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Based on Biot’s theory the governing equations for a poroelastic continuum are given as a coupled set of partial differential
equations (PDEs) for the unknowns solid displacements and pore pressure. Using the Convolution Quadrature Method (CQM)
proposed by Lubich a boundary time stepping procedure is established based only on the fundamental solutions in Laplace
domain.

To improve the numerical behavior of the CQM-based Boundary Element Method (BEM) dimensionless variables are
introduced and different choices studied. This will be performed as a numerical study at the example of a poroelastic column.

Summarizing the results, the normalization to time and spatial variable as well as on Young’s modulus yields the best
numerical behavior.

1 Biot’s theory

Following Biot’s approach [1] to model the behavior of porous media, an elastic skeleton with a statistical distribution of
interconnected pores saturated by a fluid is considered. The solid displacements ui and the pore pressure p are chosen as a
sufficient set of independent variables. For this choice, the dynamic governing differential equations can only be formulated
in Laplace or Fourier domain. Here, a representation in Laplace domain (denoted by f̂(s) = L {f(t)} (s)) will be used. The
governing PDE-System can be written in matrix form as
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with the non-self adjoint differential operator B∗. In Eq. (1), Biot’s effective stress coefficient α = φ(1 + Q/R) and
the abbreviation β = κρfφ2s2/

(
φ2s + s2κ (ρa + φρf )

)
are introduced. The parameters Q and R represent the coupling

between the solid and the fluid. The bulk material is defined by the compression modulus K, the shear modulus G, the
porosity φ, and the permeability κ. Further, the bulk density ρ = (1 − φ)ρs + φρf with the solid’s density ρs and the fluid’s
density ρf is used. The apparent mass density introduced by Biot is assumed to be ρa = 0.66 φ ρf . The load vector consists
of bulk body forces F̂i in the solid and sources â in the fluid (for details see [1]).

2 BEM Formulation

Under the assumption of vanishing body forces Fi and sources a the time dependent boundary integral equation corresponding
to 1 can be written in the following form∫
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with the convolution f ∗ g =
∫ t

0
f(t − τ)g(τ)dτ . This formulation is based on the unknown displacements ui and the pore

pressure p. The total stress vector is denoted by ti and the normal flux by q. Capital letters represent the respective fundamental
solutions. Unfortunately time-dependent fundamental solutions are not known in closed form for the given PDE-System.
However, the CQM needs only the fundamental solutions in Laplace domain to evaluate the convolution integral, which are
available [3]. According to the Boundary Element Method the boundary surface Γ is discretized by linear isoparametric
elements. Further, the convolution integrals are approximated by the CQM, which then results in a boundary element time
stepping formulation. To obtain a system of algebraic equations point collocation is used at every node and, finally, a direct
equation solver is applied.
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Fig. 1 Condition number κ for time domain and frequency domain

3 Dimensionless Variables

To improve the numerical behavior of the CQM-based poroelastodynamic BEM the following dimensionless variables are
introduced

x̃i =
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A
t̃ =

t

B
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K

C
G̃ =

G

C
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A2

B2C
ρ κ̃ =

BC

A2
κ (3)

with real valued scalar parameters A,B,C. Here, three cases will be studied. First, without any transformation denoted by
case 1: A = 1, B = 1, C = 1. The second transformation was suggested in [2] and is denoted by case 2: A = ρκV,B =
ρκ, C = ρV 2, with V =

√
(K + 4G/3 + α2R/φ2)/ρ. Finally, the last transformation is a quite simple one, which represents

a normalization of the system by maximum values, i.e. the longest mesh distance rmax, the total time tmax as well as Young’s
modulus E and is labeled as case 3: A = rmax, B = tmax, C = E.

4 Numerical Example

In order to study the influence of dimensionless variables a poroe-
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Fig. 2 Geometry, boundary conditions and discretization
of a 3-d column

lastic column is considered as shown in Fig. 2. The material data
corresponds to a water saturated rock (E = 1.44 1010 N

m2 , ν = 0, ρ =
2458 kg

m3 , ρf = 1000 kg
m3 , φ = 0.19, R = 4.7 108 N

m2 , α = 0.86, κ =
1.9 10−10 m4

Ns ).
In Fig. 1 the condition number κ of the system matrices is depicted

versus time and frequency. The condition number serves as a measure-
ment of the solvability of the resulting linear system. It is obvious that
a calculation with non-transformed variables (case 1) yields the worst
condition numbers. It must be mentioned, that in many cases a cal-
culation with non-transformed variables is not even possible. Further,
it can be seen that the transformation suggested in [2] yields system
matrices with improved condition numbers (case 2). In opposite to the
non-transformed system an improvement of factor 1016 − 1018 can be observed in time domain and about 1015 in frequency
domain. A further reduction of the condition number can be achieved if the system is normalized by maximum values (case
3). Although the improvement in this final step is not as large as from case 1 to case 2, it is sufficient to ensure the solvability
of systems, which even can’t be calculated with the transformation suggested in [2]. Therefore, it can be concluded that the
case 3 yields the best numerical behavior. This has been confirmed in several other tests with other geometries and material
data. Nevertheless, it should be noted that there exist few constellations where case 2 is superior.
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