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Introduction

Resonant magnetic field perturbations (RMPs) from external coils are a useful tool for miti-

gation of Edge Localized Modes (ELMs) in tokamaks. Linear theory predicts strong shielding

of the perturbations by the plasma. At the same time, quasilinear MHD analysis suggests that

RMPs may modify background plasma parameters and fully penetrate. In this report the prob-

lem of RMP interaction with the plasma is treated in quasilinear approximation within kinetic

theory for cylindrical tokamak geometry. The linear problem is solved by the KiLCA code (Ki-

netic Linear Cylindrical Approximation) and the quasilinear problem - by a 1-D balance code.

For this, we corrected our linear and quasilinear models by introducing a particle and energy

conserving collision operator. Unlike the linear model, the quasilinear model is very sensitive to

the details of the collision operator and it must be fully consistent with the conductivity model

inside the Maxwell equation solver. It is shown that the new collision operator ensures Onsager

symmetry of the quasilinear transport coefficient matrix and avoids artifacts such as fake heat

convection which may appear in simple collision models.

Basic equations

Both, the linear plasma conductivity and the quasilinear transport coefficients are determined by

the solution of the kinetic equation, L̂V f = L̂cp f where L̂V is the Vlasov operator, L̂cp = L̂c+ L̂cI

is an energy preserving collision operator,
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is the Ornstein-Uhlenbeck operator and L̂cI is an energy conserving term given by
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This type of kinetic equation can be solved in cylindrical geometry up to the end in terms

of a Green’s function. The gyroaverage of the perturbed distribution function needed in the

quasilinear problem has the form
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where fm and vr
m are the amplitudes of the Fourier series over toroidal and poloidal angles of

the perturbed distribution function and of radial guiding center velocity, respectively. Gmp is the

Green’s function, and the thermodynamic potentials are
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These potentials determine the particle and energy fluxes,

Γ
(EM)
(e,i) =−ne,i (D11A1 +D12A2) , Q(EM)
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through quasilinear diffusion coefficients. Retaining in vr
m only parallel motion along the per-

turbed magnetic field and the E×B-drift (these are the dominating processes for electrons),

these coefficients are
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Also, the Fourier amplitude of parallel equilibrium current density which is responsible for

shielding the RMPs can be expressed in terms of the radial component of the magnetic perturba-

tion field Br
m and the the component of the electrostatic field cEm⊥ tangential to the unperturbed

flux surface and perpendicular to the magnetic field,
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The mismatch between the perturbed magnetic flux surfaces and the perturbed equipotential

surfaces is the reason for quasilinear transport in this approximation. The lowest order Larmor



radius approximation used in 6) and in (8) is sufficient for the electrons. These quantities are

finally expressed via velocity moments of Green’s function
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which are determined by similar moments of Green’s function G̃ defined in Ref. [1] as follows

Imn
p = Imn +

(
Im0− Im2)(In0− In2)
1− I00 +2I20− I22 , (10)

Due to the property I21
p = I30

p the diffusion tensor satisfies Onsager symmetry.

Using (6), balance equations for plasma density ne, toroidal ion rotation velocity V ϕ

i , and

electron and ion temperatures Te,i presented in Ref. [2] were solved for JET like parameters in

experiments with ELM mitigation by C-coil. Only the 3/1 mode of the coil spectrum has been

retained. Modelled are 4 variants of starting equilibria obtained by scaling the toroidal rotation

velocity V φ by factors 0.8 and 1, see Fig. 1, and by changing the anomalous diffusion coefficient

by a factor 2. The results show that quasilinear effects do not lead to a significant increase in

field penetration and may also lead to even stronger shielding despite that the parallel electron

current in the resonant zone is reduced, see Fig. 2. In contrast to earlier MHD theories, the

main quantity responsible for quasilinear relaxation is the electron temperature. The sensitivity

of this quantity has been noticed earlier in Ref. [3]. In all cases, the perpendicular electron

fluid velocity is evolving to zero in the resonant zone. In MHD theory, this would lead to field

penetration. In kinetic theory, the point of field penetration is not the same, see Fig. 1.

Fig. 1. Left: Radial profiles of |Br
m| before and after quasilinear relaxation. Right: Toroidal

torque and |Br
m| at the resonant surface as functions of toroidal velocity scaling parameter.

Parameter values used for computations and corresponding to zero electron fluid velocity at the

resonant surface are indicated by black lines and red lines respectively.



Fig. 2. Quasilinear heat conductivity coefficient (top), parallel electron current (middle), and

perpendicular components of electron fluid velocity (bottom). Dashed lines for the currents

and rotation velocity components show initial values. Thin lines correspond to evolution with

reduced anomalous coefficients.
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