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a b s t r a c t

Standard textbooks on beam dynamics study the impact of the magnetic field quality on the beam using

field representations based on circular multipoles. Iron dominated magnets, however, typically provide

a good field region with a non-circular aspect ratio (i.e. an ellipse whose axis a is significantly larger

than the axis b); a boundary not ideal for circular multipoles. The development of superconductors,

originally driven to reach fields above � 2 T, allows using them today in completely different fields: iron

dominated DC magnets, to save the energy for coil powering as well as repeatedly fast ramped magnets.

The cold mass of magnets, housed in common cryostats sectors, makes it tedious to implement

additional correction magnets at a later stage, as it requires to warm up the sections where the magnets

should be installed as well as unwelding the cryostat. Thus the field homogeneity of the magnets and its

influence on the beam has to be thoroughly studied during the project planning phase.

Elliptic multipoles, a new type of field expansion for static or quasi-static (here magnetic) two-

dimensional fields, are proposed and investigated, which are particular solutions of the potential

equation in plane elliptic coordinates obtained by the method of separation. The proper subsets of these

particular solutions appropriate for representing static real or complex fields regular within an ellipse

are identified. Formulas are given for computing expansion coefficients from given fields. The advantage

of this new approach is that the expansion is valid, convergent and accurate in a larger domain, namely

in an ellipse circumscribed to the reference circle of the common circular multipoles in polar

coordinates. Formulas are derived for calculating the circular multipoles from the elliptical ones. The

effectiveness of the approach was tested on many different magnet designs and is illustrated here on the

dipole design chosen for the core synchrotron (SIS 100) of the FAIR project as well as on measurement

data obtained by rotating coil probes.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Present-day accelerators, as, e.g. FAIR, apply superconducting
magnets in places up to now reserved for conventional magnets.
Superconducting magnets, as found in the SIS 100 synchrotron of
FAIR, are housed in cryostats and are connected to each other by
helium-tight weldings; thus inserting magnetic elements into the
machine during commissioning or after a few years of operation is far
more complicated than for a machine using conventional magnets.

This requires that the field in all aspects is fully understood
during the R&D phase devoted to the machine project. The
elliptical aperture, as foreseen for the SIS 100 synchrotron, the
core component of the FAIR facility, motivated us to search for a
consistent description of the magnetic field within the whole
ll rights reserved.

ru (P. Akishin),
aperture, insensitive to artefacts created by numerical calcula-
tions or measurements.

The magnetic field of accelerator magnets, whose length is
much bigger than the gap’s transversal dimensions, are repre-
sented by a two-dimensional field following the thin lens
approximation, if applicable, as found in light optics.

The magnetic field values computed by numerical methods or
measured by field probes must be represented by an approximate
analytical, but still sufficiently accurate, formula. Such a repre-
sentation serves for quality checks, beam dynamics calculations
a.s.o. The standard tool for representing a plane static magnetic
field is an expansion w.r.t. circular multipoles ðr=RÞjmj eimy;m ¼

0;�1;�2; . . . ; see, e.g. Ref. [1]. r; y are the common polar
coordinates; the circle r ¼ R, the reference circle, bounds the
domain of this expansion. This domain is free of currents (i.e. free
of current carrying wires, moving charges). The matter within this
domain is assumed to be non-ferromagnetic with constant
uniform permeability. Then the field is irrotational and may be
derived from a static potential. This potential and both Cartesian
field components are solutions of the potential equation. The
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circular multipoles are just particular solutions of this partial
differential equation.

If the cross-section of the gap is rectangular, then a circular
domain fulfilling the conditions just listed will cover only a small
part of the domain accessible to the beam. This is particularly
noticeable if the cross-section of the beam is not circular but
elliptic or a broad ribbon with an large aspect ratio. In such a case
it is worthwhile to use an area bounded by an ellipse. The use
of an area bounded by a rectangle is much less favourable since
such a shape may penetrate a forbidden region (where there are
currents) and it is more involved from the point of view of
computations requiring four expansions in place of one.

In this paper we suggest to use expansions with respect to
elliptic multipoles, which are particular solutions of the potential
equation obtained by solving this partial differential equation in
elliptic coordinates by the method of separation. These particular
solutions are calculated and discussed; in particular it is pointed
out that only a proper subset of all these solutions is needed. At
the end it is shown in examples how much the field values found
by evaluating the expansion differ from the field values due to the
numeric field computation.

In the theory part of this paper the circular multipole
expansion is given together with the formula for calculating the
Fourier coefficients. This repetition of a well-known subject serves
as a basis of comparison to the elliptic multipoles introduced
thereafter. In the corresponding section the elliptical coordinates
are described. Then the particular solutions of the potential
equation in these coordinates and the elliptic multipole expansion
are given. In the next section relations between circular and
elliptic multipole coefficients are derived. At the end of this part
we show how we used the formulas to check the consistency of
field values computed by numeric methods.

In the applications part the field values obtained from numeric
field computations are compared to the values calculated from the
field expansions. Further a procedure is given to calculate the
elliptic multipoles from measurements obtained using rotating
coil probes and it is demonstrated using the measurement data
obtained on the first SIS 100 dipole prototype.

Previous versions of these researches were circulated as
internal notes. A very concise version was published in Ref. [2].
We believe that our results now are sufficiently mature to merit
an extensive presentation.
2. Theory

The present investigation is limited to plane magnetic fields
such as are found to a very good approximation in the inner part
of a magnet, whose length is large as compared to the transverse
dimensions of the field gap. From now on we reserve the term gap
for this transverse cross-section. In this we select a domain where
there are no field sources, such as charged particle beams or
cables carrying currents; nor inhomogeneities of the permeability,
which equals m0, that of the vacuum. A static field has no sources
or vortices in this domain; so it may be derived from a scalar
potential F1 depending on the transversal coordinates only, say
x; y; or polar coordinates r; y; or the elliptic coordinates, Z;c,
which, will be defined below. This domain is simply connected; it
is bounded by a closed curve, the reference curve, say, for
example, by a rectangle, a circle or an ellipse. The potential F1 and
the Cartesian field components Bx and By are solutions of the two-
dimensional Laplace equation, i.e. they are harmonic functions.
This implies they are analytic functions, which are determined
uniquely by their values along the reference curve.

We call multipoles regular particular solutions of the potential
equation obtained by the method of separation of the indepen-
dent variables. The general regular solution, which is capable
of describing any static magnetic field in the domain, may be
represented as a linear superposition of such particular solutions
provided the set of functions is complete. Of course, it is
impossible to work with an infinite number of functions in
practice; still it is important to know this set; otherwise one may
run into severe trouble or introduce more expansion parameters
than necessary.

2.1. Circular multipoles

Circular multipoles are the common work horse for expansions
of two-dimensional fields and are described in many books on
accelerator theory or accelerator schools. We refer to Jain [1]. We
quote a few properties, which are needed for comparisons with
the elliptic multipoles.

Solving the Laplace equation in polar coordinates 0 �
ro1;�p � y � p

x ¼ r cos y; y ¼ r sin y (1)

by assuming a solution of the type F1 ¼ RðrÞYðyÞ produces the
following set of particular solutions:

ln r; rm eimy; rm e�imy; m ¼ 0;�1;�2;�3; . . . . (2)

Omitting the functions singular at r ¼ 0 we get the general
solution of the potential equation regular within the circle 0 �
r � R as

F1ðr; yÞ ¼ F0

X1
m¼�1

cm
r

R

� �jmj
eimy. (3)

The expansion coefficients cm may be calculated by expanding a
distribution F1ðr ¼ R;yÞ given along the boundary with respect to
the imaginary exponentials:

cm ¼
1

2p

Z p

�p

FðR;yÞ
F0

e�imy dy. (4)

The imaginary exponentials (eimy;m ¼ integer 2 f�1;1g) make
up a complete system in the one-dimensional interval �p � y � p
as well as the set of trigonometric functions including a constant.
In two dimensions the complex circular harmonics (2) as well as
the real set

rm cosðmyÞ; rm sinðmyÞ; m ¼ 0;1;2;3; . . .

make up a complete set within the circle 0 � r � 1 [3]. One may
also expand each of the real field components Bx and By with
respect to circular multipoles or with respect to the trigonometric
harmonics. But these two components are not independent, they
must fulfil the two scalar conditions (here ~ez is the normal to the
field plane):

div~B ¼ 0 ðaÞ; ~ez � curl~B ¼ 0 ðbÞ. (5)

These imply that the two sets of expansion coefficients as
obtained from Bx and from By are not independent. So it is more
convenient to combine the two real field components into a
complex field.

2.1.1. The complex magnetic field

The two conditions given in the previous equation are the
Cauchy–Riemann equations for the real part Byðx; yÞ and the
imaginary part Bxðx; yÞ of a complex function

BðzÞ :¼By þ iBx (6)

of the complex variable

z :¼xþ iy ¼ r eiy. (7)
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Fig. 1. Plane elliptic coordinates Z;c, Foci F, F 0 are at x ¼ �e.
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The Cauchy–Riemann equations also restrict the set of complete
functions to a proper subset of the circular harmonics used in (3);
so the expansion of the field is now

BðzÞ=B0 ¼
X1
m¼0

Cm
r

R

� �m

eimy ¼
X1
m¼0

Cm
xþ iy

R

� �m

. (8)

B0 is the constant reference field value, which may be chosen
conveniently. In the present work it is more convenient to use the
US convention [1] for the field expansion. The expansion
coefficients may be calculated from a complex field B0ðyÞ ¼
BðR eiyÞ given along the reference circle according to

Cm ¼
1

2p

Z p

�p

B0ðyÞ
B0

e�imy dy. (9)

Circular multipoles with negative m give fields with sources and/
or vortices. If a harmonic magnetic field is used in the preceding
equation then the integrals assume zero value for negative m.

A complex potential UðzÞ belonging to the magnetic field can
be defined. Its real part is the real function F1ðx; yÞ related to the
magnetic field by

~B ¼ �rF1ðx; yÞ ¼ �
@F1

@x
;
@F1

@y

� �
. (10)

The corresponding imaginary part F2ðx; yÞ is found through the
Cauchy–Riemann equations. The complex field is obtained from
the complex potential by derivation with respect to the complex
variable z:

UðzÞ :¼F1ðx; yÞ þ iF2ðx; yÞ; BðzÞ ¼ �
dU
dz

. (11)
2.2. Elliptic multipoles

In our new approach we propose to use an ellipse as reference
curve since it permits one to cover a larger domain within a
rectangular gap as compared to the area covered by a reference
circle. This entails that we must use elliptic coordinates and
elliptic multipoles.
2.2.1. Elliptic coordinates

Now the reference curve is an ellipse with the given semi-
major axis a and the semi-minor axis b:

x2

a2
þ

y2

b2
¼ 1; a4b. (12)

A system of elliptic coordinates (Fig. 1) is defined according to
Refs. [4,5] by

x ¼ e coshZ cosc; 0 � Zo1
y ¼ e sinhZ sinc; �p � c � p. (13)

Varying c for fixed Z gives an ellipse with semi-axes
e coshZ4e sinhZ. One gets a set of ellipses for all values of Z in
the range 0oZ � Z0, all belonging to the same foci F, x ¼ �e; y ¼ 0;
whose elliptic coordinates are Z ¼ 0;c ¼ 0;�p. These ellipses
correspond to the circles r ¼ const: of the polar coordinates. The
confocal hyperbolas, each belonging to a given c while Z is
varying, are orthogonal to all ellipses; they have semi-axes e cosc
and e sinc; they correspond to the radials y ¼ const. of the polar
coordinates. There is an infinite set of elliptic coordinate systems.
A particular system is specified by its value of the eccentricity e.
The semi-axes of the reference ellipse determine the eccentricity e
and the corresponding value Z0:

b ¼ e sinhZ0; a ¼ e coshZ0 ! Z0 ¼ tanh�1
ðb=aÞ.

� :¼
e

a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
a

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tanh2

ðZ0Þ

q
; e ¼ a�. (14)

The easiest way to accomplish the transformation from the
Cartesian to orthogonal curvilinear coordinates is by a conformal
map [6]. The conformal map corresponding to (13) is

z ¼ xþ iy ¼ e½coshZ coscþ i sinhZ sinc�
¼ e coshðZþ icÞ ¼ e cosh w

w ¼ Zþ ic ¼ Arcoshðz=eÞ. (15)

Note: Various authors use different letters for the elliptic
coordinates. Even the definition of the plane elliptic coordinates
is not always the same. For example, Ref. [6] uses z ¼ e sinh w in
place of (15).

The Laplacian in the elliptic coordinates as defined in (15) is

DF ¼
1

e2ðcosh2 Z� cos2 cÞ
d2F
dZ2
þ

d2F
dc2

" #
. (16)

The denominator in front of the derivatives is zero at the foci.
2.2.2. Real elliptic multipoles

Elliptic multipoles are defined as particular solutions, which
are obtained from the potential equation DC ¼ 0 by separation.
The denominator of the operator in Eq. (16) is removed by
multiplication. This gives a simple differential equation, whose
solutions are obtained by separation. The ansatz FðZ;cÞ ¼
HðZÞC̄ðcÞ yields the two ordinary differential equations

d2H

dZ2
� gH ¼ 0 and

@2C̄
@c2
þ gC̄ ¼ 0.

C must be periodic in c, so must be C̄. This implies
g ¼ m2; m ¼ integera0. This in turn leads to hyperbolic functions
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for the solutions H:

C̄mðcÞ ¼ eimc; m ¼ �1;�2;�3; . . . (17)

HmðZÞ ¼ am coshðmZÞ þ bm sinhðmZÞ. (18)

For m ¼ 0 we get

C̄0 ¼ 1; H0ðZÞ ¼ a0 þ b0Z. (19)

So the most general solution may be written as

CgðZ;cÞ ¼ a0 þ b0Zþ
Xm¼10

m¼�1

½am sinhðjmjZÞ

þ bm coshðjmjZÞ� eimc. (20)

The primed sum does not contain a term with m ¼ 0. b0 must be
zero for the following reason. The product H0ðZÞC̄0 is a harmonic
function, which is constant on the boundary, the reference curve,
the ellipse Z ¼ Z0: So it must be constant everywhere within the
boundary according to a general theorem of potential theory [7]. If
we try to calculate the expansion coefficients in Eq. (20) from
values of the potential given along the boundary, the reference
ellipse Z ¼ Z0 we encounter a difficulty. Using the orthogonality of
the eimc we find for integer ma0:

am sinhðjmjZ0Þ þ bm coshðjmjZ0Þ ¼
1

2p

Z p

�p
CðZ0;cÞ e

�imc dc.

So we do not have enough conditions to determine all am and bm.
The way out from this impasse is that not all functions written
down in Eq. (20) are really needed. Below it will be shown that the
complete system of elliptic multipoles for the potential equation

consists of the following terms only:

1; cosðmcÞ coshðmZÞ; sinðmcÞ sinhðmZÞ; m ¼ 1;2;3; . . . .

(21)

So it is entirely correct to use the following expansion for any
harmonic function within the reference ellipse:

CðZ;cÞ=C0 ¼
a0

2
þ
X1
n¼1

an
coshðnZÞ
coshðnZ0Þ

cosðncÞ
�

þbn
sinhðnZÞ
sinhðnZ0Þ

sinðncÞ
�

. (22)

The expansion coefficients may be determined from boundary
values CðZ0;cÞ given along the reference ellipse Z ¼ Z0:

an ¼
1

p

Z p

�p

CðZ0;cÞ
C0

cosðncÞdc; bn ¼
1

p

Z p

�p

CðZ0;cÞ
C0

sinðncÞdc.

(23)

The complete system (21) consists of products comprising either
even or odd functions but no mixed products. This may be seen
from the Green’s function of the potential equation in elliptic
coordinates given in Ref. [5]. An independent proof starts from the
circular multipoles expressed in Cartesian coordinates. Inserting
the transformation formulas (13) and transforming the powers of
the trigonometric and the hyperbolic functions into harmonics
gives only functions belonging to the set (21). For example:

4 Reððxþ iyÞ3Þ ¼ 4x3 � 12xy2

¼ e3½3 coshðZÞ cosðcÞ þ coshð3ZÞ cosð3cÞ�

4 Imððxþ iyÞ3Þ ¼ 12x2y� 4y3

¼ e3½3 sinhðZÞ sinðcÞ þ sinhð3ZÞ sinð3cÞ�.

Inspection of these examples reveals that the conversion of the
circular multipoles by the insertion of elliptic coordinates
produces only linear combinations of the elliptic multipoles listed
in (21). The general law follows from the working of the various
powers of the imaginary unit and of the addition theorems of the
trigonometric and hyperbolic functions as exemplified in the
derivation of Moivre’s formulas.

2.2.3. Complex elliptic multipoles

As shown in Section 2.1.1, source-free irrotational plane
magnetic fields may be combined to a complex field, whose
expansion involves only circular harmonics with non-negative
m’s. The same reasons restrict the expansion of the complex field
with respect to elliptic multipoles to a subset of those given in
(21). So we can define the following expansion of the complex
field with respect to complex elliptic multipoles:

B=B0 ¼
E0

2
þ
X1
n¼1

En
cosh½nðZþ icÞ�

coshðnZ0Þ
. (24)

The convergence of this series can be estimated from the
following estimates:

cosh½nðZþ icÞ�
coshðnZ0Þ

				
				 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosð2ncÞ þ coshð2nZÞ

1þ coshð2nZ0Þ

s
(25)

�
coshðnZÞ
coshðnZ0Þ

�e�nðZ0�ZÞ. (26)

So the elliptic multipoles decrease exponentially with growing
order n within the reference ellipse. On the circumference the
elliptic multipoles have absolute value unity; so the decay of the
coefficients En is decisive for the convergence; which behaviour
depends on the continuity of the field components and their
derivatives on the curve. The Fourier coefficients may be
computed from values of a proper complex field given along the
reference ellipse Z ¼ Z0 according to

En ¼
1

pB0

Z p

�p
B0ðz ¼ e coshðZ0 þ icÞÞ cosðncÞdc (27)

¼
1

2pB0

Z p

�p
½B0ðz ¼ e coshðZ0 þ icÞÞ

þ B0ðz ¼ e coshðZ0 � icÞÞ� einc dc. (28)

The completeness of expansion (24) follows from Eq. (8) by
inserting the transformation (15):

BðzÞ=B0 ¼
X1
m¼0

Cm
xþ iy

R

� �m

¼
X1
m¼0

Cmam coshm w (29)

with

a :¼e=R. (30)

Now, any non-negative integer power of coshmx can be decom-
posed into harmonics coshðmxÞ with non-negative integers m [8].
This transforms the circular expansion into the elliptic expansion
comprising only terms with coshðnwÞ.

2.3. Relations between circular and elliptic multipoles

Magnet quality criteria are based on circular multipole
expansions. Beam dynamics programs work with these. So linear
transformations are needed which permit one to switch from the
elliptic expansion to the circular one.

2.3.1. Relations between coefficients of the complex field expansions

It is easy to find the relations between the expansion
coefficients of the complex magnetic field. These are derived by
equating the field expansions (24) and (29). Using the orthogon-
ality of the cosðncÞ we get

Ēn :¼Ek= coshðkZ0Þ ¼
X1
m¼0

Cmamsmk (31)
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with

smk ¼ dmþk;even
1

2ðm�1Þ

m

ðm� kÞ=2

 !
; k;m ¼ 0;1;2; . . . (32)

and

dmþk;even :¼½1þ ð�1Þmþk
�=2. (33)

The integrals over c can be calculated by use of the binomial
theorem [9] or found in Ref. [8]. The binomial coefficient is
undefined if the lower argument is not a non-negative integer. But
in this case dmþk;even is zero. This entails that every second element
of the matrix S is zero and that the even/odd parity of k and m is
the same on both sides of the linear transformations given above
and below. The matrix S is a lower triangular one since all
binomial coefficients with k4m are zero.

The inverse transformation is

amCm ¼
X1
k¼0

Ek=½ð1þ dk0Þ coshðkZ0Þ�tkm,

k;m ¼ 0;1;2; . . . . (34)

The matrix T ¼ ðtkmÞ ¼ S̃
�1

is the transposed inverse of the matrix
S ¼ ðsmkÞ. It is an upper triangular matrix; in addition every second
element of it is zero. T may be found by analytic or numeric
inversion of the matrix S or from the formula:

tns ¼ Resðsinh w coshðnwÞ=coshsþ1w;w ¼ w0 ¼ ip=2Þ. (35)

The operator Res denotes the residue of the function given in the
first argument of the pole w ¼ w0 as it is defined in the theory of
complex analytic functions. Formula (35) is derived below; it is
easily evaluated for a given value s by computer algebra. Doing
this for a few even and odd values of s gives enough insight so that
one can guess the general structure, which leads to the following
Table 1
Conversion matrices for two different ellipses.

m k

0 1 2 3 4

a ¼ 5:75, b ¼ 3:0, R ¼ 4:0

0 0.50 �0.57 0.20

1 0.70 �0.84

2 0.76 �1.04

3 0.74

4 0.69

5

6

7

8

9

a ¼ 4:5, b ¼ 1:7, R ¼ 4:0

0 0.50 �0.75 0.39

1 0.89 �1.60

2 1.38 �2.89

3 1.97

4 2.66

5

6

7

8

9

The different factors are given rounded to two digits after the comma. All factors exac
expressions substantiated by numerous checks:

m ¼ even: tkm ¼ ð�1Þm=2 cosðkp=2Þ
1

m!

	Pm=2
m¼1ðk

2
� ½2ðm� 1Þ�2Þ (36)

m ¼ odd: tkm ¼ ð�1Þðm�1Þ=2 sinðkp=2Þ
k

m!

	Pðm�1Þ=2
m¼1 ðk2

� ð2m� 1Þ2Þ. (37)

Peña and Franchetti [9] also investigated the elliptic multipoles as
proposed by us. They also found recurrence formulas for a matrix
expressing the circular by linear combinations of the elliptic
expansion coefficients. This matrix accomplishes the same task as
our matrix T. The expressions and values of our and their
transformation matrices differ somewhat on account of different
definitions.

The relations derived above give analytic expressions of the
transformation matrices for any integer k and m. In principle,
these indices may be as large as one pleases. The limited accuracy
of the numerical or experimental results will restrict the number
of terms in the field expansions, (8) and (24), so the upper values
of m and n in practice. The same applies to the ratio a. This means
one cannot extrapolate from points within the reference curve to
points far outside the reference curve.

Eq. (35) is found from a slightly modified form of the equality
of expansions (24) and (29):

X1
m¼0

Cmzm ¼
Ē0

2
þ
X1
n¼1

Ēn coshðnwÞ. (38)

Both sides of this equality are divided by zsþ1, the resulting
expression is integrated over z along a closed curve Cz surround-
ing the origin z ¼ 0. By Cauchy’s residue theorem we get 2piCs

from the left-hand side. So this operation singles out one and only
one coefficient from the Cm’s. In the integrals on the right-hand
side the variable z is replaced with the mapping function
z ¼ e cosh w; dz ¼ e sinh w dw: This transformation maps the
5 6 7 8 9

�0.06 0.02

0.45 �0.20 0.08

0.74 �0.42

�1.20 1.06 �0.71

�1.32 1.38

0.64 �1.41 1.70

0.58 �1.47

0.53 �1.51

0.49

0.45

�0.18 0.08

1.29 �0.83 0.48

3.03 �2.45

�4.76 6.11 �5.93

�7.45 11.29

3.51 �11.26 19.68

4.58 �16.65

5.93 �24.19

7.67

9.91

tly zero are left out.
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Fig. 2. Test of the interpolation for the CSLD8b at a current of 873 A and a field of 0.13 T. The field By in the aperture is plotted. The gray indicates the absolute value of the

deviation (in units). The original data are given on top. The left column shows the data as reconstructed using the interpolation and the right columns shows the absolute

value of the difference between the reconstructed and the original data.
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origin z ¼ 0 on w0 ¼ ip=2; the curve Cz on a closed curve Cw

around w0: We get

2piCs ¼ 2pi
Ē0

2
t0s þ

X1
n¼1

2piĒntns

with

2pitns ¼

I
Cw

dw sinh w coshðnwÞ=coshsþ1w.

The integral above has a pole of order sþ 1 at w0; in general. Its
value is equal to 2pi times the residue of the integrand at the pole
w0: This is just Eq. (35).

For numerical evaluation Eq. (34) can be rewritten to

Cm ¼
X1
k¼0

tkm=ð1þ dk0Þ

coshðkZ0Þam|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Tmk

Em (39)

and calculated by a matrix vector multiplication (Tmk is the full
ratio). The matrix coefficients Tmk are presented for two different
ellipses in Table 1, with the first one used for calculating circular
harmonics from numeric field data (see Section 3) while the
second one is used for calculating circular multipoles from
measurement data (see Section 4). One can see that the
matrices are an upper triangle matrix as well as that all
coefficients are real numbers. The second matrix presented is
for an ellipse with an larger aspect ratio. One can see that for the
first one the coefficients in the trace are decreasing for larger k, m

while they are increasing for larger k, m for the second ellipse.
Second the off diagonal elements are larger for the second ellipse.
Thus an elliptic multipole of a certain amplitude will be converted
to larger coefficients for the second ellipse.
b2

b6

Fig. 3. The field quality for the 8 turn curved single layer dipole version b (CSLD-8b) T

dashed line as calculated on a circle. Please note that the changes are small but signific
2.3.2. Relations between coefficients of the expansions for

the potential

The expansions of the potential of a two-dimensional static
field, which is not source-free, with respect to circular and to
elliptic multipoles, i.e. Eqs. (3) and (22), comprise more terms as
given in Eqs. (31), (34) or (38). Still the coefficients are related to
each other. The corresponding equations may be derived by
equating these two series, Eqs. (3) and (22)—while assuming
F0 ¼ C0—and by evaluations similar to those used in the
previous subsubsection. So we give just the results. The matrices
S and T are the same as above. The coefficients of the elliptic
multipoles are expressed by the circular ones as

ak ¼ coshðkZ0Þ
X1
m¼0

amsmkðcm þ c�mÞ (40)

bk ¼ sinhðkZ0Þ
X1
m¼0

amsmkiðcm � c�mÞ. (41)

The coefficients of the circular multipoles are expressed by the
elliptic ones as

c0 ¼
a0

2
þ
X1
k¼1

ð�1Þk
a2k

coshð2kZ0Þ
(42)

amc�m ¼
1

2

X1
k¼0

tjmjk
ak

coshðkZ0Þ



ibk

sinðkZ0Þ

� �
; m ¼ 1;2;3; . . . . (43)

3. Application on calculated fields

The formulae described in the previous chapters are now
applied to dipole fields to demonstrate that all these steps are
necessary to interpolate the field within the ellipse with a
precision of better than the maximum tolerable field deviation
b4

b8

he solid line gives the multipoles as obtained from the elliptic multipoles and the

ant (e.g. sextupole, difference in the order of 0.2 units). (a) b2. (b) b4. (c) b6 (d) b8.
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b2 b4

b6 b8

Fig. 4. The difference between the coefficient sets for the 8 turn curved single layer dipole version b (CSLD-8b). The circular ones calculated from the data on the circle were

subtracted form the circular ones obtained from the elliptic ones. (a) b2, (b) b4, (c) b6 and (d) b8.
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of 600 ppm or six units (one unit corresponds to 100 ppm).
Mathematically speaking the field quality DB of a dipole (in units)
is given by

DBðzÞ ¼
BðzÞ � Bð0Þ

Bð0Þ
104. (44)

The higher order harmonics (for the dipole) are given by

bn þ ian ¼ cn ¼
Cn

C0
104. (45)

The field quality was calculated for the curved single layer dipole
with 8 turns [2,10], the dipole design chosen for the main dipole
for the SIS 100 machine of FAIR. The original distribution is given
in Fig. 2(a) at a current of 873 A yielding a field of � 0:13 T. The
field was taken along the ellipse and the elliptic multipoles were
calculated as defined in Eq. (28). Using the first 20 coefficients the
field was interpolated within the aperture (see Fig. 2(b)). The
naked eye cannot see any difference to the original data (Fig. 2(a)).
The original field was subtracted from the interpolated one. One
can see from Fig. 2(c) that this difference is well below half a unit
and thus sufficiently precise. Normally circular multipoles are
used. So we calculated them using a Fourier transform of the data
along a circle. Again the interpolation data was calculated (see
Fig. 2(d)) and the difference to the original data (see Fig. 2(e))
using the first 15 coefficients. One can see that the interpolation
works well within the circle but outside the circle soon the errors
get unacceptably large. The difference outside of the circle is even
larger if more coefficients are used. At last the circular multipoles
were calculated from the elliptic ones as described in Eq. (34) (see
Fig. 2(f) for the interpolation and Fig. 2(g)) for the difference). One
can see that contrary to the row above the interpolation works
even outside the circle and within the whole ellipse.

So the plots of Fig. 2 show that the interpolation based on the
elliptic representation is mandatory to achieve an interpolation
with sufficient accuracy; thus it is interesting to see how large the
difference is. This is illustrated for the allowed circular harmonics
of the aforementioned dipole along the load line (i.e. at different
current points within the typical operation limits) in Fig. 3. The
largest difference is found for the sextupole b2 and is in the order
of 0.2 units ð¼ 20 ppmÞ. For all higher multipoles it is not visible in
this scale. Thus the difference is shown for all of them in Fig. 4. So
except for the sextupole the difference is less then 1 ppm!

When choosing one magnet design amongst different designs
one could compare plots of the field deviation for each magnet.
These are, however, misleading and thus it is often preferred to
compare the strength of the higher order harmonics along the
load line for the different designs. This is illustrated using the
aforementioned dipole design CSLD-8 and an alternative single
layer dipole version with 10 turns as proposed in Ref. [11].
The circular multipoles and the circular ones calculated from the
elliptic ones are given for both designs (see Fig. 5). Here one can
clearly see that, although the sextupole strength is lower for the
CSLD-10 for low fields than that of the CSLD-8b, the strengths are
much larger for all other harmonics and also for the sextupole for
medium or high field strengths. Thus the CSLD-8b is clearly the
better field design and therefore rightfully chosen as the base
design for the main dipole of SIS 100.

The same was done for various quadrupole designs. Given that
the currently available two-dimensional designs and associated
calculations have allowed harmonics less than one unit such
illustrations were omitted here as they only show the limits of the
field calculations and artefacts not to be found in a real magnet.
4. Application on measurements

The first full size SIS 100 magnet has been built [12–15] and
the magnetic field was measured using a rotating coil probe [16],
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b2 b4

b6 b8

Fig. 5. The field quality for the 8 turn curved single layer dipole version (CSLD-8b) compared to the field quality of the 10 turn design. The solid line gives the multipoles as

obtained from the elliptic multipoles and the dashed line as calculated on a circle for CSLD-8b. The dash-dotted line gives the multipoles as obtained from the elliptic

multipoles and the dotted line as calculated on a circle for the 10 turn version. (a) b2, (b) b4, (c) b6 and (d) b8.

Fig. 6. The gap of the measured magnet as well as the measurement positions of

the coil probe. The 16 black circles on the left and on the right indicated the 16

turns of the magnet’s coil windings. The circles indicate the different positions of

the measurements (dashed centre circle, dashed dotted circle xm ¼ �3:0 cm) and

the ellipse indicates where the field is reconstructed. The solid line indicates the

ellipse used in the reconstruction. The solid dot on the ellipse indicates the

angle cp .
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equipped with bucking coil probes. Now the procedure of
calculating the elliptic and circular multipoles from measurement
data is demonstrated for the end field as measured when the
magnet was powered to a field level of approximately 0.22 T. The
end field is chosen for this demonstration as it is much more
inhomogeneous than the field in the centre of the magnet. Thus
measurement errors are less contributing to the field deteriora-
tion, as the used system is dominated by absolute errors, and
therefore the strengths and weaknesses of the multipoles are
shown.

The magnet’s gap is 12:5	 6:8 cm2. As this magnet is super-
conducting and thus operated at � 4:5 K an anticryostat was
used, which limits the space accessible within the magnet. The
magnetic field was measured at three different lateral positions
(xm ¼ 0;�3:0 cm) with a rotating coil probe of 1.7 cm radius (see
Fig. 6). Thus for the ellipse the axes were chosen as a ¼ 4:5 cm and
b ¼ 1:7 cm. For calculating the elliptic multipoles the field on the
ellipse has to be reconstructed from the multipoles C̄

l;c;r
m as

obtained by the measurements at xm ¼ �3:0 (left one indicated
with l), at x ¼ 0 (centre one, indicated with c) and at xm ¼ 3:0
(right one indicated with r). The used coil probe was long enough
to cover the whole end field so that at both ends of the probe
Bz ¼ 0.

The field direction of the measurement was not available.
In a first step all multipoles were rotated to cancel the skew dipole
(i.e. so that the dipole field coincides with the vertical axis).
Now the field was calculated along the ellipse using the
multipoles C̄

r
m for the circumference the ellipse is within the

area covered by the measurement at the right; similarly
the multipoles C̄

l
m were used for the circumference of the

ellipse within the area covered by the measurement at the left
side; finally the multipoles C̄

c
m are used for the rest of the

circumference (see Fig. 7). The discontinuity between the coil
measurements has to be treated before any multipoles can be
calculated.

As the coil probe is equipped with dipole bucking windings,
the field variation can be determined with a significantly higher
accuracy than the main dipole field (field strength jC0j as well as
field angle argðC0Þ) [17,18]. Thus the field was calculated in the
intersections (indicated by the dashed lines in Fig. 6). So for these
intersections the two measurements covering the intersecting
area must reproduce the same field. This is not the case for the
measured data. Thus two optimisation parameters g and b were
introduced as well as the function
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Fig. 8. The weights of the measurement as well as the interpolation functions

versus the angle c for the first quadrant. The solid line indicates the function l
with p0 ¼ 0:75cc and the dashed dotted line the function l with p0 ¼ cc . The

dashed line indicates the weight function for the measurement in the centre

2lcr
� 0:5. The scale and offset are used to facilitate the visual comparison to the

function l. The vertical dashed line indicates the angle cc and the vertical solid

line the angle p0 ¼ 0:75cc .

Fig. 9. The field interpolation errors for the elliptic using the first eight coefficients

(solid line), for the circular representation using seven coefficients (dashed line)

and for the circular representation using 30 coefficients (dash-dotted line).

Fig. 7. The field as recalculated from the measurement at a central field level of

� 0:22 T. The dotted line shows the field as calculated from the measurement data

without artefact removal, the dashed line the field as calculated form the

measurement data after adjusting the multipoles according to the procedure

described in the paragraph around Eq. (46) and the solid line when the weight

function l is used. The dashed line coincides nearly with the solid lines (a

difference is only visible of DBx at c � 2701. The plus symbols show the field

reconstructed using the elliptic multipoles and the cross-symbols when using the

circular multipoles calculated from the elliptic ones.
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Cm ¼ 1þ
g

10 000

� �
C̄m eiðmþ1Þb (46)

to correct the measured multipoles C̄m. The factor g is a model of
the accuracy limitation of the signal acquisition electronics. When
measuring the end field the integrated field strength seen by the
coil probe depends strongly on the longitudinal position and thus
g also allows to compensate errors due to imperfections in
positioning the coil probe longitudinally. b is motivated by the
fact that the field direction for the measurements does not
necessarily need to be identical for all three measurements. gl;c;r

and bl;c;r were chosen such that the square of the field difference
was minimised along the intersections (as indicated as small solid
lines in Fig. 6). g was found to be typically less than 5 in the centre
of the magnet and thus within the expected accuracy achieved by
the used rotating coil measurement system and b was typically
less than 1 mrad. For the measurement of the magnet end g was in
the order of 20, which can be explained by the limited long-
itudinal coil probe positioning accuracy.

After these minimisations the fields at the edge are still
discontinuous with steps in the order of up to one unit. So the
field data of the two adjacent measurements shall be intermixed
by a function l, thus the interpolated field BiðzÞ shall be given by

BiðzÞ ¼ l
XMm

m¼0

Cc
m

z

Rm

� �m

þ ð1� lÞ
XMm

m¼0

Cl;r
m

z� xm

Rm

� �m

(47)

with Rm the measurement radius. Mm was chosen to be 10. To
define lambda, the measurement error and thus the weight wl;c;r

of the appropriate multipoles at any point z is estimated by the
distance of the point of interest from the centre of rotation of the
coil probe, so that

wl ¼
Rm

jz� xmj
; wc ¼

Rm

jzj
; wr ¼

Rm

jzþ xmj
(48)

and lcl and lcr could be chosen to

lcl
¼

wc

ðwc þwlÞ
; lcr

¼
wc

ðwc þwrÞ
. (49)
Given that the weights wl; . . . ;wr are not much larger than one
and the weight in the area in question is almost linear (see Fig. 8),
l is not modelled as given above but chosen to enforce a
continuous BiðzÞ and first derivative. Thus l is given by

lðp0Þ ¼ 0; lðp1Þ ¼ 1; l0ðp0; p1Þ ¼ 0; lðpÞ ¼ 3p2 � 2p3 (50)

with

p ¼

0; cop0

2c� p
2p0 � p

; p0 � c � p:

8><
>: (51)

for the first quadrant. p for the other quadrants can be calculated
after reducing the angle to the first quadrant. One could use
p0 ¼ cc , i.e. the angle at which the ellipse intersects the circle, as
the authors proposed in Ref. [2]. But if one plots the weight
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functions one can see that p0 ¼ 0:75cc ¼ cp is the best choice (see
Fig. 6) for if this angle is used then the interpolation functions
shape is quite similar to the original weight function (see Fig. 8).
So finally the field can be reconstructed by

BðzÞ ¼

PM
m¼0

Cl;r
m

z� a

R0

� �m

; c � cp

BiðzÞ; c4cp

8>><
>>:

c ¼ Imðcosh�1
ðz=eÞÞ. (52)

The circular multipole coefficients are then calculated as
described in Section 2.3.1 using this reconstructed field.

The elliptic and circular coefficients were now checked
interpolating the field on the ellipse and comparing it to the data
used for calculating the coefficients. The interpolation error dBy þ
cn

en

dB

0
2

0

n

B [T]

B [T]
2

-120. -80.0 -40.0 0.00 40.0 80.0 120.
units

Fig. 10. The real part of the elliptic and circular multipole coefficients for different

field levels. The biggest coefficients of the en ¼ 2	 104En=E1 are found within the

leading terms while the circular coefficients cn show certain bands (indicated by

dashed lines).

Fig. 11. The field as recalculated from the measurement using the elliptic

multipoles and using eight circular multipoles. The solid line shows the field as

reconstructed using the elliptic multipoles and the dashed line as reconstructed

using 10 circular multipoles. One can see that the artefacts are nearly as large as

the field inhomogeneity itself.

Fig. 12. The field interpolation errors for the elliptic (solid line) and circular field

(dashed line) representation. Eight elliptic terms were used and ten circular terms.

The circular multipoles produce artefacts which are larger than the field

inhomogeneity itself.
diBx ¼ dBzðzÞ was defined to

dBzðzÞ ¼
104

C1
BðzÞ �

XM
m¼0

Cm
z

R

� �m
" #

(53)

for the circular multipoles with M the last used coefficient and to

dBzðzÞ ¼
2	 104

E 0
BðzÞ �

E0

2
�
XN

n¼1

En coshðnwÞ

" #

w ¼ Arccoshðz=eÞ (54)

for the elliptic multipoles with N the largest used coefficient. Fig. 9
demonstrates that both sets can reproduce the field with an
acceptable quality. The circular multipoles produce artefacts at
the edge of the ellipse if seven multipoles are used while the
elliptic ones describe the fields with nearly no artefacts. Using 30
multipoles one can reach a field description as obtained using
eight elliptic coefficients (see also Fig. 9).

Even if both sets are able to represent the field with sufficient
accuracy the elliptic ones are easier to handle as the elliptic ones
get smaller with higher order (see Fig. 10). The circular ones on the
other hand produce bands of alternating coefficients. If one now
cuts the sum within such a band larger artefacts can be created. To
demonstrate this, the field was calculated on the ellipse again for
10 multipoles which were calculated using the first eight elliptic
multipoles as described in Section 2.3.1. The reconstructed field is
given in Fig. 11 and compared to the one used for obtaining the
coefficients (see also Fig. 12). One can see that the artefacts are
larger than the field distortion of the magnet itself. Similar effects
were also observed for the coefficients calculated for the central
field. This clearly shows that the elliptic coefficients are more
adapted to describe magnetic fields within an ellipse, but circular
multipoles can be still used if the truncation of the series is made
with care.
5. Conclusions
(1)
 Within a circular domain a plane static magnetic field may be
represented as a complex function, which may be expanded
w.r.t. a complete set of circular multipoles. The expansion
coefficients may be derived using a Fourier expansion from such
a field given along the reference circle bounding this area.
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(2)
 It is shown that a corresponding expansion may be done in an
elliptic domain bounded by a reference ellipse. Expressions for
the expansions coefficients for the elliptic multipoles are
given comprising the field values given along the boundary.
The completeness of this new set of elliptic multipole
functions is shown.
(3)
 The circular and the elliptic expansion coefficients belonging to
the same complex magnetic field are related to each other by
linear transformations such that M coefficients of one set
determine those of the other set in a unique way. General
expressions for the elements of these triangular transformation
matrices are given. If the aspect ratio of the ellipse gets larger,
elliptic multipoles of a certain amplitude will be converted to
larger circular multipoles than for an ellipse with a smaller
aspect ratio. The elliptic multipoles usually provide a more
accurate field description than the circular multipoles for the
same number of coefficients.
(4)
 An elliptic reference curve fitting into a rectangular gap
surrounds a larger area than a circular one matched to the same
gap. This entails an advantage of the elliptic multipole expansion
since the convergence and stability of each type of expansion is
assured mainly within the corresponding reference curve.
(5)
 We demonstrated the validity of the elliptic and circular
coefficients for the two-dimensional field of the curved single
layer dipole with 8 turns (CSLD-8b). We showed that only
these sets allow to reconstruct the field with a precision of
better than 1 unit within the ellipse. Thus the circular
multipole coefficients, obtained using the transformation
from the elliptic ones, differ significantly from the circular
multipoles, obtained from the data on the circle.
(6)
 A guide was given on how to interpret the data comparing the
CSLD-8b design to the 10 turn single layer dipole as proposed
in Ref. [11]. The plots of the multipoles versus the current
clearly show that the first design provides a better field
quality than the second one.
(7)
 The theory was applied for measurements performed using
rotating coil probes. An analysis of the obtained coefficients
shows that the largest elliptic coefficients of the series are
found in the first ones while for the circular multipoles bands
of large alternating coefficients are found. If the series is
truncated within such a band, the field representation will
contain large artefacts. This clearly shows that the elliptic
coefficients are more adapted to describe magnetic fields
within an ellipse, but circular multipoles can be still used if
the truncation of the series is made with care.
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