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Abstract

The ability of our nervous system to rapidly process and react on the huge amount
of sensory input data is grounded on its massively parallel architecture. Arguably,
physical cost for communication, that is to say the space needed for wires, is the
most severe bottleneck in biological as well as in artificial architectures of this
type. In this thesis the complexity of wiring in biological and artificial neural
networks, the implications of wiring constraints to models for brain circuits, and
the implementation of wire-efficient circuit designs in hardware are studied.

We present a simple mathematical framework that allows us to study the wiring
complexity of neural circuits in a formal and general manner. In this model, the
complexity of a circuit is measured by the total length of wires needed to im-
plement the circuit, a complexity measure that is one of the most salient ones
if real-world constraints of implementations in hardware or “wetware” are con-
sidered. Several functions of biological relevance are studied in this context and
efficient circuits are designed for them. It turns out that circuits and layouts
we designed in the spirit of wire length minimization are also efficient in VLSI
models and are therefore also of interest for hardware design.

Furthermore, we study the layout of general computational structures like tree
computations. We give tight upper and lower bounds on the wire length of con-
strained tree layouts and show efficient layout strategies for prefix computations.
These results are of interest in VLSI design as well as in biological circuits. An-
other chapter is concerned with the computational complexity of optimal layouts
in VLSI circuits. It is shown that a layout problem that is fundamental to VLSI
design is computationally intractable or NP-complete.
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Zusammenfassung

Die enorme Leistungsfihigkeit unseres Nervensystems in der Verarbeitung von
sensorischem Input ist in dessen massiv-parallelen Architektur fundiert. Solche
Architekturen, biologische und kiinstliche, sind hauptséchlich beschrinkt durch
Kosten fiir Kommunikation, das heifit durch den fiir Kommunikationsverbindun-
gen (wires) bendtigten Raum. Diese Arbeit untersucht die Komplexitit von
biologischen und kiinstlichen neuronalen Netzwerken in Hinsicht auf ihre Ver-
drahtungskosten (wire-Komplezitit), die Auswirkungen von Beschrinkungen der
wire-Komplexitit auf Modelle biologischer neuronaler Schaltkreise und die An-
wendung von in dieser Hinsicht effizienten Schaltkreisen in Hardware.

Wir fiihren ein einfaches theoretisches Rahmenmodell ein, das es uns erlaubt
die wire-Komplexitidt von neuronalen Netzen in einer formalen und allgemeinen
Form zu untersuchen. Die Komplexitit eines Schaltkreises wird hierbei durch
die in jedem Layout bendtigte Gesammtverbindungsléinge bestimmt. In diesem
Kontext werden verschiedene biologisch relevante Funktionen untersucht und ef-
fiziente Schaltkreise zur Berechnung dieser Funktionen vorgeschlagen. Es stellt
sich heraus dafl solchermaflen entworfene Schaltkreise auch in VLSI-Modellen ef-
fizient sind und deshalb auch von Interesse fiir Implementierungen in Hardware
sind.

Weiters werden Layouts fiir allgemeine Berechnungsstrukturen, etwa Baum-
strukturen, untersucht. Wir bestimmen optimale Schranken fiir die wire-Kom-
plexitdt von Baumlayouts mit Nebenbedingungen und zeigen effiziente layout-
strategien fiir Prifixberechnungen. Ein weiteres Kapitel beschiftigt sich mit der
Rechenkomplexitét von optimalen layouts in VLSI-Schaltkreisen. Es wird gezeigt
daB ein wichtiges Layoutproblem NP-vollsténdig, also nicht attackierbar ist.
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Chapter 1

Introduction and Overview

The ease with which humans are able to process and react on the permanent
stream of data from millions of sensory input channels is amazing. For example,
in the visual system of primates, the number of neurons that transmit information
from the retina (via the thalamus) to the cortex is estimated to be in the order of
10%. Difficult visual tasks like object recognition invariant under position, scale,
rotation, deformation, etc., are performed permanently and with high precision
and speed.

Understanding the computations that make such powerful behavior possible is
one of the key challenges in science. This question is also of interest to hardware
engineering, because there is a growing demand for time- and energy efficient
hardware for sensory processing. In recent years, biological inspired hardware
architectures have received growing attention in the field of neuromorphic engi-
neering, see (Mead, 1989). Because the number of parallel inputs which such
circuits have to handle is quite large, complexity issues are critical, both for
circuits in hardware and “wetware”.

This thesis is concerned with the investigation of complexity issues that reflect
real world implementation constraints of biological and artificial neural circuits.
In order to analyze these issues, a mathematical framework is established that
allows us to address such questions in a systematic and general way. We base our
framework on circuit complexity theory since it is established as a fundamental
tool for analysing the complexity of computation in massively parallel architec-
tures. The complexity of a circuit in circuit complexity theory is customarily
measured as the number of computational elements (gates) in the circuit. How-
ever, most volume of neural tissue is dedicated not to computational elements (in
this context cell bodies of neurons), but to connections between them (dendrites
and axons). In billions of years of the development of efficient neural systems,
evolution primarily optimized communication structures in order to build more
and more complex and therefore more competitive systems. The hypothesis that
brain circuits are designed such that wiring is economized is often referred to as



1 Introduction and Overview

the “wiring economy principle” and its importance is pointed out by many au-
thors (see Chapter 4). Therefore we propose a new complexity measure, the total
wire length, which measures not only the number of connections but the total
length of wires needed to implement some circuit. In the context of resources
used by a brain circuit, this complexity measure is one of the most salient ones.

In addressing the issue of computation in the brain, not only the computa-
tional model and the complexity measure considered are important, but also the
question of “what is computed”. In the abstract framework of circuit complexity
theory, this question is not of much interest. An infinite number of mathematical
functions can be constructed and a lot of interesting mathematical functions are
known. Therefore, most results in circuit complexity theory address functions
like parity, sorting, or addition. However, in the context of biological neural com-
putation, no simple answer can be given. What is the input of a cortical circuit,
and what is its output? In this thesis, we propose “benchmark functions” that
seem to be related to cortical function. We argue that functions we consider have
to be somehow solved implicitly by cortical circuitry, although they might not be
addressed explicitly.

Artificial computational devices are normally implemented in silicon in very
large scale integration (VLSI). Because of the two-dimensional structure of
VLSI circuits, wiring issues are even more important than in — basically three-
dimensional — brain circuits. In the words of Carver Mead, this can be sum-
marized as:” Economizing on wire is the single most important priority for both
nerves and chips.” (Mead, 1989). Therefore VLSI design strategies might be of
help in understanding the structure of neural circuits and — the other way around
— design properties of biological neural circuits can be of great help in finding
efficient VLSI designs. In this thesis, we take a journey on the common ground
of three different but related fields, neuroscience, circuit complexity theory, and
VLSI theory. We believe that any of these fields is of great interest to any of the
others, that new relevant relations can be found, and that new ideas and spirit
can flow between the fields, gaining more insight into any of the disciplines. This
thesis can be seen as a starting point in this direction. Questions relevant to any
the fields and in the free space in between them are addressed.

We start the journey in Chapter 2 which presents the basics of brain function.
Most issues are discussed on a rudimentary level. We go into more detail in
topics related to the wiring of the brain. In particular, qualitative and quantita-
tive aspects of neural arborizations and wiring aspects of the cerebral cortex are
discussed more deeply.

Mathematical models of computational circuits are addressed in Chapter 3.
Fundamental mathematical definitions and paradigms like graphs and layouts are
given. Parallel computation is discussed with emphasis on biologically inspired
circuit models and the basics of circuit complexity theory. Furthermore, the
basics of VLSI, abstract VLSI models and ideas of analog VLSI are presented.
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Issues concerning the wiring of the nervous system have been addressed by
several authors. Although a variety of different viewpoints can be found in the
literature, the field is still easy to overview. In Chapter 4 we summarizes the
most important research — to the view of the author — on this topic. This chapter
can be thought of being a motivation for the research done in this thesis, but it
is also intended to give the reader a feeling of the state of the art of research in
the field, to emphasize the remarkable different approach of this thesis, and to
facilitate the comparison of different approaches.

In Chapter 5, the new complexity measure for parallel processing total wire
length is introduced. We argue that this measure is among the most salient ones
for sensory processing but is still simple enough to make mathematical analysis
possible. Reasonable bounds on the total wire length of cortical circuits are
discussed in Section 5.2. It turns out that cortical circuits are very restricted in
their total wire length. The total wire length of a circuit is also of relevance in
an implementation in hardware. In Section 5.3 we briefly discuss the relation of
total wire length to classical VLSI performance measures and present the abstract
model on which most VLSI analysis of subsequent chapters is based.

In Chapter 6 we discuss a simple one-dimensional sensory processing task. The
discussed pattern recognition problem is fundamental to problems arising in bi-
ological tasks and in problems relevant for real-time VLSI applications. We give
a circuit design with threshold gates that is efficient in the number of gates and
its total wire length. We show that the number of gates used by this design
is asymptotically the best possible for any threshold circuit. However, if in ad-
dition winner-take-all gates are employed, a much more efficient circuit can be
developed. The circuit design we present combines a constant number of gates
with linear total wire length, which is the best possible. This result shows that
winner-take-all circuits can be very useful in circuits for sensory processing tasks.

While in Chapter 6 we merely dealt with one-dimensional pattern recogni-
tion problems, two-dimensional problems are of special interest because of two-
dimensional input representations (maps) that can be found throughout the cere-
bral neocortex and because of the natural representation of many problem in-
stances (e. g. visual input) in an two-dimensional array. In Chapter 7 we exhibit
circuit design strategies for such problems that stay within realistic complexity
bounds, having linear or almost linear total wire length. Furthermore, it turns
out that such designs are also applicable for VLSI-implementations.

In the design of circuits, basic computational structures emerge that are useful
in many concrete computations. One of the most basic VLSI layout strategies is
the well known H-tree. We show in Chapter 8 that an extended version of the
H-tree layout can be implemented efficiently, using only a constant multiple of
the area and total wire length of the standard approach. Another computational
structure that is often used is an prefiz computation. An efficient implementation
of a prefix computation with gates of limited fan-in is designed.
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In classical circuit complexity theory, the circuit complexity of a function is
normally expressed by its circuit size, 7. e. the minimal number of gates of any
circuit that computes the function. It is an interesting question how the total
wire length of a function relates to this classical circuit complexity measure. In
Chapter 9 we derive upper and lower bounds on the total wire length of a function
in terms of its circuit size. In abstract VLSI models, the complexity of a function
is normally expressed in terms of the area of an implementation of the function.
The relation between total wire length and VLSI area is also discussed in Chapter
9.

Tree-like organizations are a fundamental structure in parallel processing, as we
have already noted. In Chapter 10 we study the layout of trees where leaves are
restricted to lie on a horizontal line. In contrast to previous results, we employ
a model where trees of arbitrary fan-out m can be analyzed. An algorithm is
presented that produces a layout with a total wire length that is significantly
smaller than that of obvious layouts. Furthermore, we show that this algorithm
produces layouts with optimal wire length.

The problem of routing in biological circuits is closely related to the problem of
routing in VLSI models. While there is more freedom in cortical routing due to
the three-dimensional structure of cortical circuits, the problem of finding optimal
circuit layouts is even harder than in VLSI routing. Unfortunately, most VLSI
routing problems are computationally very demanding. In Chapter 11 we analyze
the computational complexity of a specific routing problem that is fundamental
to VLSI design, the knock knee channel routing problem. The exact complexity of
this problem was unknown so far. In this chapter, we show that one of the easiest
versions of the problem is NP-complete (i. e. computationally intractable). This
gives a tight characterization of channel routing in terms of its computational
complexity.

Chapter 12 concludes the thesis with a discussion of the results and an outlook
to future work.



Chapter 2

Fundamental Aspects of the
Nervous System

The ability of the nervous system to rapidly process — and react on — the huge
amount of sensory input-data is grounded on its massive parallel architecture.
In this chapter we summarize these grounds of biological neural computation in
describing the elementary concepts of the nervous system. However, a detailed
review of these concepts is far off from scope of this thesis. Hence we concentrate
on the topics most relevant for the following chapters and the interested reader is
referred to (Purves et al., 1997; Bear et al., 1996; Kandel et al., 1991; Shepherd,
1994; Stuart et al., 1999; Abeles, 1998). The basic computational unit in the
nervous system — the neuron — is introduced in Section 2.1. In Section 2.2, we
discuss how information is communicated and processed in the brain. The way
that communication is established in a physical sense is the topic of Section
2.3. Finally, several aspects of the cortex related to communication structure are
discussed in Section 2.4.

2.1 Basic Computational Units in the Nervous
System: The Neuron

The discovery that the brain is made out of discrete entities that communicate
with one another by specialized contacts is primarily a result of the nineteenth-
century pioneering studies of the Spanish neuroanatomist Santiago Ramon y
Cajal. These elementary information processing units are called nerve cells or
neurons' A schematic drawing of a typical cortical pyramidal cell is shown in
Figure 2.1. These nerve cells are in most respects similar to other cells in the

Tt should be noted that the nervous system not only consists of nerve cells but also of
supporting cells. There are even several times more supporting cells in the nervous system than
nerve cells but supporting cells are not primarily involved in electrical signaling.
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Figure 2.1: Schematic drawing of a cortical layer V pyramidal cell.

body. Each nerve cell has a cell body (or soma) that contains organelles essential
to the function of all cells. What makes nerve cells different to all other cells is
that nerve cells are highly specialized for intercellular communication. This spe-
cialization becomes most apparent in the fascinating geometries of neurons. The
soma receives electrical signals from other cells via its dendrites which arise from
the soma and are often highly branched (they are also called dendritic branches
or dendritic processes). The dendrites (together with the soma) provide sites for
synaptic contacts with other nerve cells. The information that is integrated at
the soma is conducted to other cells via the axon which arises from the axon
hillock and usually branches into several thousand arbors. Thus, the axon can
be regarded as the portion of the neuron specialized for signal conduction. At
the tip of such an arbor there may be a synaptic terminal which connects to the
dendrite (or sometimes to the soma) of another neuron. These connections are
called synapses.

2.2 Information Processing in Neurons: Spikes
and Synapses

So far we merely dealt with morphological features of neurons. We mentioned
that neurons are specialized for intercellular communication. But how is infor-
mation communicated and processed by neurons? In the nervous system, the
representation of information is based on electrical signals. Like in all other cells,
there is an electrical potential difference that exists across the cell membrane,
the so called membrane potential. The membrane potential arises from different
ion-concentrations in the liquid inside and outside the cell. If there are no inputs
impinging onto the neuron the membrane is at its resting potential which varies
between -30 mV and -90 mV depending on the cell type.

If the input to a neuron rises the membrane potential at the axon hillock
above a certain threshold an action potential or spike is initiated. A spike is a

6
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Figure 2.2: A Typical shape of an action potential. Typical shape of an EPSP (B)
and an IPSP (C).

rapid positive change in the membrane potential (see Figure 2.2A). The action
potential is conducted by the axon and passed on to the next cells in the pathway
by means of synaptic transmission. The synaptic transmission produces a change
in the membrane potential of the targeted (postsynaptic) cell, which is called
a postsynaptic potential (PSP). The result of a postsynaptic potential is either
an increase of the membrane potential (see Figure 2.2B) or a decrease of the
membrane potential (see Figure 2.2C). In the former case it is called an ezcitatory

postsynaptic potential (EPSP) and in the latter case an inhibitory postsynaptic
potential (IPSP).

Historically, “synapses” is the plural for synopsis which means “connection”.
This term was firstly used by Foster and Sherrington (Foster, 1897). Synapses
are believed to play a key role in this information processing. Although spikes are
digital events (i. e. there is no information in the strength of spikes), the post-
synaptic change in membrane voltage highly depends on the properties of the
synaptic transmission. Thus, the function that is computed by a single neuron is
believed to be highly determined by properties of its synaptic inputs®. Synaptic
transmission is a highly complex, dynamic and stochastic process, see e. g. (Ab-
bott et al., 1997; Dobrunz and Stevens, 1997; Maass and Zador, 1999)). However,
in theory the properties of a synapse are often described by a single scalar, the
weight w; ; (the indexes are chosen with respect to the neurons that are connected
by this synapse). This weight can be regarded as a measure for the influence of
the presynaptic neuron onto the postsynaptic neuron. Furthermore, the weight of
a synapse may change over time, thus synapses are also regarded to be the basis
of learning and adaptation in the nervous system. This means that the function
of a neuron or a network of neurons can be adapted to its environment or learned
— instead of being “programmed” into the network — by means of this synaptic

2Tt is also believed that many other factors — e. g. the summation of potentials via the
dendritic tree — influence the function of a neuron. However, most theoretical models of neural
computation rely merely on the power of synaptic transmission.
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plasticity. This ability is one of the key features of the nervous system.

So far, this is all we need to know about the way that information is processed in
nerve cells. It is obvious that this Section can merely be a very brief introduction
into this topic and simplifications are unavoidable. The reader interested in this
topic and in the mechanisms that underlie neuronal behavior are referred to the
literature given at the beginning of this Chapter.

2.3 Communication Structure in the Nervous
System: Dendrites and Axons

Since this thesis is concerned with the wiring of neural systems, it is helpful to
gain insight in the way that neurons are connected in biological neural networks.
As mentioned above, dendrites are the portion of the nerve cell that are special-
ized for receiving information. Most neurons have multiple dendrites, which are
typically short and highly branched. However, there is high diversity in the ge-
ometries of neurons with respect to their dendrites. This diversity ranges from a
small minority of neurons that lack dendrites at all up to neurons with dendritic
arborizations of fascinating complexity, see Figure 2.3. Typically, the number of
inputs received by a neuron in the human nervous system is in the order of 107,
but within different cells the number of inputs ranges from 1 to about 10° with
highly diverse branching patters.

The number of inputs a neuron receives is reflected in the complexity of its den-
dritic aborizations. The branched structure of dendrites results in an enormous
enlarged cell surface which makes it possible that up to more than 10° synapses
can contact a single neuron. For example, 97 % of the surface area of a motor
neuron (excluding the axon) is dendritic (Ulfhake and Kellerth, 1981). A simple
calculation shows that such area would result in a massively enlarged brain vol-
ume if this surface area would be supplied by the soma. The surface area of such
dendrites is 370 000 m? while occupying a volume of 300 000 um?. A sphere of
the same surface area would occupy a volume of 20 000 000 um3. This increased
surface area is indeed valuable for increased input sizes of neurons, since 80 %

of the surface of proximal dendrites of motor neurons is covered with synapses
(Kellerth et al., 1979).

Compared with axons, dendrites make relatively local connections. While ax-
ons may reach lengths of up to a meter, dendrites are rarely longer than 1-2
mm. This is illustrated by typical dimensions of two well known neuron types.
The CA1 pyramidal cell in the rat has 5 basal dendrites with a dendrite extent’
of the basal dendrites is 130 um, and the total dendritic length of such cells is

3The dendrite extent is the average distance from the cell body to the tips of the longest
dendrites
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Figure 2.3: Diversity of dendritic geometries illustrated on six cell types. (a) Fish
Purkinje Neuron. (b) Cat retinal ganglion neuron. (c) Salamander retinal amacrine
neuron. (d) Human cerebellar Purkinje neuron. (e) Rat neocortical layer 5 pyramidal
neuron. (f) Human nucleus of Burdach neuron. Modified from (Mel, 1994).

about 11900 pum ,including stratum radiatum and lacunosum-moleculare (Ban-
nister and Larkman, 1995). The Cerebellar Purkinje cell in the guinea pig has
one dendrite with a dendrite extent of 200 ym and the total dendritic length of
such cells is 9100 um(Rapp et al., 1994).

Dendrites of different neuron types have different characteristic branching pat-
terns. These branching patters differ in several interesting ways. The way that
dendrites extent into specific spatial domains is a primary contribution to the
mode of connectivity of a neuron. In this way, particular portions of the dendritic
arbor receives inputs from specific sources. A further differentiation is the extent
to which the dendrite fills the spatial domain of its arborizations. The diversity
ranges from dendrites with a small amount of specific targets (selective aboriza-
tions) to branches that occupy most of their domain (space-filling aborizations).
In between these extremes are the medium space filling sampling aborizations. It
can be argued that these different modes of dendritic branching is a indicator for
very different neuronal function. On one extreme we have the selection of a single
specific input an on the other one the integration of information from a hundred
thousand neurons in a broad input area. If one is willing to speculate, one could
compare it with two mathematical paradigms of algebraic computation with clear
input-output relation and statistical analysis over distributions of inputs.
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Figure 2.4: A Schematic drawing of pedunculated simple spines. A thin spine (top),
mushroom spine (middle), and gemmule (bottom) is shown. B Dendrite of a pyramidal
cell from the rat hippocampus area CA1l at high magnification. The cell was silver-
impregnated using the Golgi method. Several spines can be seen on the dendrite. The
non-spiny process (arrow) is an axon passing by. Modified from (Fiala and Harris,
1999).

Another vivid measure of the extent to which an arborization fills its spatial
domain and also the complexity of an arborization is its fractal dimension. In
addition to the well known dimensions of linear (dimension 1), planar (dimension
2) and solid objects (dimension 3), one can define fractal dimensions which are
not natural numbers but fractions. Objects with fractal dimension fill a portion
of the space in which they are embedded. On a limited scale, dendritic arbors can
be considered to be fractal objects (Smith et al., 1989). The fractal dimension
of selective arborizations is close to one, the fractal dimension of space-filling
arborizations tends to the dimension of the region they occupy. Differences in
fractal dimension relate to differences in connectivity. We give a simple example
(Fiala and Harris, 1999). Retinal ganglion cells have sampling and arbors which
are essentially planar and a fractal dimension of approximately 1.5 (Fernandez et
al., 1994; Wingate et al., 1992). The arbor covers 25000 um? and receives 2 000
synapses (Sterling, 1990). The Purkinje cell has a space-filling planar arbor with
a fractal dimension of about 1.8 in mammals. The arbor covers 50 000 ym? and
receives 160 000 synapses (Harvey and Napper, 1991).

Synapses on dendrites may be made directly on the shaft (shaft synapses), but
are often placed on special enlargements or protrusions. Such synaptic special-
izations are very diverse. The most common specializations are simple spines.
Spines are protrusions from the dendrite that are often ending in a bulbous head
attached to the dendrite by a narrow neck, see Figure Figure 2.4.

The essence of neural function is the generation of action potentials. Since den-

10



2.4 Aspects of the Cerebral Cortex

drites are normally the origin of most of the synaptic inputs to the neuron, their
properties play an important role in the generation of action potentials. Action
potentials are initiated at the axon hillock. The ability of an EPSP to depolarize
the membrane potential toward the threshold of the neuron depends on the size
of the EPSP and the extend to which it is attenuated as it propagates from the
dendrite to the soma. Such attenuation can be dramatic for synaptic input on
distal dendrites. Furthermore, the summation of EPSPs on the dendrite is sublin-
ear and depends on the electrical properties and the sites of the synaptic inputs.
For a detailed discussion on the topic of electrical properties of dendritic trees
and dendritic information processing, see (Segev and London, 1999; Spruston et
al., 1999) and the excellent review (Mel, 1994).

In summary, dendrites are morphologically diverse and commonly complex.
They are the main determinant of neuronal connectivity and contribute signifi-
cantly to neuronal function in cells and networks of cells.

Because axons may be much longer than dendrites, they are often thought to
be the main contributor to wire length and communication in the nervous system.
In the grey matter of the cerebral cortex (see below), axons and dendrites take
up about the same amount of volume. However, only axons are sent outside the
grey matter to communicate with distant cortical neurons. Neurons normally
have a single axon, from which azon collaterals may branch orthogonally to the
main stem. In humans, the majority of axons have a length of a few millimeters.
However, since many axons are very long compared to dendrites, they are very
important in signal conduction. The length of up to a meter requires a special
mechanism for action potential conduction in the axon since otherwise the signal
would not reach the tips of the axon. This problem is solved in the axon by special
membrane properties such that the spike is not conducted but regenerated along
the membrane. Thus, the axon membrane is a highly specialized structure for
communicating action potentials over long distances. Moreover, axons are often
myelated which means that certain glia cells wrap around the axon to isolate
it and thus increase the speed of signal conduction. All this shows that nature
uses great efforts to optimize communication pathways in the nervous system
and often provides amazing solutions to the arising problems. More quantitative
aspects of axons are described within the following section.

2.4 Aspects of the Cerebral Cortex

One of the most remarkable and prominent parts of the nervous system is the
cerebral cortex, particularly its most recently developed part, the neocortex. Un-
like other cortical structures, the neocortex is found only in mammals. Over the
course of human evolution, the neocortex has expanded enormously. Usually, if
the term cortex is left unqualified, it is usually intended to refer to the cerebral
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2 Fundamental Aspects of the Nervous System

Figure 2.5: A coronal cut through the human brain. The cerebral cortex and its
folded structure can be seen. The grey matter is right under the surface of the cerebrum
(grey shaded region) and covers the white matter (white region). Modified from (Bear
et al., 1996).

neocortex. The cerebral cortex is responsible for sensations, perceptions, volun-
tary movement, learning, speech, and cognition. Because of the central role of
the neocortex in sensory processing, we will refer to cortical processing in several
chapters. In this Section, we describe basic aspects of the cortex, with emphasis
on wiring aspects. The will discuss the division of local and global communication
in white and grey matter, cortical areas, and maps.

2.4.1 White and Grey Matter

The cortex consist of a sheet of grey matter at the surface area, about two mil-
limeters thick. The grey matter appears grey because of the many cell bodies of
neurons. Hence, the gray matter is a sheet consisting mostly of neurons, mainly
pyramidal cells, less stellate cells and mariinotti cells. The pyramidal neurons of
grey matter send and receive myelated axons in the volume below the it. These
axons appear white to the human eye, hence this structure is called white matter
(see Figure Figure 2.5).

Cortical neurons have dendrites and local axons that spread a fraction of a
millimeter horizontally (i. e. parallel to the surface of the cortical sheet). Such
connections are used only for local communication. All of the pyramidal cells
and some of the spiny stellate cells send axons into the white matter (about 80%
of cortical neurons). About 98.6% of these axons connect two cortical regions
within the same cerebral hemisphere. There are also connections between the
hemispheres (mostly via the corpus callosum), connections to and from deep
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2.4 Aspects of the Cerebral Cortex

Figure 2.6: Three slices taken at different areas radial to the cortical surface. The
slices are Nissl stained such that neuronal cell bodies can be seen. Several layers can
be distinguished. It can be seen that the slices have diverse architectures. Modified
from (Abeles, 1998).

nuclei and diffuse connections to and from areas the brainstem. Hence, white
matter is dedicated to long distance information transfer between cortical regions.
The folded structure of the cortex of humans is not merely a mechanical necessity
to the fast growth of neocortex. The fibers of white matter would have to be much
longer if the corex was not folded.

2.4.2 Cortical Areas

A common feature all over the cortex is the arrangement of neurons in horizontal
layers, which have different types, sizes, and densities of cells, see Figure 2.6. The
cortical slices shown in Figure 2.6 are from three different spatial locations of the
cortex. One can see that the patterns of neural cell bodies vary remarkably. Such
a pattern is called a cytoarchitecture. At the turn of the twentieth century, the
cytoarchitecture was taken as a basis for parceling the cortex into different cortical
areas by the German neuroanatomist Korbinian Brodmann. It was suspected that
different areas also perform different cortical functions. At present, there is no
doubt that this hypothesis holds. For example, area 17, called primary visual
area or striate cortex is responsible for basic visual processing.

2.4.3 Cortical Maps

Neurons in primary visual cortex (V1) — as in other sensory areas — show receptive
field properties. In V1, this means that the activation of such a neuron is highly
correlated with stimulation of receptors in a particular local area of the retina.
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Figure 2.7: Ocular dominance patterns as described by Hubel and Wiesel. The figure
shows area 17 on the left cerebral hemisphere. The black lines represent borders where
ocular dominance shifts from one eye to the other one. Modified from (Abeles, 1998).

Therefore, for any local activation of retinal receptor cells, neurons in V1 exist
that code this local stimulus. Therefore, one can ask how the layout of neurons in
V1 corresponds to their receptive fields. Is there a map that places a neuron onto a
specific position of the cortical sheet by means of its receptive field in some causal
relationship? Furthermore, neurons of V1 are tuned to specific features of the
stimulus such as orientation of the stimulus, color, direction of a moving stimulus,
etc. How is such a high-dimensional parameter space mapped onto the basically
two-dimensional cortical sheet? Such maps can be found throughout the cortex,
thus the layout of neurons is highly correlated with its tuning properties and
receptive field position. One such example are ocular dominance patterns. Some
neurons in V1 differentiate their response to patterns of different eyes. There
are neurons that respond better to right eye stimulation and others that respond
better to left eye stimulation. These two types of neurons are not randomly
scattered throughout V1, but concentrated in alternating stripes, the so called
ocular dominance patterns (see Figure 2.7).

Another noteworthy layout are orientation columns. As mentioned above,
many neurons in V1 exhibit orientation selectivity. Hubel and Wiesel showed
that as a caricatured is advanced radially from one layer to the next, the pre-
ferred orientation remains the same for all selective cells encountered (Hubel
and Wiesel, 1962). Furthermore, as an electrode passes tangentially through the
cortex in a single layer, the preferred orientation shifts smoothly, such that all
orientations can be found within a distance of about 1 millimeter. However also
non orientation selective cells can be found. In layer III, there are such neurons
that are highly color sensitive. These neurons are concentrated in circular regions,
called blobs.
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Hence, cortical maps seem to be a fundamental principle of cortical structure,
at least in primary sensory areas. However, the role and significance of such maps
to cortical computation remains controversial, see e. g. (Kaas, 1997; Weinberg,
1997). It seems like cortical maps are not fundamental to the processing itself, but
it supports the physical implementation of processing in some way. One physical
aspect, the economy of wiring, seems to be widely accepted to play an important
role in this context. Since most communication in early processing stages has
to be local (e. g. local smoothing, lateral inhibition), a cortical map can provide
a layout with small wire length and thus might minimize physical costs of the
computation. This aspect will be further discussed in Chapter 4 and specifically
in Section 4.3.
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Chapter 3

Preliminaries on Circuit Models
and VLSI

In this chapter, the basic models of biology inspired circuits, basic circuit com-
plexity issues, and the implementation of circuits in very large-scale integration
(VLSI) are presented. Computational circuits can be conveniently described and
represented as graphs. Therefore we review basic graph-theoretical definitions in
Section 3.1.

The study of parallel processing with simple computational units has a long
history. For a long time only digital units were considered which leads to a
connection to Boolean logic. Therefore, these circuits are called logic circuits.
Mechanical computers performing logic operations were already designed in the
early 19th century by Babbage. In 1938, Claude Shannon analyzed logic circuits
formally, which is considered to be the first formal work on this topic, see (Shan-
non, 1938). The complexity of computations in logic circuits — and therefore the
complexity of Boolean Functions — have been investigated at least since Shannon’s
pioneering paper (Shannon, 1949). In these early years, no connections to biolog-
ical circuits were established. With the work of McCulloch and Pitts in 1943, the
first biology inspired mathematical model of computation was created, see (Mc-
Culloch and Pitts, 1943). The anatomy of nerve cells was taken as a blueprint
for logical gates that are able to compute and learn functions. Gates, circuits
and complexity issues are discussed in Section 3.2. For further reading on logic
circuits and circuit complexity, (Wegener, 1987; Savage, 1998) is recommended.
See (Valiant, 1994; Haykin, 1994; Siu et al., 1995) for further information on
neural computation from the viewpoint of neuroscience, engineering, and theory
respectively.

Logic circuits are the basis of modern computers. Therefore, their analysis is
not only of theoretical interest, but is also important for physical implementations
of artificial computing devices. The technology of such implementations is called
VLSI. Due to the layout of circuits in two dimensions, communication cost is
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a even more severe bottleneck in VLSI than in biological circuits. This fact
is reflected in several models that were introduced to study the cost of VLSI-
implementations. We recommend the textbook (Ullman, 1984) and Chapter 12
in (Savage, 1998) to the interested reader. In recent years, analog computation
in VLSI circuits has achieved increasing attention. The technology of analog
VLSI (aVLSI) is often used with inspirations from biological neural processing,
mainly in early sensory stages. Analog VLSI with emphasis on neural systems is
extensively studied in the influential textbook (Mead, 1989). Section 3.3.1 gives
a brief introduction into technique of VLSI, aVLSI, and physical VLSI models.

3.1 Graphs and Layouts

Computational circuits can be conveniently described and represented as graphs.
We give basic definitions on graphs, as described in (Savage, 1998).

Graphs A graph G = (V, E) is a finite set V' of vertices and a finite set of edges
E = {(v1,v9)|v1,v2 € V}. That is, E CV x V. Vertices are also called nodes. A
graph is undirected if for each edge (vi,v9) € E the edge (ve,v;) is also in E. A
directed graph is a graph that is not undirected. The in-degree of a vertex in an
undirected graph is the number of edges directed into it and its out-degree is the
number of edges directed away from it. The degree of a vertex is the sum of its
in-degree and out-degree. A path in a graph is a tuple of vertices (vy, v, ..., v,)
with the property that (v;v;41) isin E for 1 <wv; <p—1. A path (v1,va,...,vp)
is a cycle if vi = v, and p > 2. The length of a path is the number of edges
on the path. A directed acyclic graph is a directed graph that has no cycles. A
connected graph is a graph such that for each pair nodes, vy,v9 € V, there is a
path connecting these two nodes.

Trees A treeis a connected acyclic undirected graph. A rooted tree consist of
a tree T and a distinguished vertex r of T.! The vertex r is called the root of T.
In this thesis, we will always refer to rooted trees if we use the term “tree”. A
rooted tree is complete if all paths from the root to a leaf have the same length.
A tree is binary if all its internal nodes (non-leaf nodes) have out-degree two. It
is common to regard a rooted tree 7" as a directed graph, with all edges oriented
away from the root (Di Battista et al., 1999). If (u,v) is a directed edge in T,
then u is the parent of v and v is a child of u. A leafis a vertex with no children.
If v is a vertex of T', then the subtree rooted at v consists of the subgraph induced
by all vertices on paths directed away from v and has root v.

'In the literature, a rooted tree is often termed as a planted tree
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The layout of graphs A layout of a graph is an embedding of the graph in
d-dimensional space. Basically, a layout places each node onto some position in
space. The definition of a layout discussed in the following is taken from (Fischer
and Paterson, 1999).

For some graph G = (V, E), the layout of G in d-dimensional space is a function
A : V — RY. This function “places” each node onto some point of the space.
For VLSI-layouts, d is naturally constrained to d = 2. The length of an edge
e = (v,w) € E in the layout A is the distance of the points A(v) and A(w) with
respect to some norm || ... ||:

length(e) =7 [|A(v) — Aw)]l-

A natural norm in layout problems is the Ls-norm, which gives the usual Eu-
clidean distance:

Since in VLSI-layouts, wires are often constrained to run rectilinearly, the L;-
norm might be better suited. The L;-norm gives the “city block” metric:

d
(@1, -zl =) .
=1

3.2 Circuit Models

3.2.1 Logic gates

The gate-type introduced by McCulloch and Pitts is referred to as McCulloch-
Pitts neuron or threshold gate (T-gate). A T-gate computes a Boolean function
T :{0,1}¥ — {0,1} of k variables 1, ..., z) of the form

Ty, X)) = )
! k 0 otherwise.

The coefficients wy,...,w, € R are called weights and © € R is the threshold.
These parameters determine the function that is computed by the gate and can
be learned by applying suitable learning algorithms. Although a drastic simplifi-
cation, such gates capture some basic aspects of biological neurons. A weighted
sum of the inputs is computed and compared to a threshold. If the sum exceeds
the threshold, the gate is “active”.

One may view circuits composed of T-gates as abstract models for computa-
tion on networks of spiking neurons, where the bit 1 is coded by the firing of a
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neuron within a certain short time window, and 0 by the non-firing of this neuron
within this time window, see e. g. (Valiant, 1994). However, T-gates differ from
real neurons in several ways (Abeles, 1998; Maass, 1985). Synaptic input sums
up linearly, complex dendritic summation and shunting inhibition is not possible
(inhibitory synapses are modeled by negative weights). Several membrane prop-
erties of real neurons like the gradual recovery of the membrane potential towards
resting potential and the relative refractory period are not included. Also, dy-
namic synaptic transmission such as facillitation and depression are not covered
by the model. On the network level, since computation evolves in discrete steps,
the input to neurons is assumed to appear as synchronized spikes (up to a few
milliseconds). Some of these deficits can be addressed to minor knowledge of
neuron physiology in the 40es. However, the model is relatively simple and hence
well suited for formal analysis. Therefore, many interesting mathematical results
on threshold circuits are known (see (Siu et al., 1995)).

The basic gates of logic circuits perform simple logic operations like a negation
(NOT-gate), conjunction (AND-gate), or disjunction (OR-gate). Note that these
three types of gates are threshold functions with fixed weights. The NOT-gate
can be implemented by setting w; = —1 and © = 0. AND and OR-gates of k
inputs are realized by unit weights and threshold © = k£ and © = 1 respectively.
The technological advantage of these gates is that they can be implemented in
VLSI very efficiently. On the logic level, they are the basic elements of most
modern computers.

In this thesis, a third type of gate is considered. A winner-take-all gate (WTA-
gate) wy,...,w; € R computes a Boolean function T : {0,1}* — {0,1}* of k
variables z1, ...,z where the ¢th output is 1 if and only if w;z; > w;z; for all
j # 1.2 Note that the most strongly weighted non-zero input is switched to the
output of the gate. This output is the winning output which “inhibits” other
outputs to be activated.

The behavior of WTA-gates is motivated by massive lateral connections found
in cortical circuits. It is conjectured that lateral inhibition plays an essential role
in cortical circuits by allowing one neuron — the winning neuron — to prevent other
neurons in its neighborhood to fire. Hence, a WTA-gate does not model single
neuron behavior but the behavior of cortical microcircuits. The computational
power of WTA-gates was studied in (Maass, 2000).

3.2.2 Feedforward circuits

Gates as introduced above are connected to circuits or networks to form a natural
model for parallel computation. Computational circuits can be defined in several
ways. We will follow the intuitively comprehensive definition of (Siu et al., 1995).

2Such gates are also termed “hard winner take all” in the literature.
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Definition 3.2.1 (Feedforward Network) A feedforward network can be
modeled as a directed acyclic graph G = (V, E) where V is the set of nodes and
E CV XV s the set of edges. The nodes are partitioned into three sets:

input nodes - with no in-coming edges,
internal nodes - with both in-coming and out-going edges,

output nodes - with no out-going edges

Fach directed edge (i,j) € E represents a connection in the network. Each input
node is associated with an input to the circuit, and each internal or output node,
also called gate, computes a function of its inputs. (The inputs to the j-th gate
are the results of the functions computed at all gates i such that (i,5) € E.)

In this classical model, no recurrent connections are allowed. The computation
progresses from input nodes to output nodes. The output computed by a gate ¢
will be propagated along all its output edges. This output is used as input for the
successor gates, i. e. all gates j such that (i,7) € E. The output of the network
is given by the output computed by output nodes. Hence, if all gates compute
a Boolean function, then the circuit computes a multi-output Boolean function
{0,1}™» — {0, 1}t with n;, being the number of input nodes and n,,; being
the number of output nodes.

Definition 3.2.2 (Fan-in/Fan-out) The number of connections leading into a
node is the fan-in of that node. Similarly, the number of connections leading out
of a node is the fan-out of that node. The fan-in and fan-out of a circuit are the
mazimum fan-in and fan-out, respectively, among all gates in the circust.

In the theoretical model, the number of inputs to a gate as well as the number
of outputs from a gate may be arbitrary large. In physical implementations, this
is not the case. The number of inputs to a cerebral pyramidal neuron is roughly
10%. Among the cells with largest input size is the cerebellum Purkinje cell with
roughly 10° synapses on its elaborated dendrites. The number of inputs to gates
on chips is much smaller.

Circuit complexity theory relies on two basic complexity measures that are
defined below.

Definition 3.2.3 (Circuit Size/Depth) The size of a circuit is the number of
gates it contains. The depth of a gate is the maximum number of edges along
any directed path from the input nodes to that gate. The depth of the circuit is
the mazximum depth of all gates.
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Normally, the depth of a circuit is interpreted as the time required for a parallel
computation. The size of a circuit is normally interpreted as a measure of the
required amount of hardware. These complexity measures are further discussed
in Chapter 5.

Note that this circuit model is not designed for WTA-gates. WTA-gates com-
pute a multi-output Boolean function. On may overcome this problem by using
one node for each output of the WTA-gate and argue about implications in com-
plexity of the circuit. WTA-gates are used in Chapter 6. The way we handle
WTA-gates in this thesis is discussed at the introduction of our model in Chap-
ter 5.

3.2.3 Asymptotic growth of functions

In theoretical computer science, costs of computations are normally not measured
in the form of tight expressions with exact constants and factors but asymptoti-
cally bounded. Asymptotic bounds in circuit complexity theory only consider the
order of cost-growth as the problem size (i. e. the number of inputs to a circuit)
increases. This is very useful since it is often not possible to determine exact
bounds. Furthermore, exact bounds are too sensitive to details of the model
considered and hence are no gain compared to asymptotic bounds.

The notational conventions are as follows. We say that f(n) is O(g(n)) or
simply f(n) = O(g(n)), if there are positive constants cy, c¢1, and ng such that for
all n > ng, f(n) <eci1-g(n)+co. Thus O(n) simply means: bounded by a function
that is linear in n. We say that f(n) is Q(g(n)) or simply f(n) = Q(g(n)), if there
are positive constants ¢y and ¢; such that for an infinite number of values of n
we have f(n) > ¢, - g(n) + ¢p. Note that the definition of 2(g(n)) bounds the
function f from below even if f(n) is greater than g(n) only from time to time, but
infinitely often. Often, this rigid definition is not needed and “f(n) = Q(g(n))”
simply means g(n) = O(f(n)).?

Asymptotic bounds have turned out to be very useful in computer science.
However, for practical purposes, they may be misleading. A logarithmic speed-
up in computation time can for practical purposes often easily be outweighted by
a larger constant factor or even an additive term. This fact has been pointed out
by many authors. We will mention constant factors in our results whenever it is
desirable and possible.

3.3 VLSI Technology and Models

Integrated circuits were invented in 1958 and 1959 by Jack Kilby and Robert
Noyce. Components such as wires, transistors, resistors, and others are inte-

3See e. g. (Savage, 1998) or (Ullman, 1984).
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grated on a small piece of semiconductor material. Such an implementation of
an integrated circuit is called a chip. Increasing demand for powerful circuits and
physical limitations on the size of chips led to exponential increase of elements
placed on the same chip area. This integration of several millions of elements on
a single chip is known as very large-scale integration (VLSI). As the number of
elements on a chip grows, the fraction of area accounted for wiring computational
units increases. Therefore, the layout of elements on the chip is crucial for the
amount of resources needed. This fact has been taken into account by physical
VLSI models.

3.3.1 VLSI models

VLSI circuits were intensively studied in the early eighties. Several models for
VLSI circuits have been proposed. Most of them share many features with one
another. The integration of circuit elements can be managed only up to sum
spatial precision. Therefore, wires and transistors need to have some specific
width and must be separated accordingly. In theory, this separations is identified
with the minimum feature size A\. Furthermore, a constant number p > 1 of
layers is postulated where wires may run. The grid model given in (Ullman,
1984) is in most aspects equivalent to the model given in (Savage, 1998), which
is summarized in the following.

One assumes there that gates, memory cells, input- and output-ports and wires
cover rectilinear areas with a width and separation of at least A\. Areas occupied
by different gates, input- and output-ports are not allowed to intersect with one
another. Areas occupied by wires may intersect with areas occupied by gates,
input- and output-ports and also with other wires, but there is a constant bound
it on the number of wire areas to which a point of the plane may belong. Wires
run rectilinear. The computation of such a circuit is the computation of a finite
state machine. Gates realize functions {h : X? — X} on some alphabet X. The
complexity measure induced by this model is the area of the smallest rectangle
that encloses the circuit. The time needed for a computation depends on the
transmission time model used. Man bounds are based on the synchronous model,
where one unit of time is needed for one computational step.

3.3.2 VLSI complexity: the AT? bound

The complexity of a function in terms of its VLSI implementation is measured
by the chip area A consumed and computation time 7. The most prominent
lower bounds have been obtained for a combination of these measures, the AT?
measure. The first lower bound on this measure was derived by Thompson in
1979 (Thompson, 1979). He showed that the discrete Fourier transform in a
suitable model needs AT? = Q(n?). Later, he generalized this result to sorting.
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Lower AT? bounds employ a version of the planar separator theorem (Lip-
ton and Tarjan, 1979). The idea of Thompson was generalized by Lipton and
Sedgewick (Lipton and Sedgewick, 1981) and Yao (Yao, 1981), who indepen-
dently developed the use of crossing sequences. Lipton and Sedgewick used fool-
ing sets, showing that the circuit can be “fooled” (i.e. it produces the wrong
output for some input pattern) if there is not enough communication on the chip.
Yao employed communication complexity, introduced by himself in (Yao, 1979).
Communication complexity is a somewhat more general view of fooling sets. The
communication complexity of a function is the minimal number of bits, two com-
municating computing devices must exchange in order to compute the function.
Communication complexity was also used for lower bounds in circuit complexity
theory.

3.3.3 Layout of graphs for VLSI

Layout strategies for VLSI have been developed for several customary graphs.
The layout of a graph can be analyzed in the more abstract and less detailed
model given in Section 3.1.

The layout of trees was studied intensively. Mead and Rem introduced the
H-tree layout, thus showing that a complete binary tree with n leaves can be
implemented in O(n) area (Mead and Rem, 1979). In this strategy, leaves are
placed throughout the chip surface. We describe, use and study the H-tree layout
in Chapter 7. If leaves have to be placed on the boundary of a convex region,
the area of any layout is bounded by §2(nlogn), which was shown in (Brent and
Kung, 1982). More about the layout of trees can be found in Chapter 10.

A general purpose algorithm for several families of graphs, including planar
graphs of degree four or less, works by partitioning graphs recursively into sub-
graphs with few connecting edges (Valiant, 1981; Leiserson, 1980; Floyd and
Ullman, 1982). Hence this algorithm also relies on the power of planar separa-
tors. Since planar graphs have good separators (Lipton and Tarjan, 1979), all
planar graphs can be implemented in O(n log® n) area. Using crossing numbers of
graphs (the minimum number of wire crossings over all layouts) and this result,
an upper bound on the area of an arbitrary graph with degree four or less related
to its crossing number was derived in (Leighton 1981).

All these VLSI models concentrate on the area consumed by wires. This prac-
tical approach stands in contrast to most research in circuit complexity theory,
since its complexity measures do not account for wiring.

3.3.4 Analog VLSI

While VLSI is based on digital computational elements (computing on binary
values in discrete time steps), analog VLSI (aVLSI) relies on the power of ana-
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log computation. Transistors are the basic elements of most VLSI circuits. In
standard VLSI, transistors are used to form logic elements like AND-gates or
registers. In this approach, transistors are used like binary elements with merely
two specified states. In analog VLSI, transistors are used as analog elements.
The book “Analog VLSI and Neural Systems” by Carver Mead (Mead, 1989) can
be regarded as a seminal work in this field. Mead opens a new field by combining
the technology of analog VLSI and neuroscience. Mead and his students and
colleagues implemented many sensory tasks in analog VLSI in an biologically in-
spired manner. This leads to elegant and powerful solutions with much less effort
and much more efficient than with digital computers.

This approach is not only of interest to VLSI design but also to the field
of neural networks and the research on structure and function of the nervous
system. Mead states that limitations of connectivity in the nervous system and
in silicon technologies forces solutions into a very particular form. Therefore,
solutions in the nervous system should be considered to be well suited for VLSI
implementations. For example, one system designed in the book is the “silicon
retina”, an optical device that resembles many important features of the retina
like the operation over an illumination range of many orders of magnitude. The
circuit is designed such that wire length is kept very small.

Analog counterparts of the gates we introduced in Section 3.2 can be imple-
mented very efficiently in analog VLSI. Threshold gates and winner-take-all gates
can be implemented with an area that grows just linearly with the number of in-
puts to the gate, see (Mead, 1989; Lazzaro et al., 1989).
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Chapter 4

Wiring Complexity in the
Nervous System: A rush through
the Literature

As mentioned earlier, the massive parallel structure of the central nervous system
(CNS) leads to an increase in communication needs. Hence, the wiring of the
parallel units (i. e. neurons) is crucial for the ressources occupied by the CNS.
This chapter summarizes the most important research that was done so far on
this topic. We start with the first mention of this topic about a century ago by
Santiago Ramon y Cajal.

Althoug the problematic of wire length minimization in the nervous system has
a prominent mentor with his statements, it was rarely studied in the following
decades. Starting in the eighties of the past century, several authors payed at-
tention to these issues. Maybe, they were influenced by VLSI layout-studies of
the early eighties, since Mitchison wrote in (Mitchison, 1992): “Certain features
of corical structure - the mappings, stripes and blobs within areas, and areas
themselves - are somewhat reminiscent of the layout of computer components,
and suggest that the cortex may also be organized so as to economize on neural
‘wiring’.” The comparison with relatively simple VLSI layouts seems somewhat
ignorant to the amazing geometries and complexity of cortical circuits. However,
as Mitchison points out, certain common features do exist and the problem of
efficient wiring in the cortex seems to be one key factor of cortical architecture
as it is in VLSI circuits. Others seemed to be influence by advances in parallel
computing, see e. g. (Nelson and Bower, 1990). Thus, a variety of viewpoints and
interdisciplinary research enriched the discussion on the topic of neuronal wiring.
In the following, we will make a brief review of the most interesting findings in
this area. One can divide the research on the basis of the brain scales it focuses,
starting at the very global scale of brain-placement up to the scale of single neu-
rons and layout of arborizations. Thus, recent research we will not be reviewed
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Figure 4.1: Three invertebrates with a simple communication structure. Three sen-
sory inputs are connected to three muscle outputs. The diagram shows the conservation
of neuronal material (wire length) by the concentration of neurons in central ganglia.
Diagram taken from (Cajal, 1995).

chronicly, but divided by means of the brain-scale it considers.

4.1 Cajals’ law of neuronal cytoplasm and
transmission time conservation

The first one who mentioned the problem of wiring in the nerous system was San-
tiago Ramon y Cajal at the dawn of the 20th century, see (Cajal, 1995). Cajal
picks up some thoughts by Herbert Spencer and aks why there is a coalescence
of parts of the nervous system. For example, the double ganglion chain in less
advanced invertebrates that stretches from one end of the body to the other, be-
comes a single chain in higher worms. Cajal postulates a law, the law of neuronal
cytoplasm and transmission time conservation. He thus postulates that nature
tends to minimize the length of aborizations to minimize the use of neuronal
cytoplasm (7. e. neuronal substance), space used for computation, transmission
time and thus reaction time. Cajal emphasizes his hypothesis with fascinating
diagrams, we discuss three of them (see Figure 4.1). The pictures show three
invertebrates in cross section. In Figure 4.1A, an idealized invertebrate without
motor neurons is shown. Three sensory neurons (a) directly connect to three mus-
cles (b). In Figure 4.1B, motor neurons (c) are introduced into the system. So
far, there is no significant reduction in the wire length of the system. Figure 4.1C
shows an invertebrate, such as a worm, with motor neurons (c) pulled together
in a central ganglia. This arrangement achieves a significant reduction in the
wire length of the system, since only six instead of nine long wires are needed for
the same communication structure (all to all connection of three sensors to three
muscles) as before. Cajal states that “.. the gradual concentration of initially
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1solated ganglion cells yields a significant reduction in length of the processes that
link them together; in short, there is a net reduction of cytoplasmic transmission
lines.”

4.2 Global Scale Wiring: Brain, Cortex, Corti-
cal Areas

In the early nineties, Cherniak considered the question of how neural components
should be placed in the nervous system, such that wiring between the components
is minimized, see (Cherniak, 1995). The problem of component-placement opti-
mization (CPO) has received attention in VLSI design and can be simply stated
as: given the interconnections among a set of components, find the layout of the
components that minimizes total connection costs, for example, wire length. For
the case of a single component, the problem is simple. For example, since the
brain has more anterior connections than posterior ones in all vertebrates, Cher-
niak states that it shold be placed as anterior as possible. This is an explanaition
for why the brain is placed in the head. The problem gets much more difficult if
more components are involved. Indeed it can be shown that the problem becomes
intractable for natural problem sizes (it is NP-hard). This computational difficul-
ties not only complicate the research of CPO in the neural system, they are also
a serious obstacle for nature in the search of the optimal wiring for the approx-
imately 50 areas of the human cerebral cortex. Our universe is simply not old
enough for an evolutionary exhaustive search for efficient solutions! Hence, most
scientist are in favor of so-called 'quick and dirty’ solutions that only approximate
optimal solutions but can be carried out much faster. Cherniak overcomes this
problem by stating a simple to verify adjacency rule:”if components are inter-
connected, then they are positioned contiguously to each other, other things being
equal”. Althoug there was only incomplete information available on connections
and contiguities available at that moment, Cherniak concludes from the avail-
able data that the examined systems “departs strongly from random placement
i favor of of the adjacency rule”. The author also examines the neuronal lay-
out of a species for which approximately complete neuronatomy exists, the C.
elegans. After examing the ganglion layout of this species, which is due to its
small size of merely 11 compontents computationally tracktable, Cherniak con-
cludes: “The actual ganglion layout of C. elegans in fact requires the least total
length of connecting fiber of any of the millions possible layouts.”

Wiring of the cortex in a more quantitative way was subject to studies by
Chklovskii and Stevens in the late nineties. In (Chklovskii and Stevens, 2000),
Chklovskii and Stevens considered the number of synapses per neuron as a mea-
sure for the complexity of neural circuitry. They show that this complexity is
maximized in the cortex at a fraction of wire volume to non-wire volume of 0.6.
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The value of 60% of cortical volume being made up of wires is consistent with
quantitative measurements, see (Braitenberg and Schiiz, 1998). This is an in-
teresting finding, since as the authors mention it shows that “components of an
actual cortical circuit cannot be rearranged in a way that needs more wire without
eliminating synapses or reducing wire diameters.”

In the study of wiring in the neocortex, white matter is of special interest, since
it consists mostly of bundles of axons running a long distance. Interestingly, as
brains are becoming larger throughout different species, the volume of white
matter increases diproportionally faster than the volume of gray matter. Allamn
observed a power law relation with an exponent close to 4/3 between cortical
gray matter volume and white mater volume in primates (Allamn, 1999). Based
on these findings, Zhang and Sejnowski described and theoretically justified a
scaling law between grey matter and white matter of cerebral cortex (Zhang and
Sejnowski, 2000). Empirically, they show that over 59 mammalian species with a
gray matter volume G and a white matter volume W that span more than 5 and
6 orders of magnitude, an exponent of 1.23 4 0.01 can be observed. The authors
give a theoretical explaination of this power law based on two assumptions. First
they assume the basic uniformity of the neocortex (i. e. each piece of unit area
cortex sends an receives about the same total cross-sectional area of long-distance
connection fibers to and from other cortical regions), and second they assume that
the average length of the long distance fibers is minimized by the global geometry
of the cortex. This analysis predicts a power law W ~ G*/3-0.120.02 — (31.23+0.02
with the small correction term accounting for the thickness of the cortex. Hence
the theoretical prediction accurately matches the empirical obeservation.

The significance of cortical areas in efficient wiring was subject to investigations
by Mitchison in (Mitchison, 1991; Mitchison, 1992). In (Mitchison, 1992), he
shows the relevance of cortical areas to efficient wiring by proving that cortical
volume would increas significantly if the areas were merged together. In this
paper, Mitchison also considers finer levels of structure in the cortex, stripes,
blobs and other types of patches within areas. But he does not come to a clear
decission whether such structures offer advantages in wiring economy. Several
authors were concerned with such questions, which is summarized in the next
section.

4.3 Medium Scale Wiring: Cortical Maps,
Stripes, Blobs, and Patches

As discussed in Section 2.4, in many cortical regions geometrical organization
like retinotopic maps, stripes, blobs and other patchy organization can be ob-
served. In this section, we summarize findings concerned with the influence of
such organization on cortical wiring.
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Nelson and Bower looked at the issue of brain maps from the perspective of
parallel computer architectures (Nelson and Bower, 1990). In parallel multi-
processor machines, one of the factors that most influences the computational
performance is how a specific computation is mapped onto the available proces-
sors. The efficiency of a particular parallel mapping depends on two key factors.
First, the uniformity of load distribution on the processors, measured by the load
balance. And second, the time overhead of communication between the proces-
sors, measured by the communication overhead. Different computational tasks
give rise to different mappings, broadly categorized into three classes, based on
the spatial structure of the load distribution of the problem onto the processors:
First, continuous maps, where parameters are represented in as smooth and con-
tinous manner are optimal for computations with local interactions in problem
space. Second, scattered maps shwo no apparent spatial structure. Such maps
are near-optimal if there is no systematic structure in the pattern of interactions
in problem space. And third, patchy maps, where spatial organization is inter-
mediate, are good for computations with both, local and non-local interactions
in problem space. Maps of each category can also be found in the mammalian
central nervous system. The authors ask whether or nor efficiency considera-
tions are reflected in the organization of brain maps. The analysis of the authors
gives rise to the hypothesis that brain maps are “designed” in a computation-
ally efficient manner. For example, in continuous maps - such as in the primary
somatosensory cortex of a rat - connections are predominantly local, and sug-
gested computations in this region are local ones, such as spatial filtering and
local feature extraction. Note that this viewpoint works well with investigations
with different approaches. It should be noted that communication overhead in
parallel computers is not comparable with that of the nervous system, but as
the authors mention, “Howewver, there is another aspect of communication over-
head that may be more generally applicable, which concerns the space taken up by
physical connections between processors.”

Durbin and Mitchison adressed the thematic by looking at axonal wiring in
the cortex from the viewpoint of local optimization algorithms. In (Durbin and
Mitchison, 1990), Durbin and Mitchison argue that cortical maps, such as those
for ocular dominance, orientation or retinotopic position in primary visual cortex,
could be understood as dimension-reducing mappings from many-dimensional pa-
rameter space to the two-dimensional surface of the visual cortex. The problem
becomes aparent if one imagines that many feature parameters like position on
retina, orientation or ocular dominance (parameter space) have to be maped
onto the two-dimensional surface of the cortex. The authors claim that the goal
of such mappings is to preserve neighborhood relations as far as possible. To-
gether with the assumption that in primary visual cortex, mostly local operations
are performed (e. g. inhibitory surrounds, sharpening of tunings), this leads to a
minimization of neuronal wire length required. The way that this optimization
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is performed is of particular interest. The basic assumption the authors make is
that neurons develop their receptive field characteristics under the influence of
incoming neural activity. Under such self-organizing algorithms, they simulate
the development of cortical maps and come to similar patterns as have been ob-
served in cortex. What is amazing on this study is that wire length minimization
comes as a byproduct of a simple self-organizing algorithm. The minimization
is not an explizit goal. Instead of mapping from parameter space to the cortex
(such that nearby points in parameter space are maped to nearby points on the
cortex), there is a mapping the other way around, namely a mapping from cortex
surface to parameter space, hence attempting to put nearby cortical points close
in parameter space. One has to be aware of the fact that the minimization of
wire length may not happen explicitly, but arise naturally from other biological
contstraints in the development of the cortex.

Questions related to wiring in cortical maps were also studied recently by
Chklovskii and Koulakov (Chklovskii and Koulakov, 2000; Chklovskii, 2000a;
Koulakov and Chklovskii, 2001). In (Chklovskii and Koulakov, 2000), the au-
thors investigate the layout of ocular dominans patterns in mammalian primary
visual area (V1). They distinguish between two types of neurons, those that
are dominated by the left eye, and those that are dominated by the right eye.
Depending on the species, these two types of neurons may be homogenous inter-
mixed within V1 (Salt and pepper phase), they may be arranged in stripes (Stripe
phase) or patches where one type builds blobs surrounded by the other type (L-
Patch or R-patch phase). The authors propose a theory for ocular dominance
patterns based on the premise that they are obtained by solving a wire length
minimization problem. The parameters that determine the type of layout are the
fraction of left-eye (respectively right-eye) dominated neurons to the total number
of neurons and the Ng/Np where Ny is the number of synapese a neuron receives
from the same class of neurons and Ny is the number of synapses a neuron re-
ceives from the other class of neurons. Their analysis shows that within the three
possible phases, if Ng/No = 1, the Salt and pepper phase is optimal. Otherwise,
one of the other patterns is preferred, depending on the fraction of left-eye and
right eye dominated neurons. If these fractions are about equal, then the Stripe
phase is optimal. When this fraction drops below a critical value of about 0.4, a
patch phase is prefered. This value of 0.4 is consistent with anatomical data from
macaque and Cebus monkeys. It should be noted that this approach is different
from Mitchison’s in that it drops the requirement of retinotopic considerations.

A similar approach is taken in (Koulakov and Chklovskii, 2001). Instead of oc-
ular dominance patterns, the authors study the layout of orientation preference
patterns in mammalian visual cortex, again with the constraint of wire length
minimization by the layout. Again, orientation preference patterns vary through-
out different species and even in one animal. In such patterns, singularities such
as pinwheels and fractures may appear. Previous models could not explain the
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usefullness of singularities and suggested that they are merely due to imperfect
development of the map. In a simple two dimensional model with neurons placed
on a lattice, the optimal layout is computed using an algorithm based on the con-
ventional Metropolis Monte-Carlo scheme. The geometry of the optimal layout
depends on the connection function ¢(©), which gives the number of connections
a neuron establishes with other neurons whose orientation preference differs by
©. For a broad class of connection functions, resulting layouts show singularities
similar to observed data, suggesting that singularities are indeed usefull in the
minimization of wire length in intracortical circuits.

4.4 Local Scale Wiring: Single Cells

The diversity of neuronal architecture on the microscopic scale of single neu-
rons suggests that nature also pays attention to the cost of wiring on this scale.
Tree-like architectures of dendrites and axons which are predominantly present
throughout all areas of the nervous system are optimal regarding many types of
costs. It should be noted that especially in this microscopic regime, wire length
is not the only cost one should pay attention to. The ultimate goal for nature
seems to be the minimization of space required by wires. This can make signif-
icant differences in many theoretical setup, see below. It is not easy to draw a
border between local scale of single neurons and network scale, since the network
layout predefines the projections of a neuron and hence its geometry. However,
in this section, research is presented that pays less or no attention to the network
level and focusses on the level of single neurons.

In (Chklovskii, 2000b), the network level is described by topographic projec-
tions between two neuronal layers with different densities of neurons. The input
layer (which sends axons) is thougt to lie above the output layer (which receives
input from the axons of the input layer via its dendrite). Topographic projec-
tion means that each neuron of the input layer connects to the D (Divergence)
nearest neurons in the output layer. Conversly, a neuron in the output layer
receives input from C' (Convergence) neurons of the input layer. The focus of the
work lies in the diameter of axonal and dendritic arbors. Given a specific con-
vergenc/divergenc ratio in the layers, what are optimal diameters such that wire
length is minimized? The problem is illustrated in a one dimensional setup, shown
in Figure 4.2. Figure 4.2a shows the wiring diagram for D = 1 and C' = 6. In this
small scale problem, it is most inportant to make use of synaptic connectinons
between dendritic and axonal arbors, since this can significantly reduce the wire
length of a layout as can be seen in Figure 4.2b. This layout has narrow axonal
and wide dendritic arbors, which is optimal in this case and has much smaller
wire length as the layout in 4.2c with wide axonal and small dendritic arbors.
Chklovskii proposes the following rule: “ High divergence/convergence ratio favors
wide azonal and narrow dendritic arbors while low divergence/convergenc ratio
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Figure 4.2: Two one dimensional layers with topographic connections and C' = 6,
D =1. (a) Wiring diagram. (b) Type I layout with wide dendritic arbors. This layout
is optimal. (c) Type II layout with wide axonal arbors.

favors narrow axonal arbors and wide dendritic arbors.”, or in terms of neuronal
densities: “ Sparser layer has wider arbors.”. This rule is quantified and derived
from the wire length principle for the case of one dimensional and tow dimensional
projections. The case that axons and dendrites have different cross-sectional ar-
eas h, and hg is also considered. The derived expressions are modified such that
the total volume of connections is minimized. Let s, and s; be the axonal and
dendritic arbor diameter respectively. The optimal ratio of dendritic and axonal
arbor diameter is
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In (Cherniak, 1992), Cherniak studies the layout of neuron arbors in a even
more local version. Instead of looking at the whole arborizatin, he examines how
local bifurcation junctions of arbors are realized. If wire length is optimized at
this local level, junctions should form 120° branch angles. However, in dendrites
and axons there is a tendency to an internal angle of about half of this. Cherniak
suggests that this angle can be expained by different costs of trunk and branches.
Cherniak assumes that not the wire length but the volume of the junction is
locally minimized. Since branches usually have smaller cross-sectional area than
the trunk, an angle smaller than 120° would reduce this cost. The mathematically
derived predictions are in good agreement with the neuroanatomical data. Hence,
Cherniak concludes: “What is most strongly minimized at the individual junction
level is total volume of the arborizations, rather than connections length, signal
propagation speed, or surface area.”
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Chapter 5

A Complexity Measure for
Sensory Processing: Total Wire
Length

The issue of circuit complexity is exhaustively studied in the context of theoretical
computer science. Circuit complexity theory is established as a fundamental tool
for the analysis of computation and learning in parallel systems. In recent years
interest has grown in understanding the complexity of circuits for early sensory
processing, both from the biological point of view and from the point of view
of neuromorphic engineering (see (Mead, 1989)). There is growing demand for
energy-efficient hardware for sensory processing, and complexity issues are critical
since the number n of parallel inputs which such circuits have to handle is usually
quite large (for example n > 10° in the case of many visual processing tasks).
However classical circuit complexity theory provides little guidance for the design
of efficient circuits for sensory processing tasks, both because its focus lies on a
different set of computational problems, and because its traditional complexity
measures are not tailored to those resources that are of primary interest in the
analysis of neural circuits in biological organisms and neuromorphic engineering.

In Section 5.1, the basic model considered in this thesis is introduced. This
model is analyzed with respect to cortical circuits in Section 5.2. We want to
compare results on total wire length with results on VLSI-models and also get
direct results on VLSI layout of sensory processing functions. Therefore, a basic
— in some aspects expanded — model of VLSI layout is presented in Section 5.3.
This chapter is partly based on (Legenstein and Maass, 2001a) and (Legenstein
and Maass, 2001b).
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5.1 Introducing Total Wire Length

The most frequently considered complexity measures in traditional circuit com-
plexity theory are the number (and types) of gates, as well as the depth of a
circuit. We will follow traditional circuit complexity theory in assuming that the
underlying graph of each circuit is a directed graph without cycles (see Chapter
3.2). Neural circuits in “wetware”, as well as most circuits in analog VLSI, con-
tain in addition to feedforward connections also lateral and recurrent connections.
This fact presents a serious obstacle for a direct mathematical analysis of such
circuits. The standard mathematical approach is to model such circuits by larger
feedforward circuits, where new “virtual gates” are introduced to represent the
state of existing gates at later points in time. The depth of a circuit is defined
as the length of the longest directed path in the underlying graph, and can also
be interpreted as the computation time of the circuit. Most research had focused
on the classification of functions that can be computed by circuits whose number
of gates is bounded by a polynomial in the number n of input variables. This
implicitly also provides a polynomial — although typically quite large — bound
on the number of “wires” (defined as the edges in the underlying graph of the
circuit), but no bound on the total length of these wires.

In contrast to these traditional complexity measures in circuit complexity the-
ory, it has frequently been pointed out that “economizing on wire is the single
most important priority for both nerves and chips” (Mead, 1989). This view
has been adopted by quite a number of neuroscientists as a guiding principle for
understanding cortical circuitry as we outlined in Chapter 4. The goal of this
chapter is to make this principle also applicable to computational tasks. We in-
troduce a simple method for estimating the total wire length required by a specific
circuit design. Furthermore we show that it is feasible to use the minimization of
total wire length as a guiding principle for the design of efficient algorithms and
circuits for concrete computational problems.

We propose the following abstract model for estimating the total wire length
required for the neural implementation of an abstract circuit design (which is
formally defined as a directed graph with nodes labeled by specific types of gates,
or by input- or output variables):

Gates, input- and output-ports of a circuit are placed on different nodes of a 2-
dimensional grid (with unit distance 1 between adjacent grid nodes). Connections
between them are represented by (unidirectional) wires that run through the grid-
plane in any way that the designer wants, in particular wires may cross and
need not run rectilinearly (wires are thought of as running in the 3 dimensional
space above the plane, without charge for vertical wire segments). We define the
minimal value of the sum of all wire lengths that can be achieved by any such
arrangement as the total wire length of the circuit.

We would like to make this model also applicable to cases where for k > 2 some
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Figure 5.1: The relationship between cortical circuitry and a simple mathematical
model is explained by a projection onto a 2-dimensional plane.

special functions of k inputs such as the function computed by a threshold gate
or winner-take-all gate are computed by neural microcircuits or in analog VLSI
by efficient subcircuits that employ a number of transistors, total wire length and
area that are all linear in k, with a setting time that is independent of k (see
(Lazzaro et al., 1989)). In the relatively abstract context of this model we model
such computational modules as “threshold gates” of “winer-take-all gates” of k
inputs, that take one unit of time for their computation like all the other gates, but
which occupy each a set of k intersection points of the grid that are all connected
by an undirected wire (whose length contributes to the total wire length) in some
arbitrary fashion. Any one of these k nodes may be used to provide one of the k
inputs or to extract one of the outputs of the function.

We will allow that a wire from a gate or input port may branch and provide
input to several other gates. For reasonable bounds on the mazimal fan-out (10*
in the case of neural circuits) this is realistic both for meural circuits and for
VLSI.

The length of a wire is defined by the Euclidean distance of the nodes the
wire connects (Lg-norm). See also the definition of a layout in Chapter 3.1.
The attractiveness of this model lies in its mathematical simplicity. Nevertheless
it provides a useful criterion for judging whether an abstract circuit design is
biologically realistic from the point of view of the total length of axonal and
dendritic branches that it requires.

5.2 Total Wire Length and the Cortex

In the cortex, neurons do not occupy the nodes of a 2-dimensional grid, but a
roughly 2 mm thick 3-dimensional sheet of “grey matter”. However since there
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exists a strikingly general bound on the order of 10° for the number of neurons
under any mm? of cortical surface, the density of neurons in these circuits remains
bounded if the circuits are projected onto a 2-dimensional plane running parallel
to the cortical surface, (see Figure 5.1). This observation provides the justification
for the assumption of our abstract model that the neurons are positioned at the
nodes of a 2-dimensional grid. It also yields a biologically realistic estimate for
the length of an edge between two nodes in this grid: 107%/2 mm. Since we are
considering just the 2-dimensional projection of a 3-dimensional neural circuit,
we can estimate in this way only the contribution of all horizontal components
of all connections. However since there exist quite good estimates for the total
amount of dendritic and axonal wires under any mm? of cortical surface (8 km
according to (Koch, 1999)), we know that also the horizontal component of all
connections adds up to at most 8 km. This implies that the average cortical
circuit with j neurons has an implementation in our simple 2-dimensional grid
model where its total wire length is at most 25300 7 grid units. The total length
of axons and dendrites under any mm? of cortical surface is estimated to be on
the order of 8 km (Koch, 1999). If one divides this number by the estimate 10°
for the number of neurons under any mm?, one arrives at an average wire length
of 80 mm per neuron. Translated into our grid unit measure, this is equivalent to
80 - 10%/2 = 25300 grid units. The total bound of 25300 j grid units for the total
wire length of cortical circuits with j neurons is likely to be an overestimate,
since the preceding argument assumes that all of the 8 km of wires under a
mm? of cortical surface can be used for horizontal connections. In this setup we
arrive at a heuristic condition for any abstract circuit design with j neurons to be
biologically realistic: it must have an implementation in our 2-dimensional grid
model with a total wire length of at most 25300 - 5 grid units.

In circuit complexity theory it is customary to express the total amount of re-
sources used in terms of the number n of circuit inputs. For the sake of simplicity
we denote in the formal results of this thesis the number of pixels by n, and the
actual number of circuit inputs is some constant multiple of n. Several empirical
studies provide estimates for the order of magnitude for the number n of inputs
and the number of neurons in biological neural circuits for sensory processing,
see (Abeles, 1998; Koch, 1999; Shepherd, 1998; Braitenberg and Schiiz, 1998). In
the following, we give a brief calculation on the number of inputs and processing
units of the visual system of primates.

The number of neurons that transmit information from the retina (via the
thalamus) to the cortex is estimated to be around 10° (all estimates given are
for primates, and they only reflect the order of magnitude). The total number
of neurons in the primary visual cortex of primates is estimated to be around
10°, occupying an area of roughly 10* mm? of cortical surface. Since the total
length of axonal and dendritic branches below one mm? of cortical surface is
estimated to be at most 8 km, this yields an upper bound of 10! mm for the
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total wire length of primary visual cortex. Thus if one assumes for example that
100 separate circuits are implemented in primary visual cortex, each of them can
use 107 neurons and a total wire length of 10° mm. Hence realistic bounds for
the complexity of a single one of these circuits for visual pattern recognition with
n = 10° inputs are 107 = n"/® neurons, and a total wire length of 105 < n? grid
units in the framework of our model.

The whole cortex receives sensory input from about 10® neurons. It processes
this input with about 10'° neurons and less than 10'? mm total wire length. If
one assumes that 10 separate circuits process this sensory information in parallel,
each of them processing about 1/10th of the input, one arrives at n = 107 inputs
for each circuit, and an average circuit can use on the order of n neurons and a
total wire length of 10'%% < n? grid units in the sense of our model. The actual
resources available for sensory processing are likely to be substantially smaller,
since most cortical neurons and circuits are believed to have many other functions
(for example related to memory, learning and attention) besides online sensory
processing.

These calcuations suggest that only those circuit architectures for sensory pro-
cessing are biologically realistic that can be implemented in our 2-dimensional
grid with a number of gates that is almost linear in the number n of inputs, and
a total wire length that is quadratic or subquadratic in n — with the additional
requirement that the constant factor in front of the asymptotic complexity bound
needs to have a value not larger than 1. Since most practically arising asymptotic
bounds involve larger constant factors, one should focus on circuit architectures
that can be implemented in our model with clearly subquadratic bounds for their
total wire length.

In Chapters 6 and 7 we begin the investigation of circuits for basic pattern
recognition tasks that can be implemented within biologically realistic bounds
with regard to their number of gates and their total wire length. We show in
Chapter 7 that two basic pattern recognition tasks can be solved under these
severe complexity constraints, one of them even with a number of gates and a
total wire length that are both linear in the number n of inputs. Obviously the
algorithmic design and architecture of such circuits has to differ from previously
proposed circuits for sensory processing.

5.3 Total Wire Length and VLSI

Our model for estimating the total wire length is easy to handle since one does
not have to worry about how exactly the wires need to be routed in order to avoid
interference. This laxness may be justified for modeling cortical circuits — since
their 2 mm vertical dimension leaves a lot of room to route axons whose thickness
lies in the ym range. But it is not a priori justified for estimating the actual total
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wire length required by a VLSI-implementation of the same circuit, since currently
available VLSI-technologies allow just a small number (typically less than 10) of
horizontal layers in which wires can be routed. However it turns out that those
circuit designs that we consider in this thesis require in the common abstract
model for VLSI-area an area that is asymptotically as small as the total wire
length that they require in the more abstract model introduced in this thesis. This
suggests that the circuit designs that we consider in this thesis do not only satisfy
the complexity requirements imposed by cortical circuitry, but can potentially
also be implemented in VLSI.

5.3.1 An abstract VLSI model

The abstract model for VLSI to which the theorems of Chapters 6 and 7 refer is
closely related to customary VLSI models discussed in Chapter 3.3.1. However,
our approach differs from classical ones in some important aspects, which will be
discussed in Section 5.3.2. In order to avoid confusion, we define our model in the

following. Our model can be seen as a variation of the model given in (Savage,
1998) (see also Chapter 3.3.1).

Physical model: One assumes that gates, input- and output-ports and wires
cover rectilinear areas with a width and separation of at least A. Areas occupied
by different gates, input- and output-ports are not allowed to intersect with one
another. Areas occupied by wires may intersect with areas occupied by gates,
mput- and output-ports and also with other wires, but there is a constant bound
i on the number of wire areas to which a point of the plane may belong. Wires
run rectilinear, 1. e. they run horizontaly and vertically. The complexity measure
induced by this model is the area of the smallest rectangle that encloses the circuit.

Since we consider in this thesis also circuits that involve gates with a large
number of inputs such as threshold gates, we extend the model for VLSI-area by
assuming that a threshold gate with k inputs can be implemented by k 4+ 1 gates
(k of them for multiplying a binary input with a weight, one for comparing the
weighted sum with the threshold) that are linearly connected by a wire. We follow
(Savage, 1998; Ullman, 1984) in assuming that in the VLSI-model one unit of
time is needed to transmit a bit along a wire (of any length), and also for each
gate switching. However in contrast to (Savage, 1998) we always assume that all
mputs are presented in parallel.

Computational Model: The VLSI layout is based on a logic circuit C' that
computes the corresponding function. The gates and connections of the layout
implement the graph of C. Hence, each gate g; with fan-in k,; computes the
Kout i-valued Boolean function f; : {0,1}Fni — {0, 1}Feuti defined by the circuit C.
Therefore, we consider layouts of very basic gates, like AND-gates, OR-gates, or
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threshold gates. For these gates, the computed function is always single-valued,
and hence kyy = 1. We also consider winner-take-all gates for which the number
of outputs ko is equal to the number of inputs k;,. The computation of the layout
1s given by the computation of the circuit C and is therefore feedfoorward.

5.3.2 Discussion of the model

Several aspects of the given model are noteworthy to be discussed. Probably the
most striking difference to classical models is that unbounded fan-in is allowed in
our model. In the “grid model” discussed in (Ullman, 1984), the fan-in of gates
is restricted to be constant. This restriction is necessary due to the computa-
tional model because the function that a single gate computes is not specified.
Therefore, a gate having all inputs to the circuit as input could compute the
whole function, which would obviously lead to silly results. We do not need this
restricion because our gates are constrained to compute specific functions like a
threshold function. Hence, our model is more closely related to circuit complexity
theory. Ullman discusses the topic of constant fan-in and the question if complex
functions can be implemented by gates of linear size'. For the gates we consider,
such implementations are known (see Chapter 3.3.1). In VLSI-implentations,
gates of very large fan-in are problematic because of several reasons (high in-
put capacitance, increased settling time, implementation difficulties). However,
a fan-in that grows logarithmic or with the square root of the problem size are
reasonable. At results on our model, the fan-in of the circuit will be mentioned
if not obvious.

The model given in (Savage, 1998) is based on gates that compute functions
{h : X? - X} on some alphabet X. Hence, the fan-in of gates in this model is
also bounded, but the circuit operates on an alphabet X rather than on binary
values. This feature can be justified for implementations, where for example
wires for integers travel together on the chip surface. Moreover, Savage bases the
computational approach on finite state machines, where such a representation of
values makes sence. Our basis are logical circuits, thus the binary representation
is the most natural one. Savage notes that it is important to take care of this
simplification if the set X is big. Furthermore, in contrast to (Savage, 1998), we
do not emply memory cells in our model, since the use of memory cells is not
included in the feedforward circuit model.

Another issue to be discussed is the time taken by a computation. We assume
that one unit of time is needed to propagate a signal down a wire and to switch
the gates. This transmission model is called the synchoronous model. For long
wires, this model is not accurate, since the time used for transmission grows with
the length of the wire. In the transmission line model, the delay of a wire is
assumed to be linear with the length of that wire. However, for long wires, the

1See pages 30-34 in (Ullman, 1984).
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situation is even worse. Since both the resistance and the capacitance of a wire
grow linearly in its length, the product of them, which roughly determines the
propagation time, grows quadratically. However, in practice — since integrated
circuits are relatively small — propagation time does not dominate switching time.
Furthermore, if there are a few very long wires, special measures can be taken
to speed up propagation time. We will never explicitly talk about computation
time of a circuit. The depth of a circuit is noted, which can be interpreted as the
computation time.

For the purpose of this thesis, the model is well fitted. It gives reasonable
bounds on VLSI-implementation and is tightly coupled to the other two essential
fields we consider, circuit complexity theory and wiring complexity in biological
neural system. The main difference to the model for estimating total wire length
is the constant number of layers and hence the constant bound on crossings on a
given area in the VLSI model. This reflects the limitations of VLSI emerging from
its two-dimensional layout structure. However, t turns out that the same circuit
design techniques that we introduce in Chapters 6 and 7 for the sake of efficient
cortical processing of sensory data also yield circuits that require relatively little
area in the abstract model for VLSI-area.
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Chapter 6

Global Pattern Detection and
1-Dimensional Maps

In circuit complexity theory, circuits are analyzed that compute functions like
sorting or addition. Such functions are more of mathematical interest than of
interest from the viewpoint of sensory processing systems. It can be argued that
scale- and translation-invariant pattern recognition tasks have to be solved in
several sensory processing systems. Omne of the most basic pattern recognition
problems is whether a certain local feature occurs in some linear array to the left
of some other local feature. We construct in this chapter circuits that solve this
problem with an asymptotically optimal number of threshold gates. Furthermore
it is shown that much fewer threshold gates are needed if one employs in addition
a small number of winner-take-all gates. In either case the circuits that are
constructed have linear or almost linear total wire length, and are therefore not
unrealistic from the point of view of physical implementations. This chapter is
based on the publication (Legenstein and Maass, 2001c).

6.1 Introduction

Biological neural circuits can solve a number of complex pattern recognition tasks
very fast, in 100 - 150 milliseconds, see (Thorpe et al., 1996). Since the compu-
tational units of neural circuits are relatively slow compared with a transistor,
observation gives rise to some optimism regarding the possibility to build artificial
circuits, for example analog VLSI chips, that solve complex real-world pattern
recognition tasks in real-time. Classical circuit complexity theory is of little help
in the search for such super-efficient circuit designs. Apparently there are two
reasons for this. The complexity of circuits is usually analyzed in terms of their
number of gates, and much of the existing work focuses on the derivation of poly-
nomial upper bounds for the number of gates. But most circuits that appear
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6 Global Pattern Detection and 1-Dimensional Maps

to be feasible from this point of view cannot be practically implemented, espe-
cially if the number n of input variables is very large (like for example in vision
tasks where often n ~ 10°). Furthermore even those circuit designs where one
has been able to derive linear or almost linear upper bounds for the number of
gates can usually not be implemented in VLSI because the required number of
wires (= edges), or the required length of wires grows too fast with the number
n of input variables. Therefore we focus in this chapter directly on the total wire
length (the definition is given below) as the most salient complexity measure, the
usually most restricted and hence arguably most relevant complexity measure for
the practical implementation of an abstract circuit design.

Another obstacle for the application of classical circuit complexity theory to
the design of efficient circuits for pattern recognition arises from the fact that
most complexity studies focus on arithmetic and graph-theoretic problems, rather
than on those computational tasks that typically arise in the context of pattern
recognition. Both, in common machine vision approaches and in biological neu-
ral circuits for vision, the raw pixel image is first preprocessed by an array of
local feature detectors (e. g. for the detection of edge segments, line segments,
Gabor filters). Hence pattern recognition problems in vision typically require to
find particular spatial arrangements of those local features, that are reported by
local feature detectors. The local feature detectors are typically arranged in a
one- or two- dimensional array that reflects the geometrical relationship between
their receptive fields in the sensory space. In order to initiate a computational
complexity analysis of algorithmic problems of this type we investigate in this
chapter the arguably most simple problem of this type. We assure that there are
two types of local feature detectors with binary output that are linearly arranged
at n positions: detectors ay,...,a,_; for feature a and detectors by, ..., b,_1 for
feature b. The pattern recognition task is to decide whether feature a is reported
at a location 7 to the left of some location j where feature b is reported. In
other words, we analyze the circuit complexity of the Boolean function P;', from
{0,1}?" into {0, 1} with

1, if 3i,j(i <jand a; =0b; =1)
PER(al,...,an,bl,...,bn)=

0, else.

We investigate in this chapter circuits that compute Ppg with two types of gates
that are both frequently discussed in models for neural computation: threshold
gates and winner-take-all (WTA) gates. Both of these gates can be implemented
very efficiently in analog VLSI, with an area that grows just linearly with the
number & of inputs to the gate, see (Mead, 1989), and (Lazzaro et al., 1989).
Recall that a threshold gate computes a Boolean function 7 : {0,1}* — {0,1} of
the form T'(zy,...,zx) =1 & Zle w;x; > wy. Also recall that a winner-take-all
gate with weights w1, ..., w; computes a Boolean function W : {0,1}* — {0, 1}*
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6.2 1-Dimensional Pattern Detection with Threshold Gates

where for input x4, ...,z the ith output is 1 if and only if w;z; > w;z; for all
J# i

We employ the model described in Chapter 5.1 for estimating the total wire
length required for the neural implementation of this function.

The attractiveness of this model lies in its mathematical simplicity, and in its
generality. It provides a rough estimate for the cost of connectivity both in artifi-
cial (basically 2-dimensional) circuits and in neural circuits, where 2-dimensional
wire crossing problems are apparently avoided (at least on a small scale) since
dendritic and axonal branches are routed through 3-dimensional cortical tissue.
We also give bounds on the complexity of our circuit designs in the common
abstract model for VLSI. We use the abstract VLSI-model described in Chapter
5.3 to compare our results on total wire length with VLSI layouts.

We will show in Theorem 6.2.1 that P, can be computed by a circuit consisting
of O(logn) threshold gates in depth 2, with a total wire length of O(nlogn).
Theorem 6.2.2 implies that no feedforward circuit can compute P/'p with fewer
threshold gates. Finally it is shown in Theorem 6.3.1 that P;', can be computed
by a circuit of depth 2 consisting of two winner-take-all gates and one threshold
gate, with total wire length O(n). This result demonstrates that winner-take-
all gates can in some contexts be computationally much more powerful than
threshold gates, although they do not require much more area in analog VLSI
(see (Maass, 2000) for some more general results in this direction).

6.2 1-Dimensional Pattern Detection with
Threshold Gates

We start the analysis of this pattern recognition task by showing that PJ'; can be
computed very fast by a circuit consisting of O(logn) threshold gates. We also
give bounds on the total wire length of this circuit and the area that it occupies
in a VLSI layout. Then we show that the number of threshold gates employed
by this circuit is asymptotically optimal.

Theorem 6.2.1 P[', can be computed by a feedforward circuit of depth 2, con-
sisting of 2logn + 1 threshold gates with total wire length O(nlogn) and area
O(nlogn) in a VLSI layout.

Proof: Denote with a = (ag,...,a,_1) and b = (by, ..., b,_1) the two vectors
of input features. It will be convenient to denote the position [ of the leftmost
occurring feature a with min(a) and the position r of the rightmost occurring
feature b with maxz(b). Note that these functions are not defined if there is no
feature a respectively b present. The following precise definition eliminates this

45



6 Global Pattern Detection and 1-Dimensional Maps

ambiguity. We define

. | min{ila; =1}, if a#(0,...,0)
min(a) = { n—1, otherwise.

Furthermore we define

max(b) — { ma‘r{l‘bl = 1}’ if Q?é (0, .. .,0)

0, otherwise.
Note that with this simple definition,
Pl'r(a,b) = 1< min(a) < mazx(b). (6.1)

We construct a threshold circuit which computes the binary encoding of min(a)
and mazx(b) in its first layer. Let us call the function that maps a onto the binary
representation of min(a) MinMuz and the function that maps b onto the binary
representation of max(b) MazMuz respectively. The comparison of their outputs
yields the desired output of PJ.

For convenience, let n = 2* for some natural number k. The precise definitions
of the functions MinMux and MazxMuz are as follows.

MinMuz™ : {0,1}" — {0, 1}* is defined by
binary encoding of min{ila; = 1}, if Fi(a; =1)

MinMuz"(a) = { binary encoding of n — 1, otherwise .

MazMuz™ : {0,1}" — {0,1}* is defined by
binary encoding of max{:|b; = 1}, if di(b; =1
Moz Mua™ (b) = { binary encodini of 0, v } otherwfvise . )

This comparison of the two log n-bit binary numbers represented by MinMuz
and MaxMux can be carried out by an additional threshold gate with weights
linear in n.

In the following, we construct a circuit consisting of logn threshold gates that
computes MinMuz. Note that, for any input assignment, setting a,_; = 1 does
not change the value of the function. We will use this trick to make sure that
the output of the circuit is the binary encoding of n — 1 if there is no feature a
present.

Let m; denote the j-th output bit of MinMuz™ (0 < j < k — 1), such that
min(a) = Zf;é 2Im;. The j-th bit of the binary encoding of some natural
number z is 1if |5| =1 mod 2 and 0 otherwise.

This leads to the following threshold function for m;:

. n—1  on—i/_1\1+(l%] mod 2)
mj(a'07 ... 7a'n—l) = { 15 lf Zi:o 0’12 ( 1) 2 Z ]-

0, otherwise .
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6.2 1-Dimensional Pattern Detection with Threshold Gates

Let [ = min(a) and suppose that | %] =0 mod 2. It follows that

Z
27

n—1
1=0

n—1
=1+ )2 <
i=l+1
n—Il—1
vt Yy 2i<—2<
i=1
and the output of the threshold gate is 0. Suppose that |7| = 1 mod 2. It
follows that

n—1
ZaiQn—i(_l)H(LQLJ mod 2) -,
i=0

n—1
2n—l(+1) _ Z 2n—i Z
1=l+1
n—Il-1

ont Z 20> 1
=1

and the output of the threshold gate is 1. Hence, m; is the j-th bit of the binary
representation of min(a).

MazMuz can be constructed in a similar manner. Hence, each m; can be
computed by one threshold gate and the depth and size of the circuit given in
Theorem 6.2.2 follow.

The VLSI-layout of the circuit for P}y is shown in Figure 6.1a. We place the
gates for MinMux on rows beneath ay,...,a, 1 and the gates for MarMuz on
rows beneath by, ..., b, 1. Since the circuit consists of logn gates for MinMux"
and logn gates for MaxMux™ this occupies O(logn) rows. The comparison gate
can be placed in the column between those gates. Hence, the layout of the circuit
occupies O(nlogn) area. A layout to estimate the total wire length is similar.
The layout of the circuit for P}, in is shown in Figure 6.1b. Simply replace a
threshold gate of k£ inputs by £ nodes that are connected by a common wire to
sum up the inputs. This results in a wire length of O(n) within each gate. The
wire from an input port to its successor gates may spread and hence is O(logn)
in length. The comparison gate has a total wire length of O(logn). Summing up
those lengths, results in a total wire length of O(nlogn).

|

The following lower bound result shows that the number of threshold gates
used by the circuit of Theorem 6.2.1 is asymptotically optimal:
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8 o & bo by by b

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 6.1: a) The VLSI-circuit layout for Pf,. The gates for MinMuz and
MaxMuzx are placed on rows beneath the inputs. The area used by this layout is
O(nlogn). b) A layout to estimate the total wire length of the circuit. A threshold
gate of k inputs is represented by k nodes that are connected by a wire (wires with-

out arrows). Such gates are indicated by a dashed rectangle. The total wire length is
O(nlogn).

Theorem 6.2.2 Any feedforward circuit consisting of threshold gates meeds to
have at least Q(logn) gates for computing Pl'g.

We use the gate-elimination method to prove Theorem 6.2.2. The gate-
elimination method was used widely in classic circuit complexity theory. It
was used in the context of threshold circuits in a paper by Georg Schnitger and
Bhaskar DasGupta (see (DasGupta et al., 1996)). In our case we have to exhibit
some properties of P that allow us to assign constants to inputs of a circuit S,
that computes P, such that the circuit computes Ppr on the remaining non-
constant variables. Furthermore, we use these properties to show that at least
one threshold gate computes a constant after the assignment of constants to at

63n

most % of its input variables. We use this restriction to construct a circuit that

computes P, 1/364 and has at least one gate less that S,,. Hence, the size of S,, is at
least Sp/64 + 1, which we use as an induction step. The induction hypothesis is

that a circuit S, that computes P}, consists of at least |logg, n| threshold gates
1

!|z] denotes the floor of z, which is || = maz{y € NU {0}|y < z}.
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6.2 1-Dimensional Pattern Detection with Threshold Gates

Proof: We will at first exhibit the three properties of Prr that will be the
basis for the proof. Then we will show, how to eliminate one threshold gate in
a circuit computing Prr by assigning constants to a fixed fraction of its inputs.

Finally, we will use this gate-elimination to give an inductive prove of the lower
bound.

The properties of P g given below are easy to verify.
property 1:
PER(ao, ceey CLZ'_l,O, Ajt1y--5ap—1, b(), ceey bi—17 O, bi+17 ceey bn—l) =

PE}EI(CLOa---ai—laai—l—la---aa'n—labOa---abi—labi+1:---abn—l)
foralli e {0,...,n—1}

property 2:

PER(O,...,O,akﬂ,...,an,l,l,...,1,bk+1,...,bn,1) =
Pl (agyty -y Gn 1,bgg1, .50y 1) forall k€ {0,...,n— 2}

property 3:

PER(aO,...,an_l_k,l,...,1,60,...,bn_l_k,O,...,O)=

PPy, .. a1 gy by, bpoy)  forallk e {1,...,n—1}

Let S, be a threshold circuit computing P;',. We show how to eliminate one gate
in S, by exploiting the properties of Pyr given above. We assume that n is a
power of 64. If it is not, use property 1 to obtain a threshold circuit such that
the number of non-constant inputs to the circuit is the next lower power of 64.

Let g be a gate in S, which does not have an output of a gate as one of its
inputs. Then g computes the function

L if Z;‘l:o u;a; + Z?:O v;b; >t
0, else.

First, we need all the weights for @ to have same sign and all the weights for b to
have same sign, where sign(z) : R — {—1,41} is +1 for all zx € RT U {0} and
—1 otherwise. More formally, we want

sign(u;) = sign(u;) for all i,
sign(v;) = sign(v;) for all i, .
This can be achieved by setting at most 3n/4 variables in ¢ and at most 3n/4

variables in b to constant zero. By property 1, the circuit computes Pﬂf on
the remaining non-constant variables. We renumber the remaining m = n/4
variables in g, the n/4 remaining variables in b (we preserve the order) and the
corresponding weights. Let ax = 372w | g = Z?an/z wi , B = STy

-1 .
and Bo =D " /o Vi- We consider four cases:
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case 1: sign(u;) = +1, sign(v;) = —1foralli=0,...,m—1

case 1.1: [Bi| > as —t

We set ap =+ = Qmj2-1 = 0 and b() == bm/g_l =1. By property
2 of Pppg, the circuit computes P, B{Q on the remaining non-constant

variables. It follows that

m—1 m—1 m—1
_|51‘+ Z |uz-|a,-— Z |vi\bi<t—a2+a2— Z |’Ui‘bz'<t

i=m/2 i=m/2 i=m/2
Hence g(a,b) = 0 for all possible values of ap/s,...,0,—1 and
bm/?a ey bm—l-

case 1.2: B < ap—t

We set apj2 = +++ = apm—1 = 1 and bypo = -+ = b1 = 0. By
property 3 of Ppg, the circuit computes PZ%Q
constant variables. It follows that

on the remaining non-

m/2—1 m/2—1 m/2—1

Y lwilai— Y fuilbi+az> Y lulai — B+ |Bi ¢ >t
1=0 1=0 =0

Hence g(a,b) = 1 for all possible values of ag,...,0n—1 and
bO,"'abm/Qfl-

In case 1, there remain 2 -m/2 = 2 - n/8 non-constant variables after the
restriction.

case 2: sign(u;) = —1, sign(v;) = +1

We can treat this case in a similar manner as case 1.

case 3: sign(u;) = +1, sign(v;) = +1

o0

case 3.1: 51 >t

We set ag =+ = ap/2-1 = 0and by = -+ = by /21 = 1. By property
2 of Prg, the circuit computes Pg}f on the remaining non-constant
variables. Furthermore it follows that g(a,b) = 1 for all possible values
of non-constant inputs.

case 3.2: ap >t

We set a2 = -+ = a1 = 1 and byo = -+ = b1 = 0. By
property 3 of Prg, the circuit computes P;; }{2 on the remaining non-
constant variables. It follows that g(a,b) = 1 for all possible values of

non-constant inputs.
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After any of these restrictions, 2 - n/8 non-constant variables remain and

the circuit computes P]%S. For the following restriction, we can assume
B < t and oy < t. In this case, the weights for the second half of the
remaining inputs to g are small. So our aim will be to eliminate variables
with large weights in g. Then, the sum of the remaining inputs to g will
be too small to reach the threshold and the gate will output a constant for
all possible values of non-constant inputs. In a first step, we set all inputs
that contribute to a; and B; constant zero. The effect is that all weights
of a’s are small. We use another restriction to maintain small weights for
non-constant b’s. Then we set the inputs that have largest weights constant
zero. We need to do this for at most 3/4 of the remaining variables to let
the gate output zero for all possible values of non-constant inputs.

case 3.3 B <t as <t
We set ag = -+ = apma—1 = bg = -+ = by 21 = 0. By property 1 of
Prr, the circuit computes P/, }{2 on the remaining non-constant vari-
ables. Let 1=m/2 = n/8. Again, renumber the non-constant variables

and corresponding weights of g, so that

1, i g wa+ g vibi >
g(a,b) =
0, else.

Let of = 335w, 0p = Siljpu, A = L5 v and f =
Zé;llﬂ v;. Since o) + of, = ay < t, we have of < t. If g > {,
case 3.1 applies and é = n/16 variables remain. Finally we consider
weights such that o < ¢t and 8] < ¢. In this case, we set a; = b; = 0
for 1 = %, ..., — 1 to eliminate the second half of the inputs (prop-
erty 1 of Ppg applies). Then, by property 1 of Py g, we set those 1/4
remaining variables in a to zero that have maximal weights. We also
eliminate those [/8 remaining variables in b with maximal weights. It
follows that the overall sum of the remaining variables cannot reach ¢
and g(a,b) = 0 for all possible values of non-constant inputs. There
will remain at least 2% = 2g; non-constant variables.

case 4: sign(u;) = —1, sign(v;) = —1

We can treat this case in a similar manner as case 3.

We have constructed a threshold circuit that has at least one gate less and com-

n /64
P,

We use this property of S,, to give an inductive proof of the lower bound. The
inductive hypothesis is, that size(S,) > |logg, n|. Since we use the floor of logg, n
in the bound, we can use induction on n for all n of the form n = 64™ for some
natural number m.
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6 Global Pattern Detection and 1-Dimensional Maps

In the basis case, we have n = 64. Use property 1 to obtain a circuit that
computes P?,. Since, P?p(ag,a1,by,b1) = ag A by, a circuit that computes PP,
consists of at least one threshold gate. Hence, the hypothesis holds for the in-
duction basis. For the induction step, consider a threshold circuit S,, that com-
putes Pl',. We show that, if the size of S, is small, then we can construct a
circuitSy 64 with smaller size than possible. Suppose that size(S,) < logg, n.

Construct a circuit Sy /64 that computes PL%M by eliminating one gate in S,.
Then, size(Sp/e1) < size(Sp) — 1 < logg,n — 1 = log ;. This is a contradiction.
Hence, size(S,,) > logg, n.

|

6.3 1-Dimensional Pattern Recognition and
Winner-Take-All

In analog VLSI the area occupied by a subcircuit that implements a winner-take-
all gate is comparable to that for a threshold gate (see Chapter 3.3). Hence the
next theorem demonstrates a drastic gain in efficiency if one employs modules
for computing winner-take-all in addition to threshold gates. It combines the
minimal possible computation time of 2 with a linear total wire length.

Theorem 6.3.1 P[', can be computed by a feedforward circuit of depth 2, con-
sisting of two winner-take-all gates and one threshold gate, with total wire length
and area O(n).

Proof: Denote with a = (ag,...,a, 1) and b = (b, ..., b, 1) the two vectors of
input features. We construct a circuit that consists of two winner-take-all gates
in the first layer and one threshold gate in the second layer. One winner-take-
all gate marks the position of the leftmost occurring feature in ¢ and the other
winner-take-all gate marks the position of the rightmost occurring feature in b.
In the second layer, a single threshold gate with linear weights can compute the
value of Pg(a,b).

Let o' = (ag,...,ah,_1) = WTA(wq - ag,...,Wp_1 + Gy—1) denote the output

» Ym—1
vector of a winner-take-all gate with the inputs ay, ..., a,_; weighted by integer
weights wy, . . ., w,_1. Set the weights of the winner-take-all gate such that:

ad =WTA((n+1)-ap,n-a,(n—1)-ag,...,2-a, 1,1).

If a=(0,...,0), a,, wins (i. e. a], is the only non-zero output of the gate). Oth-
erwise, a; wins if and only if ¢ = min{j|a; = 1}, for 0 < ¢ < n — 1. Furthermore,
set the weights of the second winner-take-all gate such that:

W' =WTA(2 by,3-b1,4-by,...,(n+1)b, 1,1).
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If b= (0,...,0), b, wins. Otherwise, b; wins if and only if ¢ = max{j|b; = 1}, for
0 <i<n—1. A simple threshold gate with a’ and ¥’ as its inputs can be used
to compute the value of P/'z(a,b):

pn L SESW G+ —a-G+1) = (1) —d, - (n+1)>1
LE™ 1 0, otherwise .

If there is no feature a present, a;, wins and the gate outputs 0. The same holds
for the case that no feature b is present. Otherwise, since there is exactly one a]
and exactly one b, nonzero, if a; = 1 and b}, = 1 and 7 < j, the weighted sum is
above the threshold and the gate outputs 1. The sum is beyond the threshold for
¢ > j and the gate outputs 0.

Any gate can be implemented with linear wire length in our model. So the
total wire length is O(n). A similar VLSI layout uses linear area. |

In contrast to the threshold circuit of Theorem 6.2.1 just linear size integer
weights are needed for this circuit. For implementations in VLSI or analog VLSI,
this feature is a serious advantage, since weights of exponential precision are hard
to implement.

6.4 Discussion

We have shown that the basic pattern recognition problem whether a certain
local feature a occurs to the left of some other local feature b can be solved
by circuits that require very little total wire length, and hence can potentially
be implemented in analog VLSI. Furthermore it was shown that a circuit with
O(logn) threshold gates can solve this problem, and that this number of threshold
gates is asymptotically optimal. It was demonstrated that the same problem can
be solved more efficiently if winner-take-all gates are employed in addition to a
threshold gate. The resulting circuit is prefereable in several aspects. Only a
constant number of gates is needed, which results in linear total wire length and
area of the circuit. Furthermore, only linear weights are needed, which is a drastic
gain compared to the exponential weights of the threshold circuit. This gives rise
to the question which other concrete computational tasks can be carried out
more efficiently by circuits that use winner-take-all gates besides (or instead of)
threshold gates. The threshold circuit uses a total wire length of O(nlogn) and
no lower bound on the wire length of threshold circuits computing this problem
could be stated. It would be interesting to find such a lower bound in our model
or proof that an efficient threshold circuit with linear total wire length exists.

53



6 Global Pattern Detection and 1-Dimensional Maps

54



Chapter 7

Global Pattern Detection in
2-Dimensional Maps

While in the previous Chapter we merely dealt with one-dimensional pattern
recognition problems, two-dimensional problems are of special interest because
of two-dimensional input representations (maps) that can be found throughout
the cerebral neocortex and because of the natural representation of many prob-
lem instances (e. g. visual input) in an two-dimensional array. In this chapter,
the new complexity measure total wire length is applied to two basic compu-
tational problems that arise in two-dimensional translation- and scale-invariant
pattern recognition, and hence appear to be useful as benchmark problems for
sensory processing. We exhibit new circuit design strategies for these benchmark
functions that can be implemented within realistic complexity bounds, in partic-
ular with linear or almost linear total wire length. This chapter is based on the
publications (Legenstein and Maass, 2001a) and (Legenstein and Maass, 2001b).

7.1 Introduction

For many important sensory processing tasks — such as for visual or somatosensory
input — the input variables are arranged in a 2-dimensional map whose structure
reflects spatial relationship in the outside world. We assume that local feature

Figure 7.1: Examples of some local features (marked), whose spatial arrangement is
essential for recognizing an object.
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7 Global Pattern Detection in 2-Dimensional Maps

detectors are able to detect the presence of salient local features in their specific
“receptive field”, such as for example a center which emits higher (or lower) inten-
sity than its immediate surrounding, or a high-intensity line segment in a certain
direction, the end of a line, a junction of line segments, or even more complex
local visual patterns like an eye or a nose. The ultimate computational goal is to
detect specific global spatial arrangements of such local patterns (see Figure 7.1),
such as the letter “I”, or in the end also a human face, in a translation- and scale-
invariant manner. We will use in the following the customary notation O(...),
see Chapter 3.2.3. Whenever needed we assume for simplicity that n is such that
V/n,logn etc. are natural numbers'. The arrangement of the input variables on
the grid will in general leave many nodes empty, which can be occupied by gates
of the circuit.

7.2 Efficient Circuits for 2-Dimensional Pattern
Recognition

We formalize such 2-dimensional global pattern detection problems by assuming
that the input consists of arrays a = (ai,...,a,),b = (b1,...,b,), etc. of binary
variables that are arranged on a 2-dimensional square grid. Each index 7 of an
input variable can be thought of as representing a location within some corre-
sponding square in the outside world. We assume that a; = 1 if and only if feature
a is detected at location 7 and that b; = 1 if and only if feature b is detected at
location 7. In our formal model we reserve a sub-square within the 2-dimensional
grid for each index 7, where the input variables a;, b;, etc. are given on adjacent
nodes of this grid. To make this more precise we assume that indexes ¢ and j
represent pairs (iy,s), (j1,J2) of coordinates. Then “input location j is above
and to the right of input location 7" means: i; < j; and i3 < j5. The circuit
complexity of variations of the function PJ; where one or both of the “<” are
replaced by “<” is the same. Since we assume that this spatial arrangement of
input variables reflects spatial relations in the outside world, many salient exam-
ples for global pattern detection problems require the computation of functions
such as

1, if there exist 7 and j so that a; = b; = 1 and input location j
Pj(a,b) = is above and to the right of input location ¢

0, else.

This function is a generalization of Prr — which was discussed in Chapter 6
— to two dimensions. We will show subsequently how the computation can be

I Throughout this Chapter, the logarithm is taken to the basis 2.
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7.2 Efficient Circuits for 2-Dimensional Pattern Recognition

generalized to arbitrary dimensions with slightly worse complexity. Since, cortical
maps map multi-dimensional input onto two dimensions, a rigorous analysis of the
two-dimensional case is of interest. From the viewpoint of VLSI, this approach
is also justified, since most available sensors (cameras, etc.) map onto at most
2-dimensional input space.

Theorem 7.2.1 The function PJ can be computed — and witnesses i and j with
a; = b; = 1 can be ezhibited if they exist — by a circuit with total wire length
O(n), consisting of O(n) Boolean gates of fan-in 2 (and fan-out 2) in depth
O(logn - loglogn).

The depth of the circuit can be reduced to O(logn) if one employs threshold
gates with fan-in logn. This can also be done with total wire length O(n).

In the VLSI-model, this circuit uses O(n) area.

Proof: This circuit design is based on a divide-and-conquer approach. On first
sight it appears that such an approach is bound to fail for computing PJ}, since
there may exist for example just a single pair of witnesses ¢ and j with the desired
properties, but the chosen subdivision of the input area happens to assign ¢ and
j to different components of the subdivision. Hence the evaluation of Pp for each
of the components is of little help for the evaluation of P} for the full input area.

In order to make the divide-and-conquer approach feasible it is essential that
one computes for each component of the subdivision more than just whether Pp
holds for this component. If one divides iteratively each square into 4 sub-squares
Cy,Cy, Cs, Cy, (see Figure 7.2) then it suffices to compute for each sub-square Cj
the following data:

left(Cy) := the x-coordinate of the leftmost location i in Cy with a; =1
right(Cy) := the x-coordinate of the rightmost location j in Cj with b; =1
down(Cy) := the y-coordinate of the lowest location i in Cy with a; = 1
up(Cy) := the y-coordinate of the highest location j in Cy with b; =1
1, if Pp applied to Cy outputs 1
found(Cy) =
0, else.

We assume that each of the first four functions assumes the value 0 on C}, if and
only if there exists no location ¢ or j in Cp with the desired property. Thus all
coordinates are assumed to be numbers > 1.

The essential property of these 5 functions is that le ft(C), right(C), down(C),
up(C) and found(C) can be computed from the values of these 5 functions for
the 4 sub-squares Cy, Cy, C3, Cy. This is obvious for left(C), right(C), down(C),
up(C), requiring just comparisons of pairs of (b + 1)-bit natural numbers if each
C is responsible for a sub-square of the input-array of size 2° x 2°. The value of
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7 Global Pattern Detection in 2-Dimensional Maps

Cy C,

Figure 7.2: The input area C is divided into four sub-squares Cy, which are numbered
in a counterclockwise fashion.

found(C') can be computed in the following fashion, assuming that the compo-
nents C} that make up C are numbered in a counterclockwise fashion, starting
with C; in the upper left quadrangle (see Figure 7.2):

4
found(C)=1 & \/ found(Cy) =1V

k=1

0 < down(C4) < up(Cy) V

0 < down(Cy) < up(Cs) V

(0 < down(Cq) N0 < up(Cy)) V

0 < left(Cy) < right(Ch) Vv

0 < left(C3) < right(Cy)

Obviously this algorithm makes use of the fact that the area is not subdivided
in an arbitrary fashion into components, but in a way which is consistent with
the map, 7.e. with the spatial relationship of locations in the outside world. Or,
with a variation of a well-known design philosophy of Carver Mead, one could
say that space represents itself in this algorithm design.

The layout of a circuit for PJ; with small total wire length is based on a variation
of the well-known H-tree (see, e.g. (Savage, 1998)), which we will call an eztended
H-tree. An H-tree makes optimal use of area and wire length if the n inputs are
allowed to be arranged as an y/n X y/n array on the plane. Figure 7.3a shows the
H-tree H; with 4 darkly shaded leaves (inputs) and lightly shaded inner nodes
of the binary tree. Hj.; can be constructed by replacing the leaves of Hy with
H-trees H,. Since H, is a tree with four leaves, H} has 4* leaves. In Figure 7.3b,
each leaf of H; was replaced by an H-tree H;.

The depth of a node v in an H-tree is the length of the shortest path from v to
a leaf. Note that a recursive step in the construction of an H-tree adds depth 2
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7.2 Efficient Circuits for 2-Dimensional Pattern Recognition

a) b)

Figure 7.3: The H-tree layout. Dark rectangles are leaves, light rectangles are inner
nodes. a) Hj is a tree layout for 4 leaves. b) Hy. Hjyq is constructed recursively by
replacing the leaves of Hy, with H-trees H; . (Figure taken from (Savage, 1998))

to the graph. Hence, it will be more convenient to talk about levels rather than
depth, where a node v is on level 7 if v is in depth 22 — 1 or in depth 2:. So, the
nodes in depth 1 and 2 are on level 1 (these are the nodes of the last recursive
step in the construction of the H-tree), and the root of an H-tree Hy is on level k.
Our layout will differ from the H-tree layout in a crucial point. Internal nodes of
the H-tree are replaced by groups of several gates, and the connections between
these groups consist of “buses” rather than of single wires. More precisely, each
“node” on level i of an H-tree is a circuit with O(i) gates and O(i?) total wire
length and area with side length O(7). Instead of a single edge in an H-tree one
has a “bus” consisting of O(i) wires if the bus connects a node on level ¢ with a
node on level ¢ or 7 + 1.

One has to be careful in talking about levels and nodes in an extended H-tree,
since the circuit in a “node” might consist of several gates and might have even
non constant depth. However each extended H-tree has an underlying H-tree and
the levels are counted with regard to this underlying H-tree.

We now show how the extended H-tree can be used as a layout strategy for a
circuit that implements the previously developed algorithm for solving Pj;. The
extended H-tree layout implements the structure of the algorithm by recursively
dividing the input-area into four axis-parallel sub-squares. The computations
needed in a node on level 7 of the H-tree can be carried out by a circuit of size
O(7) and O(#?) total wire length and area, which is placed at that node. The
depth of a circuit at a node is O(1) if threshold gates of fan-in O(logn) are used
and O(logi) if Boolean gates of fan-in 2 are used. Lemma 8.1.1 in Section 8.1
shows that the extended H-tree stays within the claimed complexity bounds. The
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7 Global Pattern Detection in 2-Dimensional Maps

depth of an H-tree is O(logn). Thus if the circuits at the nodes have depth O(1),
the extended H-tree has depth O(logn). If the circuits at the nodes have depth
O(logi), the depth of the extended H-tree is O(logn - loglogn).

An extension to the circuit that reports a pair of witnesses is straight forward. B

The linear total wire length of this circuit is up to a constant factor optimal
for any circuit whose output depends on all of its n inputs. Note that most
connections in this circuit are local, just like in a biological neural circuit. Thus,
we see that minimizing total wire length tends to generate biology-like circuit
structures.

However, the tree-like circuit structure results in considerable circuit-depth for
large input-size. In biological neural systems, neural gates of large fan-in are used
to implement shallow circuits, whereas the circuit design above is based on gates
of fan-in 2 or log(n) which is comparatively small. The next theorem shows that
one can compute P} faster (i.e. by a circuit with smaller depth) if one can afford
a somewhat larger total wire length. This circuit construction, that is based on
AND/OR gates of limited fan-in A, has the additional advantage that it can not
just exhibit some pair (i, j) as witness for PJ}(a,b) = 1 (provided such witness
exists), but it can exhibit in addition all j that can be used as witness together
with some 7. This property allows us to “chain” the global pattern detection
problem formalized through the function PJ, and to decide within the same

complexity bound whether for any fixed number & of input vectors o, ..., a*)
from {0,1}" there exist locations i), ... i) so that ag::;)) =1lform=1,...,k
and location i(™*1 lies to the right and above location i™ for m =1,..., k — 1.
In fact, one can also compute a k-tuple of witnesses i), ... i) within the same

complexity bounds, provided it exists. This circuit design is based on an efficient
layout for prefix computations.

Theorem 7.2.2 For any given n and A € {2,...,y/n} one can compute

the function PP in depth O(llg’ggg) by a feedforward circuit consisting of O(n)

AND/OR gates of fan-in < A, with total wire length O(n - A - 281,

log A
In the VLSI-model, the circuit uses O(n - (A - i‘)’ggZ)z) area.

Proof: The main idea in the construction of the circuit is illustrated in Figure
7.4. In Figure 7.4a, a two dimensional input-assignment for PJ} is shown. Crosses
mark locations where a feature a is present and open circles mark locations where
a feature b occurs. Every feature b that is located in the shaded region in Figure
7.4b is located to the right and above of some present feature a. Hence, if there
is some location j that is in the shaded region of Figure 7.4b and b; = 1, then the
value of Pp(a,b) is 1. We introduce indicator variables a} (j=1, ..., n), where
a; = 1 if the location j is to the right and above to some location 7 with a; = 1,
and a; = 0 otherwise. (in Figure 3b, a; = 1, if j is a location in the shaded
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7.2 Efficient Circuits for 2-Dimensional Pattern Recognition

a b c

Figure 7.4. Computing Pp with prefix circuits. Crosses mark locations where a
feature a occurs, open circles mark locations where a features b is present. a) All
locations that are in the same row and to the right of some feature a = 1 are marked
as dotted lines. b) All locations that are to the right and above of some feature a = 1
are shaded. ¢) All locations 7 with b; = 1 in this area are marked with filled circles.

region). It follows that P} has value 1 if there exists some location j such that
CL;- A bj = 1.

Hence, the problem is reduced to the problem of computing the values of a;-
for all locations 7 = 1,...,n. A straight-forward implementation would lead
either to large depth or to large total wire length. In a one dimensional scenario,
the problem would be equivalent to the following one. Suppose one has a one
dimensional array of pixels x1,...,z,. Then the equivalent problem to computing
a; would be to compute the values of 71, ..., z; where z%; = 1 if and only if there
is a x; = 1 that is to the left of z;. This is the problem of computing the prefizes:
=z, xhb =z Vg, ab =z VaryVas,...,xh =1 Ve VagV---Va, Sucha
computation is called a prefix computation. There exist efficient circuits for such
computations (see e.g. (Savage, 1998)). In the 2-dimensional case, we just need
to apply these computations on all rows and columns. By applying the prefix
computation on rows of a, one can determine the locations in the input plane
that are in the same row as some feature a; = 1 and located to the right of a;.
This is illustrated in Figure 7.4a. Here, the horizontal lines in the input space
represent locations where indicator variables have value 1 after that step. Let us
call the outputs of the horizontal prefix circuits a;, where j = 1,...,n denotes
locations in the same manner as the inputs are indexed. Then, a location j is
in the right spatial relation to some feature a; = 1 at location 1, if it is above of
some location k£ with a; = 1. Hence, we can successively apply the same prefix-
operation on columns of these intermediate variables aq, ..., a, to compute the
correct value of all indicator variables (see Figure 7.4b). Now, b, = a] A b; has
value 1 if location ¢ is in the right spatial relation with some present feature a and
b; = 1. (This is not exactly what we want, since this would also mark b-features
that lie in the same row or column with some a-feature. However, we can also
AND the b-feature with the marking-bit that is one pixel to the left and below
it.) In Figure 7.4c, the locations [ with b, = 1 are marked with filled circles.

61



7 Global Pattern Detection in 2-Dimensional Maps

Finally, an OR over all b}’s outputs Pj(a, b) for all inputs a,b € {0, 1}".

Let C(PREF™), depth(PREF™) and TW L(PREF™) denote the size, depth
and total wire length of a prefix circuit with n inputs. The circuit consists of prefix
computations for every row and every column of features a (2y/n many), each
consisting of OR gates only. Furthermore, n AND gates are used. Finally, there
is one OR with inputs b}, ...,t{,. This OR could be implemented also by a circuit
of OR gates with smaller fan-in in order to reduce the total wire length. Hence,
the circuit has size 2,/nC(PREFV™) + n + 1 and depth 2depth(PREFV") + 2.

In the following, we give upper bounds on total wire length and area for this
circuit. Lemma 8.2.1 gives upper bounds on total wire length and area for an effi-
cient prefix circuit consisting of gates with maximal fan-in A (A € {2,...,y/n}).
There is a prefix computation of /n inputs for each row of @ in the input plane.
We can place this prefix circuits in between the rows of inputs. Note that if these
circuits would need too many rows, we had to place the input rows far away from
each other which would influence the total wire length of the subsequent prefix
circuits. But, since the prefix circuits use a constant number of rows in our model
, the computations for rows and columns do not affect each other and the wire

length used for this part of the computation is O(y/ny/nAISE%) = O(nA 5%,

log A log A
The AND gates that compute b, = a} A b; need O(n) total wire length all to-
gether. We implement the OR of b],...,b as a 2 dimensional tree of fan-in

A. This influences the size and the depth of the circuit only by a constant fac-
tor. It can be shown that a 2 dimensional tree of fan-in A has total wire length
O(nv/A). Hence, the circuit has TWL = O (n WA fggg), depth = O (fggg), and
size = O(n).

The situation is different in the VLSI-model. The crucial part of the layout
are the prefix circuits. In the VLSI-model, these circuits have side-lengths
O(AllgggZ) and O(y/n) each (see proof of Lemma 8.2.1). Nevertheless, we layout
these circuits in the same manner as above. Since we need one prefix circuit for
every row and every column, the side length of the layout for the prefix circuits

is O(\/HA%). Hence, the circuit for P} can be implemented within an area of

O(n-(A-%)Q). |

An advantage of this approach is that we computed all the witnesses in b for
Pp. Hence we can use this information to compare these witnesses with some
features c. In other words, we can compute if there is some feature a beneath and
to the left of some feature b which is beneath an to the left of some feature ¢ and
so on. Denote this function with P%* for some k > 2. We give a formal definition
of Pg’k. Consider k > 2 different feature types alV), ..., a*). We recursively define
a function W™* : {0,1}*" — {0,1}" that outputs witnesses for Pp*:

W™?%(a,b) = (wy,...,w,) , where
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7.2 Efficient Circuits for 2-Dimensional Pattern Recognition

1, if b; = 1 and there exist 7 so that a; = 1 and input location j
w; = is above and to the right of input location i

0, else.

Wn,lc(g(l)’ o ,Q(k)) — Wn’Q(W"’k_l(Q(l), o ,Q(k_l)), a(lc))

Recall that we computed wy, ..., w, in the circuit for P, and called these values
bi,..., b, in the proof of Theorem 7.2.2. Hence, by the recursive definition of
W™k one just has to apply this circuit £ — 1 times to compute W™*. Now we
can define Pp?(a®,a®) = P2(a™,a®) and PR* for k > 3:

Pg,k — PS (Wn’k_l(g(l), o ’Q(k—l))’ Q(k))
Given this definition of P/*, Corollary 7.2.3 holds:

Corollary 7.2.3 For any givenn, k > 2 and A € {2,...,y/n} one can compute

the function Pg’k in depth O(kllgggZ) by a feedforward circuit consisting of O(k-n)

AND/OR gates of fan-in < A, with total wire length O(k-n - A - llgggg) and area
O(n-(k-A-18n)2)

log A

Another essential ingredient of translation- and scale-invariant global pattern
recognition is the capability to detect whether a local feature ¢ occurs in the
middle between locations ¢ and j where the local features a and b occur. This
global pattern detection problem is formalized through the following function
Pr:{0,1}3" — {0,1}:

If a = >.b = 1 then P}(a,b,c) = 1, if and only if there exist i,5,k so
that input location k lies on the middle of the line between locations i and j, and
a; = bj = Ck = 1.

This function PJ' can be computed very fast by circuits with the least possible
total wire length (up to a constant factor), using threshold gates of fan-in up to

Vn:

Theorem 7.2.4 The function P can be computed — and witnesses can be ez-
hibited — by a circuit with total wire length and area O(n), consisting of O(n)
Boolean gates of fan-in 2 and O(y/n) threshold gates of fan-in \/n in depth 7.

Proof: We construct a circuit that projects the inputs a and b onto the hori-
zontal and vertical axis of the input plane and computes the midpoints of these
1-dimensional projections (see Figure 7.5). This approach is not obvious since
one can easily construct an example where there are two c-features that lie in the
middle of the projections, but none of them lies in the middle of the occurring
features in the 2-dimensional spatial constellation. One can handle this problem
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7 Global Pattern Detection in 2-Dimensional Maps

Input plane

g ] projected inputs

Figure 7.5: The projection of the input plane onto its horizontal and vertical axis.
A circle represents an occurring feature a and a cross an occurring feature b. In the
horizontal projection, features occur at locations ¢ and 5. We compute the midpoints
of the projections and trace them back onto the input plane.

by tracing back the computed 1-dimensional midpoints to the 2-dimensional in-
put plane and looking for a pixel where there is a horizontal as well as a vertical
midpoint and a feature ¢ present.

A more formal description of the circuit follows. To project the inputs onto
one dimension we compute

G,; = \/ aj b,IL = \/ bj (71)

j is in the i-th column j is in the i-th column
" o__ . (e .
a; = \/ a; b; = \/ bj . (7.2)
j is in the i-th row j is in the i-th row

These values are computed with a circuit of depth 1 consisting of O(y/n) threshold
gates of fan-in \/n. The total wire length needed is O(n).

Then we compute the vertical and horizontal midpoints of these projected
inputs. For the horizontal midpoint, we define variables h; (1 < i < y/n), where
the value of A, is 1 if and only if m is in the middle of some 4, j with a; = b, = 1.
For the vertical midpoint, we define variables v; (1 < i < y/n) in a similar
manner, where the value of v,, is 1 if and only if m is in the middle of some 1, j
with i = b = 1. Since the midpoint of 4, j is %, we compute h,, by comparing
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% with m, where ¢ is a location with a; = 1 and j is a location with b; = 1:

Loif Yy dal i, > 2m

gm = { tam (7.3)
0, else.
1, if yopmmen ial b < 2m

g;n — { i=max{1,2m—n} (74)
0, else.

I = N (75)

hy,...,hm can be computed by a circuit of depth 2, consisting of O(y/n) thresh-
old gates of fan-in < y/n and O(y/n) AND gates of fan-in 2. The total wire length
needed is O(n). Note that one can define a region where the c-feature may lie by
changing the thresholds in Eqs. (7.3) and (7.4).

Finally, we need to trace back those values and compute the witnesses w;. If ¢
is a location in the z-th column and y-th row, then w; = h; A vy A ¢;. This can
be implemented with O(n) AND gates of fan-in 2, depth 2 and total wire length
O(n). It follows that P(a,b,¢) = \/;_, w; and this OR can be computed with
v/n+ 1 threshold-gates of fan-in y/n, linear total wire length and depth 2. Hence,
the total wire length of this circuit is bounded by O(n) and the circuit has depth
7.

In the VLSI-model, we will need to model the threshold gates that project the
inputs onto one dimension (Egs. (7.1) and (7.2)) as y/n rectilinear parts of one
input each on a common wire in order to be able to project onto the horizontal
and vertical axis. Then the area needed is O(n). To compute the midpoint in
one dimension (see Egs. (7.3) to (7.5)), we can use 2y/n threshold gates of \/n
area each and y/n AND gates of constant area. So the area needed to compute
the midpoints is O(n) and the final tracing back and witness-computation can
be done with wires that need O(n) area and O(n) gates of constant area each. B

7.3 Discussion

In this chapter we have analyzed the total wire length required for solving two
concrete computational problems that are inherent in many global pattern recog-
nition tasks. It turns out that both of these problems can be solved by circuits
whose total wire length is linear or almost linear. Furthermore these examples
demonstrate that the design of circuits with small total wire length yields circuit
architectures that differ significantly from those that arise if just the traditional
circuit complexity measures (number of gates, depth) are minimized. We expect
that in general the construction of circuits with small total wire length produces
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7 Global Pattern Detection in 2-Dimensional Maps

circuit architectures that are less unrealistic from the point of physical implemen-
tation. In particular this strategy may help to ”guess” circuit design strategies
that are implemented in biological neural systems.

The input to our circuits can be interpreted as a computational map. Such
maps occur in cortical sensory ares. Many authors pointed out the importance of
cortical maps for efficient wiring (see Section 4.3. However no attempt was made
so far to analyze the influence of cortical maps on specific computational prob-
lems. The design of our circuits suggest that the topological input organization
is important for circuits of small total wire length. Note that the function PJ
is not local. This might be an indicator that topographic representation is not
only important for local computations, but also for global ones with some spa-
tial structure. However, no lower bound on the total wire length for one of the
functions computed on non-topographical representation could be given. Such a
lower bound would be desirable to make further claims.

The complexity measure total wire length is somehow reminiscent to the com-
plexity measure area in abstract VLSI-designs. However in contrast to VLSI-
design, which are necessarily much more detailed, it is in general much easier
to estimate the total wire length of a circuit architecture in the model that we
have proposed in this chapter. Hence the new circuit complexity measure total
wire length may represent a useful compromise between practical relevance and
mathematical simplicity.
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Chapter 8

The Total Wire Length of Basic
Computational Structures

In the design of circuits, basic computational structures emerge that are useful
in many concrete computations. Such structure are e. g. computations on trees
(see Chapter 10 for an overview and references) or prefiz cicuits. We already
made use of a tree structure in Chapter 7. The H-tree (Mead and Rem, 1979) is
an efficient layout for computations on trees on the two-dimensional plane that
uses only linear area in the number of leaves. However, in Chapter 7 we need a
somewhat more general structure. This structure is analyzed in Section 8.1. A
prefix computation is also a general computational strategy that can be used in
a variety of problems with some inherit structure. Prefix computations were first
used by Ofman (Ofman, 1962) for an adder-circuit. We give an efficient layout
for prefix circuits with gates of bounded fan-in A in Section 8.2. Both structures
are analyzed in term of their total wire length and VLSI-area. Further issues of
tree-layout are discussed in Chapter 10.

8.1 Extended H-tree Layout

An H-tree makes optimal use of area and wire length if the n inputs are allowed
to be arranged as an /n X y/n array on the plane. Figure 8.1a shows the H-tree
H,; with 4 darkly shaded leaves (inputs) and lightly shaded inner nodes of the
binary tree. Hy,; can be constructed by replacing the leaves of Hy with H-trees
H,. Since H; is a tree with four leaves, H; has 4% leaves. In Figure 8.1b, each
leaf of H; was replaced by an H-tree H;.

The depth of a node v in an H-tree is the length of the shortest path from v to
a leaf. Note that a recursive step in the construction of an H-tree adds depth 2
to the graph. Hence, it will be more convenient to talk about levels rather than
depth, where a node v is on level 7 if v is in depth 2¢ — 1 or in depth 2i. So, the
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8 The Total Wire Length of Basic Computational Structures

a) b)

Figure 8.1: The H-tree layout. Dark rectangles are leaves, light rectangles are inner
nodes. a) Hj is a tree layout for 4 leaves. b) Hy. Hjy; is constructed recursively by
replacing the leaves of Hy with H-trees H; . (Figure taken from (Savage, 1998))

nodes in depth 1 and 2 are on level 1 (these are the nodes of the last recursive
step in the construction of the H-tree), and the root of an H-tree Hy, is on level k.
Our layout will differ from the H-tree layout in a crucial point. Internal nodes of
the H-tree are replaced by groups of several gates, and the connections between
these groups consist of “busses” rather than of single wires. More precisely, each
“node” on level 7 of an H-tree is a circuit with O(7) gates and O(i?) total wire
length and area with side length O(7). Instead of a single edge in an H-tree one
has a “bus” consisting of O(i) wires if the bus connects a node on level ¢ with a
node on level ¢ or 7 + 1.

This layout extends the capabilities of the H-tree since it allows a node with
m inputs in its subtree to transfer O(logm) bits of information to its successor
node. This is why we call this layout an eztended H-tree. One has to be careful in
talking about levels and nodes in an extended H-tree, since the circuit in a “node”
might consist of several gates and might have even non constant depth. However
each extended H-tree has an underlying H-tree and the levels are counted with
regard to this underlying H-tree. The following lemma states that the extended
H-tree of n leaves can also be embedded with linear total wire length and area.

Lemma 8.1.1 The extended H-tree layout on n leaves can be implemented with
O(n) gates and total wire length.
In the VLSI-model, the layout uses O(n) area.

Proof: We will not only derive asymptotic bounds, but also pay attention to the

size of constant factors. To achieve this, we will use the recursive construction
of the extended H-tree to derive recursive formulas on size, side-length and total
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8.1 Extended H-tree Layout

wire length of the layout. The nodes on level 1 play a special role in the circuit.
There are 7 extended H-trees H; on level 1 that compute, in parallel, the basic
values for the subsequent “conquer steps”. Let S(H;), C(H:) and TW L(H,)

denote the side-length, size and total wire length of one such H;-circuit.

We start the proof by deriving an upper bound on the side-length S(Hy) of
the extended H-tree Hy. We assume that the side-length of a node on level 7 is
bounded by c¢i for some suitable constant c¢. The side-length of Hy is the sum of
the side-lengths of two H-trees Hy_; and the side length of a node on level k (see
Figure 8.2). Hence, the following recurrence holds:

S(Hk) = QS(Hk_l) +ck . (81)

The solution of Eq. (8.1) yields the bound S(Hy) < 2F~1S(H;) + 32 Since

n = 4%, we have S(Hy) < y/n(2%¥1) 43¢y = O(,/n). The area of the layout is

_|__

S(Hl) 3c\ 2
2 2 ) n=0(n)

area(Hy) = S*(Hy,) < (

A similar recurrence holds for the number of gates C'(Hy) in the circuit for the
H-tree Hy: Let the number of gates at a node on level 7 of the extended H-tree be
bounded by si for a suitable constant s (recall that a recursive step in the H-tree
layout adds 3 inner nodes). We get a recursive formula which we iterate k — 1
times:

k—2
< 4FIC(H) +3-5) 4 (k- )
=0

Since Zf;g 41(k — j) < 4% the solution of Eq. (8.2) is

1 77

) . (8.3)

Now we use a similar argument to estimate the total wire length. The total
wire length of the layout consists of the wire lengths at the inner nodes and the
wire lengths of the “busses”. Let d be a constant such that the total wire length
of a node on level 7 is bounded by d-i? . Also, let the number of wires of a “bus”
from a node on level 7 to a node on level 7 or : + 1 be bounded by e -i. The basis
for the recursive calculation of the total wire length for an extended H-tree H; is
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S(Hi-1)

TWL(H, ;) TWL(H, ;)
[ [l
di? di? di?
[ [l

TWL(H;.; ) TWL(H;1 )
™~ ei wires

Figure 8.2: The H-tree H; has wires from four H-trees H; 1, the wires of three inner
nodes, and the wires of the busses. An inner node has a total wire length of d - i, and
a bus consists of e ¢ wires.

illustrated in Figure 8.2. We get a recursive formula which we iterate £ — 1 times:

TWL(H,) < ATWL(Hy 1)+2k-e-S(Hy 1)+ 3d-k (8.4)
< ATWL(Hg 1) + k- e(S(H,) +3¢)2" 1 +3d - k?
k—2
TWL(Hy) < 4"'TWL(H)+ 2" "e(S(Hy) +3c) Y 2(k — j)
j=0
k—2
+3d Y 4k —j)° . (8.5)
j=0

Since Z?;g 21(k —j) < 32F and Z?;g 4(k—j)? < Itak we get:

TWL(H,) < 4"'TWL(H,)+ ;22’“—%(5(}11) + 3¢) + %M’f

1
< " TWL(Hy) + Zn -e(S(Hy) + 3c) + %d ‘n
1
TWL(H) < n(GTWL(H) + Se(S(H) +3¢) + %d) —0m) . (36)
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8.2 The Layout of Prefix Circuits with Limited
Fan-in

The proof of Theorem 7.2.2 relied on parallel prefix circuits. We show how a par-
allel prefix circuit can be implemented in our models with small total wire length
and area. Consider a set X of elements with an associative binary operation.
We denote the binary operation by juxtaposition of the elements in X. Suppose
we have functional gates such that each gate with inputs zq,...,z; computes
the product zix5...xk, for some fan-in k. Lemma 8.2.1 gives upper bounds
on a circuit of such gates with maximal fan-in A that computes the prefixes
Z1,T1%2,...,%1T2 ... Ty. For simplicity, we assume that n is a power of A.

Lemma 8.2.1 If n inputs ©4,...,x, are arranged on a row of a grid, then the
prefizes r1,T1%2,...,T1Ts ... T, can be computed by a circuit with maximum fan-
in A € {2,...,n}, size < 2n in depth = Qfgggz. In our model the circuit uses
only a constant number of rows and the total wire length is O(lloig%nA). In the

VLSI-model the circuit uses an area < nAllgggZ.

Proof: ~ We divide the inputs x;,...,z, into % consecutive subintervals and
rename the inputs to zi1,...,21,4, %21, .., T2,A, .-, T2 1,...,T2A.  We de-
note the outputs of the circuit as yi,...,y, such that y; = z;...z;. It will

be convenient to divide the outputs into consecutive subintervals in the same
manner as the inputs. Then, the outputs of the circuit can be written as
Yils - U0, Y215 -5 Y2,8, -, Y2 15 - -, Yz A Where y;; = yi-1)a+;- These in-
tervals for inputs and outputs are illustrated in Figure 8.3.

In a first step, we compute the prefixes for each group of inputs z; 1, ..., %;a,
i.e. we compute x{; = x;1%;2...7; fori=1,..., 2 and j =1,...,A. In a
second step, we recursively apply the prefix computation on :L"l A x’2 Asevery Xl A
gaining the prefixes y; A = 7122 ... Z;.a. In a third step, we finally fill up the gaps
between those prefixes with y; ; = y; 1) a7 fori=2,..., 2z andj=1,...,A-1.
The layout and structure of the circuit is shown in Figure 8.3. Figure 8.4 shows
the whole circuit for A =2, n = 8.

Since the construction of the circuit and layout is recursive, we can give re-
cursive formulas for size, depth, area and total wire length of the circuit. Let
PREF™ denote such a layout with n inputs. The circuit consists of (A — 1)
gates in the first computation step, gates in the recursive step and % (A —1) gates
in the third computation step:

C(PREF™) < %(A ~ 1)+ C(PREF?) + %(A —1)

= - 2% + C(PREF?)
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X1 aX, 5 X X1 X5 X5 X X

11712713 21722723 2.4

compute
© 1 prefixes
-+ on(n/a)inputs

Y11Y12Y13 VYia Yo1¥o¥o3 Yoa

Figure 8.3: Layout of an efficient prefix circuit with fan-in A. Dark shaded boxes
are gates, the light shaded box is the recursive application of the circuit.

First recursive step
> tree-like structure

Second recursive step
> fill the gaps

Anln

oo Y Y Y Y Y Y%

Figure 8.4: The prefix circuit for A = 2 and n = 5. It can be decomposed in a
tree-structure and a post-processing. (Based on Figure 2.13 in (Savage, 1998).)

The solution to this recurrence is C(PREF™) < 2n, since C(PREF") = 0. Each
recursive step adds depth 2 to the circuit depth:

depth(PREF™) = 2 + depth(PREF3)

The solution to this recurrence is depth(PREF"™) = Qfgggg, since depth(1) = 0.

To bound the occupied area in the VLSI-model, we compute the vertical side
length S(PREF™) of the layout. Let area(L) denote the area used by a layout
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L.
S(PREFY) = 0
S(PREF™) < (A—1)+ S(PREF5)+1= AII;):Z (8.7)
area(PREF") < nS(PREF") = nA.%8" (8.8)
log A

Note that this area bound is derived for the VLSI-model. In our model, there
is a better layout since we do not need space for wires. Nevertheless, Figure 8.3
gives an idea of a recursive formula for the total wire length of horizontal wires:

TWL(PREFY) = 0
TWL(PREF") < %AQ + ATWL(PREF3) +n
nA +n+ ATWL(PREF%)

logn
A+1
A+ )logA

Since the circuit has logarithmic depth, vertical wires have a summed length of

O(nA llgggZ) and the upper bound for total wire length is:

logn )
log A

TWL(PREF™) = O(nA (8.9)
The advantage of this circuit in our model is that one can implement it in area
O(n) without increasing the total wire length. As shown in Figure 8.4, the circuit
implements a A-ary tree to compute larger and larger prefixes (first recursive step)
and then fills up gaps in the computed prefixes (second recursive step). We will
show that the tree can be implemented within two rows. This area efficient layout
does not preserve the horizontal order of inner nodes. Since the horizontal order
of some inner nodes is important for the subsequent computation, we will route
their outputs to a more meaningful location.

The area-efficient implementation of a tree is illustrated in Figure 8.5. Con-
sider a A-ary tree where an inner node is placed beneath the rightmost root of its
subtrees. This layout has total wire length O(nlogn). We show how to rearrange
the inner nodes to achieve an area-efficient layout. We place an inner node be-
neath the leftmost leaf of its rightmost subtree. Note that this location is always
free (also in our prefix circuit), and that the total wire length of this layout is
bounded from above by the total wire length of the previous layout. But it uses
just two rows on the grid.

In a prefix-circuit with this efficient tree layout, if the output of an inner node is
needed for further computation, we will need to route it such that the horizontal
ordering of the computed values is correct. In the upper layout of Figure 8.5, the
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level O
level 1

level 2

level 3

Figure 8.5: Tree layout on a grid for A = 3. The upper layout shows a leveled
arrangement of inner nodes. The arrows and filled circles indicate the rearrangement
of inner nodes. We gain a layout which uses just two rows (lower layout).

nodes are in the correct horizontal order. The root of the tree in the lower layout
of Figure 8.5 is horizontally displaced. So, we will need to route back some of the
outputs of the displaced inner nodes. For simplicity, we assume that all displaced
inner nodes are rooted back. As shown in Figure 8.5, we level the nodes of the
tree such that leaves are in level 0, inner nodes which are incident to leaves are
in level 1 and so on. More formally, a node v is in level ¢ if the shortest path
from v to some leaf has 7 edges. There are {; nodes in level 7. The horizontal
displacement of a node in level 7 is A*"! and nodes in level 1 are not displaced.
Hence, the summed displacement of nodes is: Zioff” AR < %llgggg.

It remains to be shown that the computations in the second recursion step (see
Figure 8.4) can be implemented in one row. Just observe that whenever there is
a gate in this second recursive step, it computes an output of the circuit. Hence
in the second recursive step, every output needs at most one gate and they can
be arranged in one row. Also, since this does not further increase the total wire

length, the vertical side length of the layout is constant.

Note that in the model for total wire length estimation, the layout uses only
a constant number of rows, whereas in the VLSI-model, a logarithmic number
of rows is employed. This discrepance is due to the constraint of a constant
number of layers in the VLSI-models, since VLSI-implementations are basically
two-dimensional. In the biologically inspired model, more space for wires is avail-
able, since the cortex has three-dimensional characteristics.
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Chapter 9

Relationship between Total Wire
Length and other Circuit
Complexity Measures

Since the total wire length was inspired by traditional circuit complexity theory,
it makes sense to relate it to measures of the classical theory. In the previous
chapters, the total wire length scaled linearly or almost linearly with the number
of gates and inputs of the circuit. However, this is not always the case. As
emphasized, special care must be taken to achieve a small total wire length for a
function even if a circuit whose gates scale linearly with the number of inputs can
easily be found. In Section 9.1 we show that the total wire length of a function
scales at most quadratic with its circuit size and cannot be smaller than the circuit
size. Section 9.2 shows that the total wire length of a function is asymptotically
bounded from above by the area of the function in the common VLSI model.
This chapter is based on a section in (Legenstein and Maass, 2001b).

9.1 Total Wire Length and Circuit Size

The most common complexity measure in traditional circuit complexity theory
is the circuit size C(f) of a Boolean function f : {0,1}" — {0,1}. C(f) is the
smallest number of gates in any feedforward circuit for f over some basis 2. The
basis € is normally indicated by writing Cq(f). We omit this index and assume
that gates of the optimal circuits for C(f) and TW L(f) are drawn from the same
basis €. We assume that f depends on each of its n variables. The relationship
between the total wire length and the circuit size of a function is given by the
following theorem.

Theorem 9.1.1 The total wire length TW L(f) of a function f : {0,1}" — {0,1}
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b Gz% Gs% ..... % G

Figure 9.1: A layout for an arbitrary circuit whose total wire length can easily be
estimated in terms of n and C(f). Filled circles z1,...,z, are input ports and open
circles G, ..., Gg(y) are gates.

relates to its circuit size C(f) in the following manner:
O +n—1 STWL(F) < SO((C(f) ~ 1) + nmax{n, (1)}

Proof: 'To show the first inequality, note that each input to the circuit as well
as each gate of the circuit contributes to the output. Hence there is at least one
edge from each input port to some gate and each gate except the output gate has
fan-out at least one. Since gates and input ports are separated by unit distance,
each such connection has at least unit length. The first inequality follows.

To show the second inequality, we construct a layout for some circuit C
with circuit size C(f). Since the circuit is feedforward, we can label the gates
of C by Gi,...,Gg( such that G; does not get input from gate G; for all
1 <i<j<CO(f). Arrange the gates on a row of the grid such that gate G;
is one unit to the left of G;11 (1 < i < C(f)). In this arrangement all gates
that receive input from some gate G; are to the right of G; (see Figure 9.1).
Since outputs may spread, the wire length to connect GG; to all of its successors
is at most C(f) — i. This results in a total wire length of 1C(f)(C(f) —1) for
connections between gates of the circuit. Furthermore, arrange the input ports
of the circuit on the row one unit above the gates. In the worst case, each input
port is connected to each gate. The wire length needed to connect one of the
n input ports with all the gates is bounded by n if n > C(f) and by C(f) if
n < C(f). Hence, the total wire length needed to connect input ports to gates is
at most nmax{n,C(f)}. This yields the second summand in the claimed upper
bound for TW L(f). |

9.2 Total Wire Length and Area

Another interesting question is how the total wire length of a function f relates
to the area needed to implement f in VLSI. For the VLSI-model discussed in
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Section 5.3 with gates of fan-in 2, we show that the total wire length is bounded
by the area needed to compute f.

Theorem 9.2.1 If the function f : {0,1}" — {0,1} can be computed in a feed-
forward manner in VLSI with u layers, separation A\ and area A, then the total
wire length of f is bounded by

TWL(f) = O(554).
Proof: We construct from a given VLSI-circuit for f a layout in our model for
bounding its total wire length. We first superimpose a grid of grid-width A\/2 and
area A over the VLSI-layout. Since gates, ports and wires have at lest width A
there is a grid-point in any gate and any two grid-points in connected gates can be
connected by a grid-path that runs in the area of the gates and their connecting
wire.

Consider a gate G with two inputs I, Ig2 and output Og. Define edges
(n1g,,m7,,) on the grid graph such that nj_ . is inside the area of the gate and
nig, is outside the area of the gate but inside the area of the i-th input wire
(¢ = 1,2). Define edges (nog,ng,) for the output in a similar way (see Figure
9.2). Build a spanning tree on grid nodes and edges inside the area of G that
connects ny, , ny,, and ng, . We call this tree the inner tree of G. Consider
the three paths of minimal length that connect two of these three nodes within
the spanning tree (i.e. one path connects nj, ~with nj_,, one nj_ ~with ng_,
and another path connects n’IG,2 with ng, ). There is exactly one node ng that is
contained in each of these three paths as the following observation shows.

Observation 9.2.2 On a tree, denote a path without cycles from a node a to a
node b by P,p. On a tree with three leafs A, B and C, there is ezactly one node
D that is contained in each of the paths Pa g, Pac and PB,C.

Proof(Observation 9.2.2):  Note that a path P,, between nodes a, b of a tree
is unique, since otherwise there would be a cycle in the tree. For a tree with 3
leafs A, B and C, let D be the last node on the paths P4 g and P4 ¢ that is visited
on both paths (this node exists, since each path is unique and both start from
the same node A). Since P4 p and Pp g constitute Py g, the only node common
to both is D (in P4 g, each tree-node is visited at most once). The paths Pg p
and Pp ¢ constitute a path without cycles from B to C which uniquely defines
Ppg . This shows that D is visited in each of these 3 paths.

The only nodes that are common to P4 g and P4 ¢ are the nodes in P4 p. The
only nodes that are common to P4 p and Pp ¢ are the nodes in Ppp. Hence,
the only node that is common to P4 g, Ps,c and Pp¢ is D, which is the only
node common to P4 p and Pg p. ]
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In our construction, the gate G is mapped onto ng and the inner tree is part
of the connection-graph of the layout.

We treat an input-port G like a gate with m > 1 outputs and no input. Define
edges (nog,,no,,) in a similar way (i = 1,...,m). Build the inner tree that
connects all the nodes ng,, ..., np,,  and define one of these nodes to be the
mapping of G onto the grid. Output-ports can be treated in a similar way like
gates with one input and no output. We will not distinguish between ports and
gates in the following.

To connect a gate G with its successors Hy, ..., H,,, build a spanning tree on
grid nodes and edges in the area of the VLSI-wires from G to its successors that
connects no, with the corresponding input-nodes (PPN [ We refer to the
spanning tree from ng, to ny, ,...,ny, —as the output-tree of G (note that this
definition involves nodes inside the gate-areas). The tree that connects a gate
G with its successors Hy,..., H,, in the VLSI-Layout can therefore be mapped
onto the output-tree of G together with parts of the inner trees such that ng is
connected to ny,,...,ny,, (one may skip edges in the trees that are not needed
for these connections). Hence, a gate G is connected to some gate H in the
constructed layout, if and only if G is connected to H in the VLSI-circuit.

We show that for a given grid-edge, there are at most u output-trees and at
most one inner tree that contain this edge in the constructed layout. Consider an
edge e of the grid-graph. Since wires in a layer are separated by at least A and e
has length \/2, at most one VLSI-wire per layer intersects e (i.e. e is partly or
fully in the area of this wire). Since there are y VLSI-layers for wires, this shows
that there are at most p VLSI-wires that intersect e. Since, by construction, any
edge in an output-tree intersects with a VLSI-wire, this shows that there are at
most p output-trees that contain e. Furthermore, since gates are separated by
at least A, at most one gate fully covers e (note that we tread inputs and output
ports like gates and there is only one layer for gates and ports). Hence e is part
of at most one inner tree. Since each tree uses e only once, e is used at most p+1
times in the whole constructed graph.

We can bound the number of edges in a grid-graph of area A and grid-width
A/2 by O(A/)N?). Since each grid edge is used at most p + 1 times and grid edges
have length 1 in our model for total wire length, the total wire length of the
constructed layout is O(4zA4). |
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gate G

Figure 9.2: A mapping of a VLSI-gate onto our model. Unique nodes inside and
outside the gate are defined for input and output. The nodes are connected by a
(minimal) spanning tree. The gate is mapped onto the node ng, the node that is
common to any path that connects two leaves of the spanning tree.
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Chapter 10

Optimizing the Layout of a
Complete Tree

Tree-like organizations are a fundamental structure in parallel processing. The
layout of trees has so far been studied mostly for trees of degree four or less.
In this chapter, we give tight upper and lower bounds on the total wire length
of complete m-ary trees (m > 2) on a two-dimensional grid if the leaves are
constraint to lie on a grid line. For the case of binary trees, our construction
results in a reduction of the total wire length of 33 % compared to the obvious
“symmetric” layout. This chapter is based on the publication (Legenstein and
Maass, 2001d).

10.1 Introduction

The importance of tree-like structures as an organizing principle for processing
elements was stressed out by many authors, see e. g. (Bhatt and Leiserson 1982;
Ullman, 1984; Savage, 1998). Therefore, the layout of trees in the context of
VLSI-circuits has been studied intensively. Mead and Rem introduced the H-tree
layout, thus showing that a complete binary tree with n leaves can be implemented
in O(n) area (Mead and Rem, 1979). This upper bound on area induces an
upper bound on wire length. In this strategy, leaves are placed throughout the
chip surface. The H-tree layout is described and studied in Chapter 7. If leaves
have to be placed on the boundary of a convex region, the area of any layout is
bounded by €(nlogn), which was shown by Brent and Kung (Brent and Kung,
1982). A generalization to noncomplete trees is due to Yao (Yao, 1981). The way
how chips that implement “tree machines” (i. e. processing elements structured
as trees) can be combined to larger trees, is investigated in (Bhatt and Leiserson
1982). Paterson, Ruzzo, and Snyder addressed the problem of minimizing the
longest edge in a tree layout. It was shown in (Paterson et al., 1981) that in
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any layout for a complete binary tree of n leaves, there is an edge of length
Q(y/n/logn). Furthermore a layout is given that achieves this bound. This
result is extended to binary trees (i. e. also noncomplete binary trees) in (Ruzzo
and Snyder, 1981).

The total wire length of tree-layouts was also discussed by Fisher and Paterson
in (Fischer and Paterson, 1999). A preliminary version of this paper appeared in
(Fischer and Paterson, 1980).The Authors give an efficient algorithm that pro-
duces a optimal layout for weighted trees under the L;-norm if crossings are
allowed.! Closed-form expressions on the cost of a tree layout for some special
cases are given. Especially for the case of unit cost weights and a further con-
straint?, their model is similar to ours if binary trees are considered. Our results
for m-ary trees in the case of m = 2 are similar to those of Fisher and Paterson
in this special case. The layout of m-ary trees on a grid was to our knowledge
not yet considered in the literature. Since the degree of grid nodes is at most 4,
merely trees of degree four or less were studied.

The layout of trees is also studied in the context of graph drawing. For a
recent survey on graph drawing we refer to (Di Battista et al., 1999). However,
the problem of minimizing the total wire length of trees has previously not been
addressed in this context.

We assume here that all n leaves of the tree have to lie on adjacent intersection
points on one horizontal row of the grid. This is a case of practical interest. For
example, the leaves may present input/output ports, and such ports are normally
placed on the border of a chip. Since ports are usually much larger than electrical
elements, the total wire length is very sensitive to the horizontal layout of the
tree. All intermediate nodes of the tree are to be placed on intersection points
of the grid and edges of the tree are required to be realized by edge-disjoint
paths along the grid lines. Since the vertical components of all wires contribute
in any reasonable layout just a linear term to the total wire length, it suffices
to focus on the horizontal components of the wires, and thus on the horizontal
coordinates of the inner nodes of the tree on the grid. Intuitively one might think
that a symmetric layout where the horizontal position of each node is as close as
possible to the middle between the horizontal position of its children is optimal.
However we show in this chapter that there exists another layout that reduces
the total wire length by up to 33 %. Furthermore we show that this other layout
strategy is optimal for the length of horizontal edges.

We will give a precise definition of the problem in Section 10.2. In Section 10.3

'In a weighted tree, each edge has a corresponding weight. The cost of and edge is its wire
length multiplied with its weight.

2In their nomenclature, this constraint is that leaves are constrained in a natural order. This
means that leaves of any two subtrees are on different intervals of the line they are arranged
on. In our nomenclature this would mean that the subtrees induced by the two children of the
root are non-overlaping (see below). Since we merely constrain the leaves to lie on a horizontal
line, this is equivalent to our problem for the binary case.
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a) b)

Figure 10.1: A graph G (a) and a layout L¢g of G in the grid-graph (b). In (b), filled
circles are nodes corresponding to nodes in G and bold lines are edges corresponding
to edges in G. HW L(Lg) = 3,VWL(Lg) =5 and TW L(Lg) = 8.

we will consider a layout strategy for binary trees. We give a simple argument
which shows that the naive “symmetric” layout, which requires a total wire length
of ¢ log, n+ O(n), is not optimal. The strategy presented uses a total wire length
of Zlog,n + O(n). This upper bound is implicit in one of the results of (Fischer
and Paterson, 1999). However, Section 10.3 may serve as a basis for Section 10.4,
where an upper bound for the case of complete m-ary trees is given. This layout
strategy yields a total wire length of 2=nlog,, n 4+ O(n). Finally it is shown in
Section 10.5 that this layout strategy is optimal for any m > 2 in the sense that
no other layout can achieve for any m > 2 a total wire length a-n-log,, n+ O(n)
with a < 'W”L—:& This lower bound argument is of some interest from the technical
point of view since there exist many other layouts that require less wire length on
some levels of the tree, but have to spend then more wire length on other levels
of the tree. The lower bound argument has to take care of all these possible
trade-offs, and hence cannot be carried out by a simple inductive proof.

10.2 The Layout Model

We consider a directed graph G = (V, E), where V is the set of nodes and E is
the set of edges, E C V2. Since the graphs we consider are complete trees, we
can level the nodes such that the root is in depth 0, all nodes that are incident
to the root are in depth 1 and so on. More formally, the depth of a node v is
the length of the shortest path from the root to v. Basic definitions for trees are
given in Chapter 3.1.

We would like to define a layout of a graph G = (V, E), i.e. we would like
to map the graph onto the two dimensional plane. In our model, we consider a
2-dimensional grid with unit length in between neighboring grid-lines. We want
to embed the graph into this grid graph such that each node v € V' is mapped
onto a node of the grid-graph by an injective function. Furthermore, the edges
of the graph are mapped onto edge-disjoint paths of the grid-graph, connecting
the corresponding nodes. Thus, a layout can be defined by a graph Lg = (V', E')
which is a subgraph of the grid-graph (see Figure 10.1).
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10 Optimizing the Layout of a Complete Tree

Saah T

a) b)

Figure 10.2: Different layouts for binary trees. Rectangles are leaves and circles are
inner nodes. The layout in (a) is not optimal, since one can shift the children of the root
towards it (b). A strategy with short wires from the root (c) and one that minimizes
the wire-length of the subtrees (d).

The total wire length TW L(Lg) of a layout Lg is the number of edges used in
the grid-graph. We refer to the horizontal wire length HW L(L) as the number of
horizontal wires and the vertical wire length VW L(L¢) as the number of vertical
wires used in the grid-graph. For some layout Lg, it holds that TW L(Lg) =
HWL(Lg) + VWL(Lg).3

10.3 The Layout of Binary Trees

We investigate layouts for binary trees with respect to total wire length. In this
section, we construct an algorithm which builds a tree of small total wire length.
In Section 10.5, we show that the horizontal wire length of this layout is optimal.
We will only consider full complete trees, i. e. trees of minimal depth. We assume
that the leaves of the tree are given by consecutive nodes on a horizontal grid
line. Then, one can build a binary tree by inserting inner nodes and edges into
the graph. The common way of drawing trees is illustrated in Figure 10.2a. Each
inner node is placed in the middle of its children, as far as this is possible in
our grid model. The horizontal wire length of such a layout would be at least
2((logyn) — 1) + 1 as we show below.

Proof: ~ The naive layout places each node horizontally in the middle of
its children. We first assume that this is possible, although it is not always
possible in the grid model. Then we correct the bound by the maximal error
we made by this assumption. This maximal error is at most half a grid unit
for each inner node of the tree and we assume that the horizontal wire length
of the layout is reduced by placing nodes onto grid-nodes. This amounts to a
reduction of at most 3(n — 2) in the horizontal wire length. If we assume that
we can always place a node in the middle of its children, the horizontal wire
length of a naive layout 7, with n leaves can be described by the recursive
formula HWL(T,) = % + 2HWL(T,;;) with the additional constraint that

3Note the differences to the model introduced in Chapter 5.1. First, the L;-norm is used
here instead of the Eucledian metric to determine the length of wires. Furthermore, in this
model, wires may not spread on arbitrary positions and may no use edges twice.
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10.3 The Layout of Binary Trees

HWL(Ty) = 0. This recursion evaluates to 7 log,n. Together with the cor-
rection term this results in a horizontal wire length of at least 7 ((log,n)—1)+1. &

This layout is not optimal, since one can reduce the horizontal wire length by
shifting these nodes towards the root. This is possible because the horizontal
wire length of the subtree is independent of the placement of its root, as long as
it stays in between its children (see Figure 10.2b). However, Figure 10.2b merely
deals with a tree of depth 2. In trees of larger depth it is not so clear where to
place the children of the root, since minimizing the length of wires from the root
will increase the wire length of the subtrees. The layout in Figure 10.2¢ places
the inner nodes in such a way that the wire length is optimized for the root wires,
but not for the subtrees. In Figure 10.2d, the subtrees are optimized, while the
wires needed to connect them to the root are longer. These effects cancel for a
depth 3 tree, but for trees of depth 4 or higher, the latter layout (Figure 10.2d)
guarantees a smaller total wire length.

To keep things simple, we assume that the number of leaves is n = 2 for some
natural number £ > 0. In the following, we describe easy rules that define a tree-
layout as given in Figure 10.2d. The underlying graph of the layout is constructed
in the common way: Insert the root r into the set of nodes V. Recursively build
the tree for the 7 leftmost leaves and the tree for the 3 rightmost leaves. Then,
connect the roots of these trees with r. Since the connectivity of the tree is given,
we can now describe the layout of the vertices and edges. Figure 10.2d indicates
that there are two ways to place a node. Either above its leftmost or above its
rightmost child. This reflects the principle of minimizing the length to the parent
without increasing the wire length of its subtree. The rules can be described as
follows (see Figure 10.3):

Let v be a node to be placed on the grid. Let 7T, denote the subtree which is
rooted at u. Let v be the parent of w.

e If T, is the leftmost subtree with respect to v (i.e. its leaves are to the left
of all other leaves in T,), place u above its rightmost child.

e If T, is the rightmost subtree with respect to v (i.e. its leaves are to the
right of all other leaves in T},), place u above its leftmost child.

It is straight-forward to design an algorithm that constructs such a tree-layout.
Such an algorithm would start to place nodes that are incident to leaves, since
their placement is independent of the placement of other nodes. After these nodes
are placed, it places nodes that are incident with them and so on. We call this
algorithm Greed. The horizontal wire length of a layout produced by Greed is
given in the following claim.
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U| Ur

Figure 10.3: v; is the root of the leftmost subtree with respect to v. Therefore, u; is
placed above its rightmost child. wu, is the root of the rightmost subtree with respect
to v. Therefore, u, is placed above its leftmost child.

h(3)

b(2) b(2)
b (1) ﬁ b (1) b (1) g: b (1)
n-1

Figure 10.4: A binary tree layout. Rectangles are leaves and circles are inner nodes.
The root width of this tree is b(3) = 3. But since the subtrees are constructed in the
same manner, also b(2) and b(1) appear within this tree.

Claim 10.3.1 For some k > 0, the Greed-algorithm produces a layout for
a complete binary tree of n = 2% leaves — that are placed on consecu-
tive grid nodes of a horizontal grid-line — with horizontal wire length of
Inlogyn+ L(n+ (—1)te2m+1),

Proof: Let T,, be a binary tree layout for n = 2 leaves constructed by Greed.
We define the root width b(k) to be the distance in between the children of the
root (7. e. nodes of depth 1 in the tree). Figure 10.4 illustrates the root width of
a tree constructed by Greed. Since the subtrees of T;, are constructed in the same
manner, b(1),...,b(k) can be found within subtrees of T,,. To be more precise,
b(i) appears 28 times (see Figure 10.4), and the horizontal wire length of T, is
the sum of these root widths:

HWL(T,) =Y 2"7b(i) (10.1)

=1

A recursive formula for b(k) can be stated. Consider the line segment [ that is
defined by the leftmost and rightmost leaves as endpoints. [ isn —1 = 2F — 1
in length. Projecting the wires from the root to its children onto [ results in an
interval of size b(k) on this line. The root is connected to two trees of root-width
b(k —1). Because of the placement of nodes, the projections of the root-widths of
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10.3 The Layout of Binary Trees

the tree and its left and right subtrees are directly adjoining and non-overlapping
(see Figure 10.4). Projecting the root widths of leftmost and rightmost subtrees
of depth i fori =1,...,k onto [ results in adjoining and non-overlapping intervals
that fully cover /. Hence, for any £ > 1 it holds that

k-1
b(k) = (28 —1) =2 " b(i) (10.2)
i=1
and b(0) = 0. We show by induction on k£ > 0 that the following holds:
1
b(k) = 5(2’“ + (—1)F). (10.3)

Obviously, the induction hypothesis, Equation 10.3, is true for £ = 0. Using
Equation 10.2, we show the inductive step:

b(k + 1) — 2k+1 _9 Zb 2k+1 1) . ;Z (2i + (_1)i—|—1)

(2k+1 Z 21 + Z z—|—1

= (M -1)- §(2k+1 2+ %((—1)'““ +1))
1 1

_2k+1 . _(_1)k+1 — 1(2194—1 + (_1)(k+1)+1)_
3 3

We can now sum up the root widths that occur in our tree layout with Equation
10.1 to compute the horizontal wire length of the layout.

HWL(T,) = ZQ’“ (i 22’“ (2" + (1))

k—1
— 1 k k—i i+1) __ 1 k ] k—1+7j
- g(ZQ +Z2 i(—1)i ) — g(m +>2(-) J)
i=1 i=1 7=0
We eliminate the remaining alternating sum with the formula

2k+1 + (_1)Ic

2j(_1)k+j — 3

(10.4)

M-

J=0

Since 2¥ = n and k = log, n, the horizontal wire length of this layout evaluates
to

l(n + (—1) 02 n)+1)_

1 1 1
HWL(T) = k2" + §(2’c + (—1)’“+1) = Znlog,n+ ¢
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10 Optimizing the Layout of a Complete Tree

In the Section 10.5, we will show that this bound is optimal even if we do not
restrict inner nodes to lie on grid-points. As far as the vertical wire length is
concerned, there is one vertical wire for each node except for the root, which
results in a vertical wire length of VW L(T,,) = 2(n — 1). Hence, the total wire
length of T,, is TWL(T;,) = inlog,n+ i (n+(—1)t&m+1) 4 2(n—1) = Zlog, n+
O(n).

10.4 Upper Bounds for Complete Trees

The simplicity of the tree construction in Section 10.3 is instructive. However,
with a somewhat more elaborate model, one can generalize this construction to
complete m-ary trees for any m > 2. We face the problem that for any m > 4,
there is no way to use edge-disjoint paths to connect nodes with their children
(since the degree of inner nodes of the tree is more than 4). Hence, we have
to extend our model. Consider a computational circuit C'. This circuit has an
underlying directed graph G = {V, E} where V is viewed as the set of gates and
input-ports of the circuit and F defines connections between them. In a physical
implementation of C| if some gate g is connected to m children, the edges from g
to its children may be implemented by a wire that starts at g and spreads later
on to serve as input for the children. Such a connection strategy is reasonable at
least as long as m is constant, 7. e. does not grow with the size of the circuit.

A convenient way to define such a layout is to insert nodes into V' that serve
as routing points for the edges. Hence we define a routing graph G' = (V', E')
where V' C V'. Nodes in V' =V are called routing nodes. Furthermore, each edge
(vi,vj) € E is mapped onto a path in G’ that starts with v; and ends with v; and
any other node on the path is a routing node. Since the graph G is underlying
some computational circuit, we need to be careful about routing nodes. As the
routing nodes do not represent computational units, it does not make sense for
routing nodes to have an in-degree larger than one*. To get a layout Lg, we can
map the nodes of G’ onto nodes of the grid-graph by some function pos : V' — N?
and furthermore map the edges of G’ onto edge-disjoint paths of the grid-graph.
The horizontal, vertical, and total wire length can be defined as in Section 10.2.

Within this model, the principle of this layout given in Section 10.3 is also
applicable for m-ary trees where m is larger than 2. Figure 10.5 shows a layout
for a 3-ary tree of depth 3. In the following, we give simple rules on how to place
inner nodes on the grid that define a tree-layout with small total wire length?.

4The in-degree of a node v in a graph G is defined as the number of edges (u,w)in G' with
w = v. Similarly, the out-degree v is defined as the number of edges (u,w)in G with u = v.

5To keep things simple, we assume that the number of leaves is n = m* for some natural
number k£ > 0.
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10.4 Upper Bounds for Complete Trees

el

Figure 10.5: A layout for a 3-ary tree of depth 3. Rectangles are leaves, open circles
are inner nodes, and filled circles are routing nodes. Note that all edges are directed
from nodes of smaller depth to nodes of larger depth.

Figure 10.6: wu; is the root of the leftmost subtree with respect to v. Therefore, v; is
placed above its rightmost child. wu, is the root of the rightmost subtree with respect
to v. Therefore, u, is placed above its leftmost child. u,, may be placed above any of
its children.

Let u be a node to be placed on the plane. Let T, denote the subtree with root
u and v denote the parent of u (see Figure 10.6).

e If T, is the leftmost subtree with respect to v (i.e. its leaves are to the left
of all other leaves in T,), place u above its rightmost child.

e If T, is the rightmost subtree with respect to v (i.e. its leaves are to the
right of all other leaves in T,), place u above its leftmost child.

e Otherwise, u may be placed above any of its children.

Again, it is straight-forward to design an algorithm Greed,, that constructs
such a tree-layout. Greed,, start to place nodes that are incident to leaves, since
their placement is independent of the placement of other nodes. After these nodes
are placed, it places nodes that are incident with them and so on. The horizontal
wire length of a layout produced by Greed,, can be calculated in the same manner
as in Section 10.3.

Theorem 10.4.1 If, for some k > 0, m > 2, the m = 2* leaves of a
complete m-ary tree are placed on consecutive grid nodes of a horizontal grid-
line, then there exists a layout in the grid model with horizontal wire length of

mrin10g, 1+ Gy (n + (—1)0En ).

Proof: Let TTZL’c be a m-ary tree layout constructed by Greed,,. We define the
root width by, (k) to be the maximum over all horizontal distances in between pairs
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10 Optimizing the Layout of a Complete Tree

of nodes that are incident with the root (i. e. nodes of depth 1 in the tree). Using
the same argument as in Section 10.3, the horizontal wire length of Tj,’;k is

HWL(T™) = i m* by (4) (10.5)

The root width b,,(k) of a layout by Greed,, for a tree T[n”k is given by the
recursive equation

k
b (k) = (m* = 1) —=2) " by (4) (10.6)
i=1
for any £ > 1 and 5(0) = 0. As in Section 10.3, one can show that
_m=1 ek
b (k) = erl(m + (=1)F*). (10.7)

Again, simple algebra is used to compute the horizontal wire length of the layout
by Equation 10.5.

k
HWLTE) = ) m* by (i)
=1

We eliminate the alternating sum with the formula

ko , k+1 4 (_1)k
ij(_l)kﬂ — w (10.8)
, m+1
Jj=0
Since mF = n and k = log,, n, the horizontal wire length of this layout evaluates
to
m—1 m—1
HWL(TE) = Skmt 4+ (mf 4+ (—1)+)
(Tn) m+1m+(m+1)2m+( )
m—1 m—1
- ] (e (m)Em ) (10,9
— Ogmn+(m+1)2 n+ (—1) (10.9)
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10.5 Lower Bounds for Complete Trees

Note that this upper bound is a generalization of Claim 10.3.1. If we set m = 2,
we get exactly the bound given for binary trees. In the following Section, we show
that this general bound is optimal even if we do not restrict inner nodes to lie on
grid-points. The vertical wire length of this layout is obvious. There is one vertical
wire for each node except for the root, which results in a vertical wire length of
VWL(T!) = ";n"—_—l — 1. Hence, the total wire length of T is TWL(T?) =

1
o (n (1)) £ =t 1 Z mtnlog n+ Ofr)

m—l—ln 1Ogm n+ ( m—1 m-+1

m—|—1

10.5 Lower Bounds for Complete Trees

We show that the bound given in Theorem 10.4.1 for the horizontal wire length
of a tree layout is tight. We relax the grid-model such that except for the leaves,
which are placed on successive nodes on a horizontal grid line as before, nodes
may be placed anywhere on the two-dimensional plane. The wire length of an
edge (u,v) in the routing graph is the Euclidean distance between v and v on
the plane. Since we merely consider the horizontal components of wires, we can
assume that all nodes lie on the horizontal line defined by the leaves of the tree.
Hence, the position of a node v € V' is defined by a function zpos : V! — R
which maps v onto its x-coordinate. The horizontal wire length of an edge (u,v)
is |zpos(u) — zpos(v)| (note that the graph involves also routing nodes).

Before we give the proof, we make another assumptions about a layout for a
complete tree that minimizes the horizontal wire length. For this assumption,
we need the following definition. Consider two nonempty, disjunct sets of nodes
S1, 55 € V of some layout L. We say that S is horizontal non-overlapping with Sy
if some vertical line separates the nodes of S; and S, 7. e. for each pair of nodes
vy € Sy and vy € S, it holds that zpos(vy) < zpos(ve) or for each pair v; € S
and ve € Sy, it holds that xpos(vy) > xpos(vy). If this is not the case, we say that
S1 is horizontal overlapping with Sy. Consider a layout for a m-ary complete tree
T. The root of the tree is connected to m subtrees 77, ...,7T,,. We say that T is
horizontal overlapping, if for some 4,5 € {1,...,m} with i # j, the set of leaves
of T; is horizontal overlapping with the set of leaves of T;. Otherwise, we say that
T is horizontal non-overlapping. The following lemma states that without loss of
generality, we can assume that a tree layout with minimal horizontal wire length
is horizontal non-overlapping.

Lemma 10.5.1 For any layout T of a complete tree in the model given above
with horizontal wire length HW L(T), there exists a layout T' where T is hori-
zontally non-overlapping and the horizontal wire length of T' is smaller or equal
to HWL(T).
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Lo

Figure 10.7: Filled circles are routing nodes. Given the positions of the nodes (open
circles), this is an optimal way to connect u to its children with regard to the horizontal
wire length. The nodes u1, uo, ug are on the same position as their corresponding routing
nodes. The vertical displacement of nodes in the figure is for clarity.

Proof: We construct a horizontal non-overlapping layout 7" out of 7" with smaller
or equal horizontal wire length. This is done by constructing a layout where no
paths cross. In the following, we define an operation on a layout that achieves
this goal if applied correctly. Furthermore, we construct a layout Ry out of T to
show on which nodes to apply the operation.

One can assume that all nodes of 7" are on the horizontal line defined by the
leaves. If this is not the case, shrink the layout to this line and consider this
layout. Let r be the root of T.In the first step of the construction of 7", we delete
all routing nodes out of 7" and for each node v € V — {r} we place a routing
node s, on the same position as v. We connect each routing node s, with its
corresponding node v. Then for each node u and its children ug, ..., u,,, connect
u to the corresponding routing nodes with minimal total wire length (i. e. chain
the routing nodes as shown in Figure 10.7). Note that the positions of nodes in
V' are not altered and the way to connect nodes with their children is optimal,
hence the wire length of the layout does not increase by this manipulation.

We are now defining an operation on the layout that does not increase the
horizontal wire length of the layout. We call such an operation a flip-operation.
Consider two inner nodes u and v and the sets of their children S, and S,.
Assume that u is to the left of v or placed on the same location as v. The
operation connects u to the m leftmost nodes in the set of their children S, U S,
and v to the m rightmost nodes in S, U S,. This operation does not increase the
horizontal wire length of the resulting layout. We formalize this idea: Suppose
that posz(u) < posz(v). Chose disjunct subsets S.,S! € S, U S, of size m each
with the condition that for any pair of nodes u' € S and v’ € S) it holds that
zpos(u') < zpos(v'). The flip-operation flip,, deletes all connections in between
v and its children and v and its children and connects u to the nodes in S;, and v
to S, in an optimal way. This will not increase the horizontal wire length of the
layout.

We will use this operations to construct a horizontal non-overlapping tree out
of T'. In order to figure out on which nodes to do that, we construct two other
layouts R; and Ry out of T.
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Figure 10.8: a) A stretched layout. Nodes of depth i are placed at y-coordinate —i.
b) We separate nodes that are placed on the same position by a small amount. A detail
of the layout in (a) is shown.

Let d be sufficiently small.

FOR all nodes u,v with pos(u)=pos(v) DO
Set xpos(u) :=xpos(u)-d/2
Set xpos(v) :=xpos(v)+d/2
d :=d/2

DONE

Figure 10.9: An algorithm that produces a layout Ry out of R;.

We construct R; out of T such that we delete routing nodes and connect graph
nodes by direct edges. Furthermore, all nodes of depth ¢ are placed on a horizontal
line at y-coordinate —i and the x-coordinates are unchanged. Such a stretched
layout is given in Figure 10.8a.

In order to handle nodes that are on the same position on the plane , we con-
struct another layout Ry out of R; by the algorithm given in Figure 10.9. We do
that by displacing nodes of same position by a small amount d in the x-direction,
such that no two nodes are at the same x-position after the transformation. Let ¢
be the minimum horizontal distance greater than 0 between nodes of the layout.
d must be chosen sufficiently small, so that if a node v is to the left of u in Ry,
then v is to the left of u in Ry. This can be guaranteed by choosing d = ¢/2. In
Ry, paths can only cross by edge-crossings.

Figure 10.8b shows a detail of the transformed version of the layout of Figure
10.8a. In the layout R, there are no two nodes that are placed on the same
position. All edge crossings in Ry are due to crossings that were in R; or or due
to nodes that were at the same location in R;. Suppose that there are nodes u, v
such that edges (u,u’) and (v,v') cross in Ry. A flip operation flip,, on 7" and
the corresponding change in the connectivity in Ry can be used to eliminate all
crossings within edges from u and v to their children. Hence, all the crossings in
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Figure 10.10: A tree layout Ry where [ and r are children of the root. If Ry is
horizontally overlapping, then a path from [ crosses with a path from r.

R5 can be eliminated without increasing the horizontal wire length in 7”.

We show that after crossings were eliminated in Ry, Ry is horizontal non-
overlapping. Suppose that R, is horizontal overlapping (see Figure 10.10). There
exist children of the root I,7 with zpos(l) < zpos(r) in Ry such that for some
leaves u, v of the subtree defined by [ and w of the subtree defined by r it holds
that zpos(u) < zpos(w) < zpos(v). There are paths from [ to u, from [ to v and
from r to w that do not visit the root of Ry. Since zpos(u) < xpos(w) < zpos(v),
the path from 7 to w crosses one of the other paths. Since no two nodes share
the same location on the plane, edges cross. Hence, if there are no crossings in
Ry, then R, is horizontal non-overlapping. 7" is also horizontal non-overlapping,
since its underlying graph has the same connectivity and the leaves are placed
in the same order on the horizontal line. |

Theorem 10.5.2 For integers k > 1 and m > 2, any layout of a complete tree
with n = mF* leaves that lie on a horizontal line with unit distance in between
neighboring leaves has horizontal wire length of at least

m_inlog,,n+ g ) 5 (n + (—1)008mn)+1),

Proof: We prove the theorem by induction on & for all n of the form n = m*. To
avoid cumbersome notation, we introduce the shortcut fn(n) = 2=nlog,, n +

(m+1) s(n + (=1)08mm)+1) to denote the bound given above. We will prove a

stronger result that implies the theorem. Since the m* leaves are placed on a
horizontal line, one can define the midpoint p,, of the leaves, which is the point
that minimizes the maximal distance to a leaf. Let r be the root of the tree.
The deviation x of the root is defined by x = zpos(w) — zpos(p.,,). The wire
length of the tree layout will increase if the absolute value of the deviation is
too big. On the other hand, we can give a region around the midpoint where no
increase in wire-length occurs. This bound region for a tree of n leaves is defined
by an interval of length b,,(n) = 2(m+1) (n + (—1)(g2m)+1) to both sides of the
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midpoint. If the root is placed within this interval, the wire length needed is
independent of the deviation. If the root is placed outside this interval, the wire
length increases linearly with the deviation. Hence, we define the limited deviation
to be T = max{0, |z| — b,(n)}. The horizontal wire length of the complete tree
is at least fn,(n) +T.

Observation 10.5.3 Consider a layout for a m-ary tree with n leaves, deviation

z and limited

deviation T. Then the following holds:

a) T+xz > —by(n),

b) T —x > —b,(n),

n(m—1)

) bp(mn) + bn(n) = =5—, and

d) mfn(n) =

fm(mn) — (m — 1)n + 2b(n).

Proof(Observation 10.5.3):  Observations 10.5.3a,b are easy to verify. Suppose
that |z| < by(n). Then T+ x = +x > —b,,(n). Suppose that |z| > b, (n). Then

Ttz =|z|—

bm(n) £ 2 > —b,,(n). Observation 10.5.3c is proven by b,,(mn) +

b (n) = 5221 (mn + (—1)1°8n ™) + 2= (n + (—1)l8m ") = Lo (mp + ) =

2(m+1)

n(m—1)

2(m+1) (m~+1)

=Z—2. Finally, we show Observation 10.5.3d:

5 .

mfm (n) =

m—1 m—1 m—1
S 1 S— (=1 (log,, n)+1
m+1(mn) 08, M + (m+1)2(mn)+ (m—|-1)2( )
m—1 m—1 m—1
R 1 =2
g 1) 108 (mn) = (mn) 4+ Gy ()
m—1
-1 (log,, n)+1
(m + 1)2m( )
mt1 " 2" 12
m— m—1
— = 1) (=1 (log,, n)+1
m—i—l( n) + (m+1)2(m+ )(=1)
m—1 m—1
_ -1 (log,, n)+1
f(mn) m+1(mn)+ m+1( )
m—1 m—1
2 -2 S — 7~ (—1)(ogn n)+1
f(mn) + 2b,,(n) b (n) m+1(mn)+m+1( )
m—1 m—1
f(mn) + 2b,,(n) m+1(n+( ) ) m+1(mn)
L_l(_l)(logm n)+1
m—+1
m-—1
2b,,(n) — 1) ——
f(mn) + 2by,(n) — n(m + )m+1

f(mn) — (m — 1)n + 2b,,(n).
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b(n) b(mn)
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mn-1

Figure 10.11: Bound regions of a tree. Filled circles are the root and its children
and open circles are leaves of a tree. Bold lines indicate the bounded regions of the
tree and its subtrees. These regions are directly adjoining.

Observation 10.5.3c proves that the bound region b(mn) of a tree of mn leaves is
directly adjoining the bound region of its leftmost (respectively rightmost) subtree
of n leaves as shown in Figure 10.11. This becomes clear if one takes into account
that the distance between the midpoint of a tree with mn leaves and the midpoint
of its leftmost (respectively rightmost) subtree is @ = by (mn) + by(n) (as
shown above we can assume that the leaves of the leftmost subtree are the n
leftmost leaves of the tree). Now we are ready to give the inductive proof. Our
hypothesis is that any layout for a complete tree of n = mF* leaves that lie on a
row of grid-points needs a horizontal wire length of at least f(n) 4+ Z, where 7 is
the limited deviation of the root. In the case of n = 1, the minimal wire length
needed for a tree is the wire needed to route the only leaf to the position of the
root, which is |z|. Our bound evaluates to f(1) + T = T = max{0, |z| — 0} = |z|.
For the induction step, we consider an arbitrary layout 7" for mn leaves. The root
r of T' is connected to m subtrees 17, ...,T,, of n leaves each.

Because we can assume that the tree is horizontal non-overlapping, there is
a leftmost and a rightmost subtree, where leaves of the leftmost (respectively
rightmost) subtree are the n leftmost (respectively rightmost) leaves of T'. Let
T}, be the leftmost subtree, r; be its root, T be the rightmost subtree and rg
be its root. Furthermore let z; denote the displacement of r; , x denote the
displacement of rg, and x denote the displacement of . Because of symmetry,
we can assume without loss of generality that the root r is placed to the right
of the midpoint. The situation is illustrated in Figure 10.12. We consider two
cases, whether r is displaced by at most b,,(mn) or by more than b,,(mn).

In the first case we have z < b,,(mn) and therefore T = 0. The horizontal wire
length of the tree is the sum of the wire lengths of the subtrees and the wires to
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leftmost
subtree

rightmost
subtree

1 m-1)n 1 m-1)n
/2( ) /2( )

Figure 10.12: Inductive step: A m-ary tree with mn leaves. Only the leftmost and
the rightmost subtree is shown. The root r is displaced by z from the midpoint. The
rr, is displaced by zy, from its midpoint and rg is displaced by zg from its midpoint.

connect these trees. At least, there is a wire from the root to r;, and rg.

ZHWL(T,-) +(m—1)n—x,+2r

> mfm(n)+3:L+mR+( —1)n—xz,+zg

> fm(mn) —(m—1)n+2b,(n)+(m—1)n+Tp —2L +Tg + 2R
> fm(mn) + 2bp(n) = bm(n) = bm(n)

> fm(mn) = f(mn) +7.

In the second case, we have x > b,,(mn) and therefore T > 0. Suppose that
zpos(r) < xpos(rg) (i. e. r is not to the right of rg, see Figure 10.13a). Since
Z > 0, it follows that b,,(n)+ x, > T (this is also shown in Figure 10.13a). Hence,

HW L(T,) mfm(n +Z,+Tr+(m—1)n—x, +zp

)
( n)+2b ( )+xL_xL+jR+xR
)+ bm(n) +Tr+ 2R

)+

b (n) + xg > fm(mn) +Z.

fm(mn

VvV IV IV IV

fm(mn

Suppose that r is to the right of rg. In Figure 10.13b, it is illustrated that the
wire needed to connect rg to r is T — (b, (n) + zg) long. The wire needed to
connect 77, and rg is as before n(m — 1) — 2y + x in length. Hence,

HWL(T,,) > zm:HWL(CZ})—i-n(m—l)—xL—i—xR-l-T—(bm(n)-l-xR)

fm(mn) +2by,(n) + T, — 2, +Tr+ T + T — bn(n) — zr
fm(mn) +bp(n) + Ty, — 21, + T+ T > fr(mn) + 7.
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byn(2) by

_————
1

byn(20) ()
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1

a b)

Figure 10.13: The root r is out of its bounded region. a) The root is not to the right
of rg. One can see that b(n) + z, > Z. b) The root is to the right of rg. The wire
needed to connect rg to r is T — (b(n) + zr).

Hence, the layout in Section 10.4 is optimal with respect to the horizontal wire
length. Furthermore, this shows that no layout for an m-ary tree can achieve for

any m > 2 a total wire length a - n - log,, n + O(n) with a < Z—ﬁ

10.6 Discussion

We have exhibited in this chapter layouts of complete m-ary trees on a grid
that are optimal with regard to their horizontal total wire length. Neither the
construction of the optimal layout, nor the proof of its optimality, are obvious.
One may interpret this as an indication that the construction of circuits with
small total wire length does not only produce circuit architectures that are more
interesting from the point of view of physical implementations, but also that
this new circuit complexity measure gives rise to a number of interesting new
theoretical problems.
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Chapter 11

On the Complexity of Routing in
VLSI-Circuits

As discussed in the previous chapters, the problem of routing in biological circuits
is closely related to the problem of routing in VLSI models. Most problems related
to routing are known to be computationally intractable. A basic and rigurously
studied routing model is the channel routing model. The exact complexity of
one problem in channel routing, the knock-knee channel routing problem was not
known for a long time. In this Chapter, this gap is closed by showing that the
“easiest” variation of the problem not known to be solvable in polynomial time
is NP-complete. This chapter is based on the publication (Legenstein, 2001).

11.1 Introduction

The first lesson one has to learn if one is concerned with VLSI routing is that
optimal routing is extremely difficult. Most routing problems are known to be
“very hard”, namely NP-complete. For NP-complete problems, no sequential
algorithm is known that has execution time polynomial in the number of inputs.
Althoug not proved, it is believed that any algorithm for an NP-complete problem
needs super-polynomial execution time. For the model of parallel processing,
this implies that circuits computing such a function have super-polynomial size.
Such problems are said to be “intractable”, since an optimal solution for even
medium since problems is computationally too demanding. In this chapter, we are
concerned with a problem arising in VLSI design, the cannel routing problem. We
show that cannel routing with 3-terminal nets is NP-complete, thereby improving
a result from (Sarrafzadeh, 1987). In this chapter, basic knowledge of proof
techniques for NP-complete problems (reduction) is assumed to be familiar to
the reader. For an introduction to NP-completeness, see (Garey et al., 1979).
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11 On the Complexity of Routing in VLSI-Circuits

Figure 11.1: A knock-knee. Two nets bend at a grid vertex.

11.2 The Channel Routing Problem

The channel routing problem arises in the design process of VLSI circuits. A
channel is a rectangular grid with top and bottom boundaries. Terminals are grid
points located on the upper or lower boundary of the grid, and must be connected
via wires. A k-terminal net is a set of k£ such terminals. The channel-routing
problem can be described as follows: For a set of nets, find a set of edge-disjoint
subgraphs of the grid connecting the terminals of each net, while minimizing
the number of horizontal lines (tracks). Often, the number of terminals of the
nets is restricted. The routing models mostly considered in the literature are
Knock-knee routing (see, e.g. (Kuchem et al., 1996)) and Manhattan routing
(see, e.g. (Middendorf, 1996)). A knock-knee is shown in Figure 11.1. At a
knock-knee, two nets bend at a grid-vertex. Such a routing is allowed in the
knock-knee model, but not in the Manhattan model. This paper is concerned
with knock-knee routing. Middendorf showed that Manhattan channel-routing
is NP-complete for 2-terminal nets even if all nets are single sided (i. e. both
terminals of a net are either on the top or on the bottom boundary) and the
bottom nets have density one (Middendorf, 1996). The proof of Middendorf also
inspired the proof of the result in this paper. Hence Manhattan routing is harder
than knock-knee routing (unless P = N P), since it is well known that knock-knee
routing is solvable in polynomial time if only 2-terminal nets are involved (Frank,
82), (Formann et al., 1993). On the other hand, it was shown that knock-knee
channel routing with 5-terminal nets is NP-complete (Sarrafzadeh, 1987), too.
This paper closes the gap left open by these results by showing that knock-knee
channel-routing is NP-complete for 3-terminal nets.

We start by introducing some notation and another channel routing problem
in Section 11.3. In Section 11.4, it is shown that this problem is NP-complete.
This result can be used directly to show the main result of the paper.

11.3 Preliminaries
In contrast to a channel described in Section 11.2, a channel with a right boundary

is a rectilinear grid that has boundaries at three sides, the top boundary, the
bottom boundary and the right boundary. The horizontal grid lines between top
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Figure 11.2: Two possible routings for supernets N as given in Example 11.3.1.

and bottom boundaries are called tracks. They are numbered 1,...,k from the
top track to the bottom track. The vertical grid lines are numbered from left to
right, with the right boundary at the vertical line p.

A terminal is defined by a grid point on the boundary. No two terminals can
be on the same grid point. In this model, terminals on the right boundary are
movable in the vertical direction, i. e. if a terminal is specified to lie on the right
boundary, the horizontal position can be chosen freely. We write ¢; for a terminal
that lies on the i-th vertical line and the top boundary, b; for a terminal that lies
on the i-th vertical line and the bottom boundary (for i € {1,...,p— 1} and r
for a terminal that lies on the right boundary.

A n-terminal net n is a n-tuple of different terminals n = (a4, ..., a,) where a;
is on a vertical line smaller or equal to the vertical line of a;,1 fori =1,...,n—1
(i.e. a; € {ty,, byr;,r}, 1 < try <trizy < p—1, and a; # r for i < n). We say
that a net n = (as, ..., ay,) has its first (respectively last) terminal at vertical line
[ if a; (respectively a,) is a terminal at vertical line /. We will often use the term
“net” for a n-terminal net and omit the prefix. All nets considered in this paper
are at most 3-terminal nets.

A supernet N is a set of nets where at most one net 7 in the set has a terminal at
the right boundary. We say that a supernet N terminates on the right boundary
if and only if there exists a net in N that has a terminal on the right boundary.
A supernet N is a n-terminal supernet if all its nets are at most n-terminal nets.

Let NV be a set of supernets for a channel with & tracks and a right boundary at
vertical line p. A routing for N is an arrangement of routing paths in the channel
for all the nets contained in the supernets in A/ with respect to the knock-knee
model.

Example 11.3.1 A channel with three tracks and a right boundary at vertical
line 5 is given. Consider the set N = {Na, Ng, Nc} of supernets where Ny =

{na,na} withna = {t1,t2} and n)y = {bs, ta,7}, N = {ns, n} with ng = {b1, 13}
and nlg = {be,r}, and N¢ = {nc} with nc = {bs,r}. In Figure 11.2, two possible
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11 On the Complexity of Routing in VLSI-Circuits

routings for N in this channel are shown.

We can now formulate our problem.
Definition 11.3.1 (knock-knee channel routing with right boundary)

Instance Given a triple I = (k,p,N') with integers k,p and a set N =
{N1, Ny, ..., N} of k 8-terminal supernets for a channel with k tracks and
a right boundary at column p.

Question Is there a routing for 17

We refer to this problem as KKRB.

The segment between two vertical lines ¢ and ¢ + 1 is called column i~ or
(1+1). For an instance of KKRB, the density of a column ¢~ (local density) is
the number of nets with at least one terminal to the left (including vertical line
i) and at least one terminal to the right (including vertical line ¢ 4+ 1) of column
i. The density d of the instance (global density) is the maximum of all local
densities.

For some routing R, we say that the net 7 is on track ¢ in column 57 if track ¢
is used by net 1 in column 5 — in R. Note that a net may use several tracks in a
column. We say that a supernet N is on track ¢ in column j7 if some net n € N
is routed on track 7 in column ;7. Furthermore, we say that a net n changes its
track at vertical line [ if 7 is on some track ¢ in column / <— and 7 is on some track
j # 1 in column [ —. We give some easy but useful observations on knock-knee
channel-routings.

Observation 11.3.1 Consider a knock-knee channel routing with k tracks. Let
[ be a vertical line in this channel (see Figure 11.3). If columns | < and | —
have density k,

a and no net has its last terminal at [, then no net changes its track at .

b a net my has a top terminal, and a net ny # n1 has a bottom terminal at | and
neither ny nor ny has a last terminal at [, then 1y is routed at a track t; in
columns | < and | — and 1y is routed at a track to in columns | < and [ —
with t1 < ts.

Proof: 'To show Observation 11.3.1a, suppose that a net n is on some track t; in
column [ +— and on some track ¢y in column [ — with ¢; # t5 (see Figure 11.3a).
Suppose that ¢35 > t;. Because both columns have full density, n uses exactly
one horizontal grid edge in each of these columns. Hence, 7 uses the vertical grid
edges between t; and t,. Hence, all nets that are below ¢35 in column [ <, are
on tracks below ¢, in column [ —. Denote with n' the net that is on track ¢, in
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Figure 11.3: Three situations in a channel with full density around /. a) The situation
of Observation 1. The given routing of 7 leads to a contradiction. b) The situation of
Observation 3a. 7; is routed above 7y at columns / < and [ — in any routing.

column [ <—. If n has a bottom terminal at vertical line [, there is no way to route
n'. If » has no bottom terminal at [, ' is routed at some track below ¢,. Then
there are k — t5 + 1 nets routed below 9, but only k& — ¢y tracks below ¢,. This
leads to a contradiction. The proof for t, < t; is similar.

The situation of Observation 11.3.1b is shown in Figure 11.3b. In column [/ «,
7y is on track t; and 7 is on track t5. Because of the full density, both nets
use exactly one horizontal grid edge in [ <— and exactly one in [ —. Because
of Observation 11.3.1a, these nets do not change their tracks at [. Hence, the
vertical grid edges from ¢; to the top boundary and from ¢, to the bottom
boundary are used by 7; and 7, and it follow that ¢; < 5. |

Let R be a routing for an instance I = (k,p,{Ny,..., Nx}) of KKRB. For
some column ¢, let N¢ be the set of nets that are routed in column ¢ by R
i.e. N° = {nln € UL, N; and 7 is routed in column ¢ by R}. On each column
c of I with full density, we define a function 7%, : N — {1,...,k}, such that
for some n € N¢, tr$(n) is the index of the track where 7 is routed in column
c of routing R. We omit the column in the superscript if ¢ is the last column
of I (i. e. the column to the left of the right boundary of I). The function is
defined in a similar manner for supernets of I. For some column ¢, let N¢ be
the set of supernets that are routed in column ¢ by R. On each column ¢ of [
with full density, we define a function tr$ : N — {1,...,k}, such that for some
N € N¢, tr(N) = min{tr$(n)|n € Nand n routed in column ¢ by R}. We take
the minimum of because in our definition, a supernet could have several nets with
terminals to both sides of a given column. However, we will avoid such situations
in this chapter.

For some routing R of an instance I of KKRB we say that a net n makes a
detour in column p — if eta uses at least two horizontal grid-edges in column p —
and either 1 has no terminal to the right of p — (including vertical line p + 1)
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Figure 11.4: A channel portion described in Observation 11.3.2. Exactly one of the
nets n4,np makes a detour to the left at vertical line p. In the left figure np makes this
detour, in the right figure 74 makes this detour.

or no terminal to the left of p — (including vertical line p). In the former case
we also say that n makes a detour to the right at vertical line p and in the latter
case we also say that 7 makes a detour to the left at vertical line p 4+ 1. In the
left figure of Figure 11.4 ng makes a detour to the left at vertical line p.

Observation 11.3.2 Consider an instance I = (k,q,N') of KKRB with two nets
of the following form: For 3 < p < g — 2 and terminals a,b at vertical lines to
the right of p+ 1, let na = (bp, tp+1,a) and ng = (t,, byt1,b). Furthermore let the
density of p < be k — 2 and the densities of p — and (p+ 1) — be k (see Figure
11.4). For any routing R for I it holds that

a trg™7 () > triy V7 (),
b at vertical line p, exactly one of the nets na,ng makes a detour to the left and
no other net makes a detour in column p <, and

Proof: From Observation 11.3.1b it follows that trgp —(na) =
tre(p+1) =(na) < trr(p+1) =(ng) = trgp —(ns) which implies Obser-
vation 11.3.2a. Since the density of p — is k, each of these nets uses exactly
one horizontal grid-edge in this column and none makes a detour to the right.
Suppose that none makes a detour to the left. Then the vertical grid-edges
between trgp —(n4) and trgp —(np) are used by both nets which contradicts
the definition of a layout. Hence, at least one of the nets makes a detour to the
left. Since the density at column p < is £ — 2 and this net uses two horizontal
gird-edges at this column, £ horizontal grid-edges are used and no other net in 1
makes a detour at column p <— which shows Observation 11.3.2b. |

Let I = (k,p, N') be an instance of KKRB. An extension of [ is an instance I’ =
(k,q,N") with ¢ > p and N' = {Nj, N}, ..., N;} such that for all ¢ € {1,...,k},
the following holds:
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Figure 11.5: A routing for extension I’ of Example 11.3.2.

1. For all nets of the form (ay, . . ., a,) without a terminal on the right boundary
(i. e. a, # r), we have (a1,...,a,) € N; = (a1,...,a,) € N

2. If N; contains a net of the form (ay,...,a,-1,7), then N/ contains a net of
the form (a1,...,a,_1,b) where b is a terminal on any of the three bound-
aries.

To avoid cumbersome notation, we will denote the set of supernets for an
instance I of KKRB and an extension I’ of I with the same character. The
same will be done for the corresponding supernets and the corresponding nets
contained in the supernets.

Example 11.3.2 Consider an instance I = {3,5,N'} of KKRB where N is
identical to the one defined in Erample 11.3.1. Let I' = {3,8, N} where
N = {N4,Ng,N¢c}, Ng and N¢c are defined as in Example 11.8.1, and Ny =
{na, 'y, s} with na = {t1,t2}, 0y = {bs,ts,t6}, and 1y = {t7,b7,7}. I' is an
extension of I. In Figure 11.5, a routing for 1' is shown.

With the help of extensions, we will force specific properties for the routing of
some supernets, e.g. that a supernet is routed above another one in any routing.
We will want that in any routing, specific nets do not change their track within
the portion of the channel added by an extension. This leads to the following
definition. An extension I' = (k,q, N') of an instance I = (k,p,N) is M-safe
for I, M C N if for every routing for I’ and each N € M the supernet N is on
track ¢ in column ¢ if and only if N is on track ¢ in column p*.

Consider an instance I of KKRB with supernets A and B that terminate on
the right boundary. The following lemma states that there exists an extension I’
that enforces B to be routed below A on the right boundary.

Lemma 11.3.3 Let I = (k,p, N') be an instance of KKRB where all k supernets
in N terminate on the right boundary. Then, for each two different supernets
A, B € N, there exists an extension I' = (k,p+ 4, N') of I such that:
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Figure 11.6: A layout for the supernets A = {n4,n,} and B = {np,nz} in two
extensions. Note that A is routed on a track above B at column < in any routing.
a) In this extension, A is routed above B on the right boundary. b) In this extension,
A is routed below B on the right boundary. Note that in (b), simply the net 7/, is
exchanged with the net 7.

1. all supernets in I' terminate on the right boundary,

2. there exist a routing R' for I' if and only if there exists a routing R for I
with trg(B) > trr(A).

3. If there exists a routing R' for I', then R' has the following properties:

(a) trrp/(B) > trp(A)
(b) trw(B) < tr (B)
(c) tre(A) > tri (A).

4. If in some routing R' for I' trp(A) = triy (A) and trp(B) = trh, (B),
then for each supernet N € N it holds that trp (N) = triy (N).

Proof: Let N of I' be such that the supernets in N’ — {B, A} are not modified
(note that supernets that terminate on the right boundary of I now terminate
on the right boundary of I'). The supernets B and A are modified as shown in
Figure 11.6a: The right boundary terminal net (a, as,7) in B is replaced by a
net ng = (a1, as, byy1). Furthermore we add a 3-terminal net 7%y = (tp42, bpis,7)
to B. The right boundary terminal net (a;,as,r) in A is replaced by a net
na = (a1, as,tpt1). Furthermore we add a 3-terminal net 7y = (by42,tpy3,7) tO
A. By construction, Condition 1 holds.

The layout of Figure 11.6a proves that there is a layout for I’ if the Condition
2 is met. Furthermore, this routing satisfies Condition 3. The equalities can be
achieved by setting t4 = t/y and tp = t%z. Note that there is no terminal at
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vertical line p by definition of an instance of KKRB. Hence, no net changes its
track at p.

We show that such a layout exists only if Conditions 2 and 3 are met. Clearly,
there is no routing for I’ if there is no routing for I. Denote the track of 14 in
column p — with ¢4 and the track of ng in column p — with ¢g. Furthermore,
denote the track of 7, in column (p + 3) — with #, and the track of 5% in
column (p+ 3) — with ¢;. The local densities of the instance are given in Figure
11.6a. By Observation 11.3.1b, t/; < t; follows. Hence Condition 3a holds for
any routing for I'. Furthermore, trgfrz)_)(n;‘) =t <th= trg,”)_)(ng) for any
routing for R’ for I’ by Observation 11.3.1b.

By Observation 11.3.2, a net nmip: € {1y, np} makes a detour to the left at
vertical line p 4+ 1 and neither n4 nor ng makes a detour to the right at vertical
line p. Furthermore by the full density in column p —, m.p uses all vertical
grid-edges between its horizontal grid-edges in (p + 1) — at vertical line p + 1.
It follows that in any routing it holds that t4 < t/y < t3 < tp. This shows
Conditions 2 and 3.

Consider a routing R’ with trgp(4) = trh (A) and trg/(B) = trh (B).
Proposition 4 holds for these supernets by definition. Suppose that 7} makes
the detour at vertical line p + 2. Then 7/, makes no detour, is on track ¢4 in
column (p + 2) — and uses all vertical grid-edges below ¢4 at vertical line p + 2.
Furthermore 7, uses all vertical grid-edges above ¢4, a horizontal grid-edges at
ta and tp in (p + 2) < and all vertical grid-edges between. Hence all vertical
grid-edges are used at vertical lines p 4+ 1 and p + 2 and no net changes its track
at these vertical lines. Furthermore no net changes its track at vertical line p + 3
by Observation 11.3.1a. |

Remark 11.3.4 From Conditions 8 and 4 it follows that if trr(B) = trr(A) +1
in any routing R for I, then I' is N-safe for I. In other words, if one understands

the extension merely as some part of the channel, then under these conditions,
for all routings R and supernets N € N it holds that tr®™(N) = tr2<(N).

The following lemma is very similar to Lemma 11.3.3. The difference in the
extension is, that we enforce that A and B change their order within the extension,
1. e. A is routed below B after the extension.

Lemma 11.3.5 Let I = (k,p, N') be an instance of KKRB where all k supernets

in N terminate on the right boundary. Then, for each two different supernets
A, B € N, there exists an extension I' = (k,p+ 4, N') of I such that:

1. all supernets in I' terminate on the right boundary,
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2. there exist a routing R' for I' if and only if there exists a routing R for I
with trr(B) > trr(A).

3. If there exists a routing R’ for I', then R’ has the following properties:

(a) trr/(B) < trg/(A)
(b) trrp/(A) < tri (B)
(c) trr/(B) > trh (A).

4. If in some routing R' for I', trp (A) = trh (B) and , trp(B) = trh, (A)
then for each supernet N € N'— {A, B, } it holds that trg/(N) = trhy (N).

Proof: Let N of I' be such that the supernets in N’ — { B, A} are not modified.
The supernets B and A are modified as shown in Figure 11.6b: The right
boundary terminal net (a1, as,7) in B is replaced by a net ng = (a1, ag, byt1).
Furthermore we add a 3-terminal net 7 = (bpi2,tpts,7) to B. The right
boundary terminal net (ai,as,7) in A is replaced by a net na = (a1, az,tp+1).
Furthermore we add a 3-terminal net 1y = (tp42, by13,7) to A. By construction,
Condition 1 holds. Note that with respect to the extension of Lemma 11.3.3, we
simply exchanged the nets 7%z and 7/,. Simply by exchanging n% with 7/, in the
proof of Lemma 11.3.3, Conditions 2 and 3 can be shown. This is also true for
Proposition 4 as long as the nets in N’ — { A, B} are concerned. Note that in this
case, A and B exchange their tracks within the extension which follows easily
from the previous conditions on any routing R’ for I'. |

Remark 11.3.6 From Conditions 8 and 4 it follows that if trr(B) = trr(A) +1
in any routing R for I, then I' is N — {A, B}-safe for I.

As a consequence of Lemma 11.3.3, we can enforce a particular order of super-
nets on the right boundary.

Lemma 11.3.7 For each k, there is an instance I = (k,p,N') of KKRB such
that:

1. all k supernets terminate on the right boundary, and

2. In every routing for I, supernet N; terminates on track i on the right bound-
ary.

Proof: Define an instance Iy = (k,k + 1,N) of KKRB where N; = {(t;,7)}.
Any order of the supernets on the right boundary can be routed in this instance.
Now we extend [ several times using the extension of Lemma 11.3.3. We will
use k — 1 extension steps, where the ith step extends [; ; to I; (i=1,...,k—1).
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Grid of | 0 N k—>N k-1 N k-1 —>N k=2 N i ->N -1 N 2—>N 1
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Figure 11.7: An instance I ; of KKRB where N; terminates on track i in any
routing. This is done with the extensions of Lemma 11.3.3. We divide the grid of I, ;
into k regions.

In the ith step, we enforce that Ny_;;; is below (higher track-index) Ny_; on the
right boundary in any routing. For convenience, we divide the grid of I, ; into k
regions called Gy and Gy, ..., Gy (see Figure 11.7). Gy is the grid defined by I,
and G is the portion that was added by the (k + 1 — 7)-th extension'. We show
that in I ; (the last extension in our construction), N; is at track 7 in the first
column of G;.

We show by induction on 7 that the supernet /N; is on a track with index ¢ or
higher in the first column of G;. This serves as the induction hypothesis. Clearly,
N; cannot be on a track with a lower index than 1 which proves the induction
basis. Suppose that for some i € {2,...,k}, N; is on some track ¢y < ¢ in the first
column of G; (and therefore in the last column of G; ;). It follows by Lemma
11.3.3 that in the last column of G;, N;_; is on a track t; < ty < 7 — 1. Hence,
N,_1 is on a track ¢t; < 72— 1 in the first column of G;_;, which is a contradiction.

We show by induction on the extensions and by the properties given in Lemma
11.3.3 that for 4 = 2,..., k, in any routing, /V; is on a track with an index lower
than or equal to ¢ in the first column of G;. Clearly, N, cannot be on a track
with index larger than £ in the first column of G which is our induction basis.
Note that the basis is at k£ and we conclude from ¢ to 7 + 1 in the induction step.
Suppose the N; is on a track ¢, > ¢ in the first column of ;. In the last column
of G;11, N; is on track ty. It follows from Lemma 11.3.3 that V;;; is on a track
t; > to > 1+ 1 in the first column of G;,; which is a contradiction.

Now, consider a region G; with i € {2,...,k — 1}. In the first column of this
region, NN; is routed at track ¢ and in the first column of G;;1, N;11 is routed
at track 7 + 1. By Lemma 11.3.3, G;;; is also routed at track 2 4+ 1 in the first
column of G;. By Remark 11.3.4, the track of N in the first column of G; is the
same as the track of N in the last column of G; for all nets N € N. It follows
that N; is on track ¢ on the right boundary of I. |

1@, spans the columns (6k + 1 — 5i) — to (6k — 5(i — 1)) — fori =2,...,k.
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We will need another type of extension. In Lemma 11.3.7, we used the exten-
sion of Lemma 11.3.3 to enforce a particular order on the right boundary of the
channel. But Lemma 11.3.3 cannot be used to enforce a supernet to be above
another one without an influence on the other supernets in the channel. We use
a trick to get a similar result. For each net NN;, introduce another net N;, which
we will call the shadownet of N;. Typically, N; will be on a neighboring track of
N;. We say that a supernet N is a shadownet of N in an instance I of KKRB, if

in every routing R for I, it holds that trg(N) = trgr(N) + 1.

We say that an instance I of KKRB is (A, B)-mutable for two supernets A, B,
if for any routing R for I there is a routing R’ for I, such that A and B change
their tracks with respect to R on the right boundary. More formally, an instance
I = (k,p,N) of KKRB is (A, B)-mutable for two supernets A, B € N, if the
following holds:

e If Risarouting for I, then there exists a routing R’ for I such that trp (A) =
trr(B) and trg (B) = trg(A).

Lemma 11.3.8 Let I = (k,p, N') be an instance of KKRB where all k super-
nets in N terminate on the right boundary. Then, for each four different nets
A, A B,B € N where A is a shadownet of A and B is a shadownet of B in I,
there exists an extension I' = (k,p+ 11, N') of I such that:

1. all supernets in I' terminate on the right boundary,

2. a routing exists for I' if and only if a routing R exists for I with trgp(A) <
tT’R(B),

3. I' is (A, B)-mutable,
4. T' is N — {A, A, B, B}-safe for I, and
5. A is a shadownet of A in I' and B is a shadownet of B in I'.

Proof: The supernets A, A ,B and B are extended as shown in Figure 11.8. The
nets 74 and 7'y belong to supernet A, the nets g and 73 belong to supernet B,
gle nets n4 and n'z belong to supernet A, and the nets 7z, 77’§ belong to supernet
B. Other supernets are not altered. Condition 1 is true by construction. First we
extend I by exchanging the tracks of B and B. Since these nets are shadownets,
this step is N' — {B, B}-safe for I and the right boundary is at vertical line
g = p + 4 after this extension. Clearly, the relative order of A and B does not
change by this extension.

In order to simplify the notation, we will introduce the following abbreviations:
For a routing R’ of I' and a supernet N € {A, B, A, B} we write ty for tr%,’(N)
and t%y for trp (V). Note that in this notational convention, ¢y corresponds to
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Figure 11.8: The shuffle-check extension and a possible routing.

the track of ny at column ¢ — and ¢, corresponds to the track of 77y at column
(¢+6) —. First, consider the columns (¢+3) —,...,(¢g+6) —. This part of the
channel is very similar to the extension of Lemma 11.3.3. We can show that

! /!
o iz>1p,

e there is no routing R’ such that ¢\t~ (B) > ¢t~ (4), and
e if in any routing R, tr'¢"7(A) = t{4"¥7 (B) + 1, then no net except 7,
ns and 7 changes its track in these columns.

This can be easily shown by replacing the names of the respective nets in the
proof of Lemma 11.3.3.

Now consider the columns ¢ —, ..., (¢ + 3) —. This is also a similar channel-
portion to the one in Lemma 11.3.3. So, tg > t4 in any routing for I’. There exists
a routing under this condition, as shown in Figure 11.8. This shows Condition 2.
No net can change its track at vertical line ¢ + 3 by Observation 11.3.1a. Hence,
in any routing 73 is on a track above 7y at column (¢ + 2) —. Furthermore,
by Observation 11.3.2, one of the nets of 7’y and 7}y makes a detour to the left
at vertical line ¢ + 2, and this detour uses exactly two horizontal grid-edges at
column (¢ + 1) —. We denote the upper horizontal grid-edge with ¢, and the
lower one with #;. Because of the full density at column ¢ —, this detour uses
the vertical grid-edges between ¢, and ¢;. By Observation 11.3.2b, neither n4 nor
np makes a detour at vertical line ¢ + 1. Hence, t4 < t, < t; < tg holds for any
routing.

Claim 11.3.1 In any routing for I', it holds that t, € {ta,t5} and t; € {tp,t3}.
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Figure 11.9: Four possible routings in columns ¢ —,...,(q + 2) — of the shuffle-
check extension. We distinct three cases depending on the tracks that the detour uses
at column (¢ + 1) —. a) Tracks ¢4 and tp are used and 7j,, , makes the detour. b)
The same tracks as in (a) are used and 7/, makes the detour. ¢) Tracks t4 and tpara
are used. d) Tracks tp and tp,p are used.

Proof(Claim 11.3.1):  Suppose that t; < t, < tg. Since the vertical grid-edges
between ¢, and ?; are used by the detour, n; is on a track above ¢, and 7z is on a
track below #;at column (¢ + 1) —. Furthermore, 7% uses the vertical grid-edges
above t,, at vertical line ¢ + 2 (no more detour is possible for 7';). Hence, 74 is
above ng in column (¢ 4+ 2) — which leads to a contradiction since there is no
routing for this case. Hence, only the tracks ¢4 and ¢z remain for ¢,. A similar
argument shows that ¢, € {tp,t5}. |

By Claim 11.3.1, there are three cases to consider (by definition ¢, < ¢)):

Case 1: t, =t4 and t; = tg. Suppose that 1’y makes the detour at vertical line
q + 2 (see Figure 11.9a). No net of 4 and 1y changes its track at vertical
line ¢ + 1. Since at vertical line ¢ 4 2, 74 cannot change to a track below
ng, Ny changes to track t4 in order to be above ny at column (¢ + 2) —.
Since 77, is routed above 7’ at columns (¢ +2) —, (¢ +3) —, and the only
possible horizontal grid-edge in this column above 7 is at track tg, 7, is
routed on track ¢z at columns (¢ +2) —, (¢+ 3) —. Hence, at vertical line
q+3, 1y is on track ¢tz and 7/; is on track ¢p. Furthermore, at this column,
ng is on track ¢4 and 74 is on track t4. It follows that in this case, t}; = ta4,
t> = tz, Uy =t and 15 = tp and the extension is safe for all nets without
a terminal in the extended area.

Suppose that 77[2 makes the detour at vertical line ¢ + 2 (see Figure 11.9b).
By similar arguments, one can prove the tracks of the nets at column (g +
3) — as shown in Figure 11.9b. It follows that in this case, ty = t5, t'; = t5,
s = ta and - = ¢ and the extension is safe for all nets without a terminal
in the extended area.
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Case 2: t, =t4 and t; = tg. 1y uses all vertical grid-edges below 'y and hence
no net can change its track at vertical line ¢ + 2 (see Figure 11.9¢). ngm
cannot change to a track above 777 at vertical line ¢ 4+ 1. Hence 775 changes
to track ¢p at ¢ + 1. Hence, at vertical line ¢ + 3, 7/, is on track tz and n’;
is on track tp. Furthermore, at this column, 73 is on track ¢4 and 74 is on
track ¢ 4. It follows that in this case, ty = t4, t5 =14, t)y =tz and t7. = tp
and the extension is safe for all nets without a terminal in the extended
area.

Case 3: t, =tz and t; = . 7, uses all vertical grid-edges above ¢}z and hence
no net can change its track at vertical line ¢ + 2 (see Figure 11.9d). n4
cannot change to a track below 75 at vertical line ¢ + 1. Hence 75 changes
to track t4 at ¢ + 1. Hence, the supernets are on tracks given at Figure
11.9d. It follows that in this case, ty = t7, t5 = tp, t)y = ta and t = I3
and the extension is safe for all nets without a terminal in the extended
area.

We call this extension a shuffle-check extension. We use this extension in two
different ways. We can use Condition 2 of the lemma to enforce that A is routed
above B in column p < of I’. In this case we need to take care of Condition 3 since
as a side-effect of the extension, supernets A and B together with their shadownets
may change their tracks. In this case we denote a shuffle-check extension for
supernets A and B with A < B.

On the other hand, we can use Condition 3 to make two routings for A and B
possible. Namely that A and B stay on their track or that A exchanges its track
with B. In this case we need to take care that there is a routing such that A is
routed above B in column p <. In this case we indicate the aim of the extension
by labeling the symbol for the check-shuffle extension with “shuff” as shown in
Figure 11.8.

Note that in any of the extensions introduced, nets with a right boundary are at
most 3-terminal nets. Furthermore, if we introduce a last terminal in a net in an
extension, no other terminal is introduced for that net in this extension. Hence,
by starting with a net of the type described in Lemma 11.3.7 and extending this
net with one of the extensions introduced in this Section, at most 3-terminal nets
are used in the resulting instance.

11.4 The Main Theorem

We show that KKRB is NP-complete by reducing a known NP-complete problem
to it. This result will be used to prove the complexity of knock-knee channel
routing with 3-terminal nets.

113



11 On the Complexity of Routing in VLSI-Circuits

Theorem 11.4.1 KKRB is NP-complete.

Proof: A nondeterministic algorithm can guess a routing and check if it is valid.
If yes, output “yes”, otherwise output “no”. This can be done in polynomial
time with the number of tracks and columns. So, the problem is in NP. To
prove the completeness for NP, we reduce the exactly-one-in-three 3SAT problem
to KKRB. Let a set C = {C},Cs,...,C,} of clauses, each of size 3 over a set
Y = {vy,ve,...,v,} of variables, be an instance of exactly-one-in-three 3SAT.
Without loss of generality, we can assume that no clause contains a negated
literal (this restriction is known to be NP-complete (Garey et al., 1979)). The
exactly-one-in-three 3SAT problem asks whether there is a truth assignment of
the variables in ¥ such that each clause in C contains exactly one true literal.

The idea of the proof is as follows. We begin by constructing an instance
of KKRB. We divide the tracks of the channel into five consecutive groups
G1,...,G5. Tracks in G; are above tracks in G, for i € {1,...,4}. For each
clause C; = {vp, v, v;}, we introduce three supernets Vi, Vi and V;-l that termi-
nate on tracks in group G5 on the right boundary in every routing. Furthermore,
for each variable v; we introduce two supernets H; and L; that terminate on tracks
in group G5 on the right boundary in every routing. Then we extend our instance
and enforce that for each variable v;, either H; changes to a track in group G, or
L; changes to a track in G5. This will give us a truth assignment for the variables.
Furthermore, we force all supernets of the form V;' to change to a track of group
G, if and only if for the corresponding variable v; the supernet L; is on a track in
group Gs. In addition we require that exactly one of the three supernets V}, V}/,
and V;-l for a clause C) will change to a track in group G4. Thus, there will be a
routing if and only if there exists a truth assignment for the variables satisfying
C.

We formalize these ideas. Let £ = 8n + 10m be the number of tracks. Recall
that n is the number of variables and m is the number of clauses in the re-
duced problem. We divide the channel into the five groups G, = {track i|i €
{1,...,2n}}, Gy = {trackili € {2n+1,...,2n + 6m}}, G5 = {track ili €
{2n+6m+1,...,6n+6m}}, Gy = {track i|i € {6n +6m +1,...,6n + 10m}},
and G = {track i|i € {6n+10m+1,...,8n+10m}}. We construct an instance
Iy = (k,po, N') of KKRB that sorts the supernets based on Lemma 11.3.7 as
follows:

1. For each variable v;, i € _{1, . il}, there is a set V; consisting of 8 supernets
Vi = {4, Ai, By, By, Ly, Li, Hy, Hi}

2. For each clause C; = {wp,v;,v,}, | € {1,...,m}, there is a set C; of 10
supernets C; = {Vhl,Vil, %l,vl. 1% V;,XZ,YZ,YE,Vl}

Vo

Now we set N = Uiy iy ViU Ueq, . my G- Lo = (k,po, N) is constructed
such that there exists a routing for I if and only if the supernets in A/ terminate
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with a net on the right boundary in the following ways:

1. For each variable v;, i € {1,...,n}, the terminals on the right boundary for
the supernets are as follows:

(a) A;, A; are in this order on neighboring tracks in G; (more precisely,
they are on tracks 2i — 1 and 2i).

(b) L;, L;, H;, H; are in this order on neighboring tracks in G5 (more
precisely, they are on tracks 2n + 6m + 47 — 3, 2n + 6m + 41 — 2,
2n 4+ 6m + 4i — 1 and 2n + 6m + 41).

(¢c) B;, B; are in this order on neighboring tracks in G5 (more precisely,
they are on tracks 6n + 10m + 2i — 1 and 6n + 10m + 2i).

2. For each Clause C; = {vy,v;, v}, L € {1,...,m}, h <i < j, the terminals
on the right boundary for the supernets are as follows:
(a) V,f,VZ,W,Vﬁ,V},V; are in this order on neighboring tracks in G,
(more precisely, they are on tracks 2n+ 61— 5, 2n+ 61 —4, 2n+ 61 — 3,
2n + 6l — 2, 2n+ 6l — 1 and 2n + 61)

(b) X;, X;, Y}, Y; are in this order on neighboring tracks in G4 (more
precisely, they are on tracks 6n 4+ 6m + 41 — 3, 6n + 6m + 4l — 2,
6n + 6m + 41 — 1 and 6n + 6m + 41).

We extend our instance I, step by step, in such a manner that we can fix a
truth assignment for the variables in . One extension step is performed for each
variable. Let I; = (k,p;,N') be the extended instance after the ith extension.
The effect of the 7th extension is that there is a routing for the extended instance
I; if and only if either supernet L; and H; terminate on tracks in G; and G3 on
the right boundary, or L; and H; terminate on a tracks in G3 and G5 on the right
boundary. In the first case, we assign false to variable v;. In the latter case, we
assign true to variable v;. The extension I; consists of four sub-extensions I;,
to I; 4 and is shown in Figure 11.10 (shadownets are not shown). For notational
simplicity, we denote the portion of the channel added by extension I; ; with D; ;
(te{1,...,n},j €{1,...,4}), as shown in Figure 11.10.

Claim 11.4.1 For alli € {1,...,n} it holds that:
1. Extension I; is (N — V;)-safe for I;_;.
2. All supernets of I; terminate on the right boundary of I;.
3. I; is (L;, H;)-mutable and L;, H; are shadownets of L; and H; respectively.

4. In every routing for I, either
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Figure 11.10: An extension that is used to produce a truth assignment for variable
v; and two possible routings (shadownets are not shown).

(a) exactly one supernet of {L;, H;} terminates on a track in Gy and ex-
actly one of them terminates on a track in G3 on the right boundary,
or

(b) ezxactly one supernet of {L;, H;} terminates on a track in G3 and ex-
actly one of them terminates on a track in G5 on the right boundary.

5. For all cases in Condition 4, there exists such a routing.

Proof(Claim 11.4.1):  Since any sub-extension I; ; of I; is N —V;-safe for I; ; 4
respectively I,_,, I; is N' — V;-safe for I,_;. By construction, all supernets of I;
terminate with a 2- or 3-terminal net on the right boundary of I;. By construction
of D; 4, I; is (L;, H;)-mutable and L;, H; are shadownets of L; and H; respectively.

By construction of I;_;, the arrangements of the supernets in the last column
of I;_; is as given in Figure 11.10. A; is on a track in GG;, L; is on a track above
H; in (G5, and B; is on a track in G5.

By Lemma 11.3.8, I;; is N' — {4;, A;, H;, H;}-safe for I,_;, and we have to
consider two types of routings: whether A; changes its track with H; within D; ;.
Suppose that A; does not change its track with H; within D;; (upper figure in
Figure 11.10). Then, there exists no routing such that L; stays on its track within
D, 5 (otherwise L; would be above H; in the first column of G; 4 and hence there
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Figure 11.11: An extension that forces that exactly one supernet out of V}f, Vil, and
V}l to a track in G4. The interpretation is, that this variable is true.

is no routing for I; by Lemma 11.3.8). Hence L; change its track with B; within
D, 3 and in this case, L; and H; are on tracks in G5 U G5 in the first column of
D, and H; is on a track above L;. By definition of extension I; 4, this holds for
the right boundary of ;.

Suppose that A; changes its track with H; within D;; (lower figure in
Figure 11.10). Then, if B; changes its track with L; within D;,, B; is above
A; in the first column of D;4. It follows by Lemma 11.3.8, that there is
no such routing for I;. Hence, A; does not change its track with L; in the
second extension, and L;, H; are on tracks of G3UG} on the right boundary of 7;. B

Now, we extend our instance I, step by step in such a way that we can choose
exactly one true variable in each clause. One extension step is performed for each
clause. Let I,,; be the instance after the [th extension step. The effect of the
[th extension step will be that there is a routing for [,,,; if and only if exactly
one of the three supernets V), V!, V/ changes to a track in G,. The extension
I,,4; is given in Figure 11.11 (shadownets are not shown). I, consists of four
sub-extensions I,y 1, ..., n4+14, and we denote the portion of the cannel added
by extension I,,1;; with D, ; (I € {1,...,m},j € {1,...,4}).

Claim 11.4.2 For each clause C; = {vp, v;,v;} € C, the following holds:
1. Eztension I, is N — C;-safe for I, 1.
2. All supernets of I, terminate on the right boundary of I;.

3. In each routing for I, exactly one of the three supernets Vi\, Vi, or le
terminates on a track in G4, and the other two terminate on a track in Go

on the right boundary. Furthermore in I, Vﬁl, Vﬁ, and Vz- are shadownets
of VL, V! and le respectively .
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FORi=1TOn
FOR all [ with v; € C
check V! < L;
check H; < Vil
END
check H; < L;
END

Algorithm 1: The algorithm to extend I,, + m to I. We check if all V; of clauses
C; with variable v; are routed between H; and L;.

4. For all cases in Condition 4, there exists such a routing.

Proof(Claim 11.4.2):  Since any sub-extension Iy, ; of Iy is {N — C;}-safe
for I,y ;1 respectively I, 1, T4 is N — V;-safe for I, ;. By construction, all
supernets of I; terminate on the right boundary of I; and shadownets terminate
beside their respective supernets on the right boundary. By construction of 1,,,; 1,
the arrangements of the supernets in the last column of 1,,,;_; is as given in Figure
11.11. V}},V}!, and V] are on a track in G, X; and Y] are in this order on tracks
in G4. We show that in any routing for I,,;, ¥; changes its track to a track in
Go within Dy, 1, Dy 9, or Dy 3. Suppose that Y; does not change its track in
one of these channel portions. Then, Y; is below X; in the first column of Dy, 4.
And by Lemma 11.3.8, there is no such routing for I, ;.

Now, suppose that ¥; changes its track with V}! within Dy 111. Then, v} is on
a track in G4 and V! and V/ are on tracks in G in the first column of Dy ;9. By
construction, V) is on a track in G4 and V' and le are on tracks in G5 on the
right boundary of [, ; in any such routing. Furthermore there is a routing for all
the following shuffle-checks and Y] is above X;. Hence, there is a routing in this
case.

Suppose that Y} does not changes its track with V}! within D,,,;;. Then V}! is
on a track in G, on the right boundary of I,,,;, and either Vz-l or V;l is on a track
in GG4. The proof that such routings exist is similar to the previous paragraph. N

To finish our construction for Theorem 11.4.1, we extend the instance I, ,,, =
{k,p, N'} to the instance I = {k,q, N'} in the following way. For each variable v;
check if all supernets V;l of clauses C; with v; € C; are on tracks between H; and
V;. We can do that by successively applying the extension of Lemma 11.3.8 such
that V! < L; and H; < V;!. The exact way to do that is shown in Algorithm 1.
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Claim 11.4.3 A routing R' for I exists if and only if a routing R for I, erists
such that for alli € {1,...,n} and each |l € {1,...,m} with v; € C;, V} is on a
track between the tracks of H; and L; on the right boundary.

Proof(Claim 11.4.3): We first show that there is a routing if the given condition
is met. In this routing, for each i € {1,...,n} there is some h; € {1, 3} such that
H; is on a track in Gy, Vi is on a track in Gy, for all [ with v; € C), and L;
is on a track in Gy 4. This routing is such that in each of the checks V! < L;
and H; < Vi the supernets do not change their tracks. Hence there is a routing

in any of these checks. There is also a routing for the last check, H; < L;.

Now we show that there is no routing if the condition is not met. Suppose
that there is a routing R for I such that there exists some [ € {1,...,m} with
v; € (7 and V;l is not between H; and L;. We consider the first such supernet
that is checked in the channel (the leftmost check. This supernet has minimal
superscript [ for a given 7). Suppose that L;, H; are on tracks of G1, G5 at column
p <. Then, since V! is the first net in the checking of v; that is not between G,
and (G5, L; and H; are on tracks of G; UG, UG5 and Vil is on a track in G4. The
following extension V! < L; demands that L; routed below V}! which leads to a

contradiction. Hence, such a routing does not exist.

Suppose that L;, H; are on tracks of G3, G5 at column p <. Then, L;, H;
are on tracks of G3 U G4 U G5 before the check and V! is on a track of Gy (see
Figure 11.12). If V! does not change its track with L; at the first check V! < L;,
there is no routing for the second check H; < V. Hence, after the second check,
L; is on a track of G5 and H; is on a track of G3 U G4 U (5. If C} is the last
clause that contains v;, by Algorithm 1, a check H; < L; follows which leads to a
contradiction since such a routing does not exist. Suppose that there is another
clause C; with v; € C; that is checked right after the considered extension. V; is
routed on a track above L; because of the check V7 < L;. Hence, V; is on a track
in Gy after this check, but the following H; < V7 demands that V7 is routed on
a track below H; which leads to a contradiction. Hence, such a routing does not
exist. |

It remains to show that there exists a routing for I if and only if there is a
C-satisfying truth assignment for the variables in 3 such that there is exactly one
true literal in each clause.

Suppose that such a truth-assignment exists. Consider the tracks of H;, L; on
the right boundary of I,,.,,. By Claim 11.4.1 and 11.4.21 we can find a routing
for L;, H; such that H; is on a track in (G; and L; is on a track in (G5 for all 7
with v; = false in the truth-assignment and furthermore H; is on a track in Gj
and L; is on a track in G5 for all ¢ with v; = true in the truth-assignment. Since
in each clause exactly one of the variables is true, by Claim 11.4.2 we can find a
routing such that for all 7 € {1,...,n} and all [ with v; € C; V}! is at a track in
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I ' i ) tracksin
GZ

|_i Hi ViHi Hi Hi tracksin
G3, Gy, Gs

Figure 11.12: No routing exists if the truth-assignment of the global variable (done
by L; and H;) does not match the truth assignment of the variables in the clauses (V}}).
A single check is shown for the case that L;, H; are on tracks of G3 U G4 U G5 and V;-l
is on a track in Gs.

G, if v; = false and at a track in G4 if v; = true in the truth-assignment. By
Claim 11.4.3 there is a routing for /.

Suppose that there exists a routing R for I = (k,p, N'). The routing remains
valid for the portion of I,,,,,. Denote this routing of I,,,,, with R,,,,. By Claim
11.4.1 and 11.4.21, H; and L; are either at tracks of G; U G35 or at tracks of
G5 UG5 on the right boundary of I,,,,, in R, ,. In the first case set v; = false,
in the latter set v; = true. Consider this truth-assignment for variables in ¥. By
Claim 11.4.3, for all [ with v; € Cj the net W is between H; and L; on the right
boundary of I,,,,, in R,,,,. By Claim 11.4.2, for each [, exactly one supernet of
Vi Vi V;-l is on a track in G4 and the other supernets are on tracks in G5 on the
right boundary of [,,,,, in R,,.,. Hence, exactly one variable in each clause is
true in this truth-assignment. |

Theorem 11.4.2 The general knock-knee channel-routing problem with 3-
terminal nets is NP-complete.

Proof: It is easy to reduce KKRB with 3-terminal nets to the general knock-
knee channel-routing problem . Let I' = (k,p,N) be an instance of KKRB. We
construct an instance I of the knock-knee channel-routing problem the following
way: Replace the i-th net of the form (ay, ..., an, ) with the net (a1, ..., an, tpri)
(there are k such nets). Then, let instance I be the union of all the nets of the
supernets in A/. Clearly, there is a routing for I if and only if there is a routing
for I'. |
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11.5 Discussion

The main result of this chapter is that Knock-knee channel-routing is NP-
complete even if at most 3-terminal nets are involved. Polynomial time algorithm
are known for Knock-knee channel routing with 2-terminal nets. Hence, this re-
sult gives a sharp boundary of intractability for channel-routing in the knock-knee
mode.

The fact that most routing problems in VLSI are intractable has also impli-
cations to biological circuits. The optimal layout of millions of neurons is not
tractable, even for an evolutionary process lasting for billions of years REF.
Hence, it is not likely that optimal layout solutions can be found in biological
circuits, reasonable good approximations are much more plausible.
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