jxy = 1, jz = 1.2, TEBD time evolution

χ =70
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〈Sz〉(t), Jz = 1.0

exact time evolution of <S
z
>(t) in heisenberg chain with 51 sites, n

up
 = 2, with Jxy = 1, jz = 2.8
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〈Sz〉(t), Jz = 2.8
Nearest-neighbor orrelations

up−down probability of nearest neighbours, n
up

 = 2, with Jxy = 1, jz = 1.2, TEBD time evolution

χ = 70
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P(|↑↓〉 or |↓↑〉), Jz = 1.2

up−up probability of nearest neighbours, n
up

 = 2, with Jxy = 1, jz = 1.2

for a 50 sites Heisenberg chain computed with TEBD, χ = 60, dt = 0.05
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�Two distint propagation branhes: single and two partilebranhes at di�erent veloities
�Veloity of upper branh independent of Jz
�Veloity of lower branh dereases with inreasing Jz

�At large Jz bound states dominate

Integrated spin density of upper branh
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spin density fo Heisenberg chain (J
z
 = 0.5,J

xy
 = 1). At t = 0,

two spins were flipped from the ferromagnetic state. This is a snapshot at t = 20

integrate over
the first peak
for different J

z

Spin density of the hain at t = 20 after two-spin exitation at

t = 0
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Decrease of total spin of the first propagation branch with J
z

2 up spins in ferromagnetic groundstate

J
z

<
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z >

Integrated spin density of the fast propagation branh as a

funtion of Jz

Entanglement (Jz = 1.2)

Time evolution of the entanglement entropy. Two-spin exitation,

Jz = 1.2.

Time evolution of three-spinexitation from ferromagnetistate
<S

z
>(t) in heisenberg chain, n

up
 = 3, with Jxy = 1, jz = 1.2, startstate: saturated FM state with 3 up spins in the middle
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〈Sz〉(t), Jz = 1.2

probability of finding nearest neighbours in an up−down state, n
up

 = 3, with Jxy = 1, jz = 1.2,

startstate: saturated FM state with 3 up spins in the middle
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P(|↑↓〉 or |↓↑〉),
Jz = 1.2

probability of finding nearest neighbours in an up−up state, n
up

 = 3, with Jxy = 1, jz = 1.2,

startstate: saturated FM state with 3 up spins in the middle
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P(|↑↑〉), Jz = 1.2

probability of finding second and third nearest neighbours in an up−up−up state
n

up
 = 3, with Jxy = 1, jz = 1.2

 startstate: saturated FM state with 3 up spins in the middle
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�Three propagation branhes: single, two and three partilebranhes at di�erent veloities

3. Analytial onsiderations
Bethe ansatz for FM exitations
�General wave funtion ansatz

ψ(x1, . . . , xM ) =
∑

P
A(P)

M
∏

j=1

exjkPj

� Single spin �ip exitations: one-magnon states
E(k) = (cos(k)−∆)

�Two spin �ip exitations: two-magnon states
�Two spin exitation spe-

trum of isotropi Heisenberg

hain with pb, 36 sites [3℄

→ two-magnon sattering

states (C1 and C2)

→ two-magnon bound states

(C3)→ 2-strings

�Dispersion relation of two-

magnon bound states
[4, 5]

:

For ∆ < 1: not all values of

k are allowed

E(k) = −Jxy
(

∆− 1

2∆
− 1

2∆
cos(k)

)
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�Dispersion relation for M-string exitations [4]
E(k) = − sinµ

sin(Mµ)
(cos(Mµ)− (−1)M cos(k)), where ∆ ≡ − cos(µ)

Speed of propagation
�Group veloity v(k) = dE

dk and DOS ρ(v) =
∫

δ(v − dE
dk )dk

� Single-magnon states

DOS: singularities at v = ±1

v(k) = − sin(k)

ρ(v) =
N

2π

1√
1− v2

� Two-magnon bound states

DOS: for |∆|<1/

√
2:

singularities at v = ± 1
2∆
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density of states ρ(v) for as a function of the group velocity v
for the single magnon and two bound magnons dispersion
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single magnon DOS

two bound magnons DOS for J
z
=1.2

v(k) = − 1

2Jz
sin(k)

ρ(v) =
2∆

√

1− (2∆v)2

� Three-magnon bound states

DOS: singularities at v = ± 1
4J2z−1

v(k) = − sin(µ)

sin(3µ)
sin(k)

ρ(v) =
sin(µ)

sin(3µ)

1
√

1− (
sin(3µ)
sin(µ)

v)2Bound state veloitiesvs. numeria results
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speed of second spinwave as a function of  1/Jz for 50 sites Heisenbergsystem
with J
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 = 1 and two spins up

 

 

from Bethe ansatz

measured

Veloity of |↑↑〉 branh as a funtion of Jz, evaluated by

measuring the time when the orresponding maximum arrives

at the boundary of the system.
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data from TEBD
exact: v = 1/(4J

z
2−1)

Veloity of |↑↑↑〉 branh as a funtion of Jz, evaluated by

measuring the time when the orresponding maximum arrives

at the boundary of the system.

Idential behavior for AF and FM
� Same time evolution for AF and FM when starting from sameinitial state with real oe�ients

• H(∆) → −H(−∆) by bipartite rotation
• H and −H have same time evolution
〈O(t)〉 = 〈O(t)〉∗ = 〈ψ|eiHtOe−iHt|ψ〉∗ = 〈ψ|e−iHtOeiHt|ψ〉 = 〈O(−t)〉

�For Jz > 0: Repulsively bound states

4. Evolution of exitations from AF
ground state at �nite densities

〈Sz〉(t), Jz = 1.2
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� Initial state: AF ground state at �ll-ing fator n = 0.3 with retangularmagneti �eld at two sites
�Anti bound states stable at �nitedensities n < 0.5.
�No distint anti bound states seen for

n ≥ 0.5.
�Derease of speed of propagationwith inreasing n

B−field

sites

5. Conlusions
� Strings of M �ipped spins in FM bakground form boundstates, for both AF and FM oupling
� Linearly propagating branhes of 1,2,...M bound spins for |∆|beyond threshold
�Bound states dominate at large Jz
�Veloity of the lowest propagation branh:

•Two-spin bound states: v = 1/(2Jz)
•Three-spin bound states: v = 1/(4J2z − 1)

�Bound two-spin states in AF are also stable at �nite densi-ties n < 0.5, speed of propagation of the two spin exitationsdereases with inreasing n


