
ONLINE MAPS AND CLOUD-SUPPORTED LOCATION-BASED SERVICES ACROSS A

MANIFOLD OF DEVICES

Michael Kröpfl a, *, Daniel Buchmüller a, Franz Leberl b

a
 Microsoft Corporation, One Microsoft Way, Redmond, WA, 98052 [USA] - (mkroepfl, danielbu)@microsoft.com

b
 Graz University of Technology, Institute for Computer Graphics and Vision, A-8010 Graz [Austria] -

leberl@icg.tugraz.at
Commission IV, WG IV/5

KEYWORDS: Internet/Web, Mapping, Mobile, GPS/INS, LBS, Web Services, GIS, Databases, Georeferencing, Imagery, Aerial,

Cloud Computing, Matching

ABSTRACT:

Online mapping, miniaturization of computing devices, the “cloud”, Global Navigation Satellite System (GNSS) and cell tower

triangulation all coalesce into an entirely novel infrastructure for numerous innovative map applications. This impacts the planning

of human activities, navigating and tracking these activities as they occur, and finally documenting their outcome for either a single

user or a network of connected users in a larger context.

In this paper, we provide an example of a simple geospatial application making use of this model, which we will use to explain the

basic steps necessary to deploy an application involving a web service hosting geospatial information and a client software

consuming the web service through an API.

The application allows an insurance claim specialist to add claims to a cloud-based database including a claim location. A field agent

then uses a smartphone application to query the database by proximity, and heads out to capture photographs as supporting

documentation for the claim. Once the photos have been uploaded to the web service, a second web service for image matching is

called in order to try and match the current photograph to previously submitted assets. Image matching is used as a pre-verification

step to determine whether the coverage of the respective object is sufficient for the claim specialist to process the claim.

The development of the application was based on Microsoft’s® Bing Maps™, Windows Phone™, Silverlight™, Windows Azure™

and Visual Studio™, and was completed in approximately 30 labour hours split among two developers.

* Corresponding author.

1. INTRODUCTION

1.1 Online Mapping and Location-Based Services (LBS)

Online mapping may be no older than two ISPRS-congress

periods since 2004. Considering the evolution of Bing Maps or

Google Maps, these data and user systems do continuously

grow. They are essentially global with no consideration of

national borders. They must be kept up-to-date. Further they

combine vector-based geographic information with aerial and

satellite imagery, streetside, indoor photography from industrial

and community photo collections, and a plethora of metadata.

Online maps have left the realms of desktop and notebook

computers and have come to mobile devices. Be they

smartphones, media players, navigation systems, tablet

computers, slates or pads, mobile devices provide an excellent

platform for LBS.

1.2 Mobile Devices and Cloud Computing

Location-based information is of great interest to the mobile

user. Therefore it is very relevant that mobile computing is (a)

increasingly miniaturized, (b) able to determine a position and

attitude by Global Positioning Unit (GPS), Inertial

Measurement Unit (IMU) and cell tower triangulation, (c)

continuously connected to the Internet via cellular telephony or

WIFI, (d) accessing very large databases and computing

resources via the advent of cloud computing. The latter is now

being offered by multiple providers such as Amazon,

Microsoft®, and VMware. Additionally (e) the emerging

capability of mixing computer resident and visualized data with

natural scenes in an augmented reality (AR) context.

We can “bing” (or “google”) shops or restaurants, the shortest

path to a party, a picture note about an interesting sculpture, and

an update of current road conditions. The web service is hosted

in the “Cloud” and an “App” resides on the user’s mobile

device. The connection is provided by cell phone and/or WIFI

technology. However, multiple devices come into play when

planning an activity in an office or home on one set of perhaps

stationary devices, when one or multiple users proceed to

navigate towards a mobile activity on mobile devices, and when

results need to get recorded and communicated on possibly a

third handset. Such a scenario will expect that a map gets

uploaded to the cloud for mobile availability for navigation to

an action and for its documentation.

It is becoming increasingly important to develop innovative

tools for users of location on mobile devices. Often these may

address a simple geospatial application, but across multiple

mobile and desktop devices and with the use of a common

cloud-based backend.

In this paper, we provide an example of a simple geospatial

application making use of this model, which we will use to

explain the basic steps necessary to deploy an application

involving a web service hosting geospatial information and a

client software consuming the web service through an

Application Programming Interface (API).

In the development of the application Microsoft’s® Bing

Maps™, Windows Phone™, Silverlight™, Windows Azure™

and Visual Studio™ were used. All programming for both the

client as well as the server components were completed in about

30 labour hours split among two software developers. In

addition to the short development time, further advantages of

using a cloud based web service rather than an in-house server

are the minimal to non-existent investment cost and

maintenance required, and the high availability of the service.

Most cloud computing systems such as Windows Azure™,

Amazon EC2™ and Google Apps™ offer free trials. This also

helps to reduce the development costs for new applications.

While we implemented the client software only for the

Windows Phone ecosystem, the web service could be consumed

by multiple mobile operating systems including Apple iOS™,

Google Android™ and BlackberryOS™.

1.3 Sample Application – “ClaimSnap” - Damage

Investigation for Insurance Claims

As an example of an application following the above model, we

present a simple workflow for investigation and documentation

of home insurance claims – called “ClaimSnap”. This involves a

planning step in the insurance back office, a data collection step

by one or more field agents, and an optional review of the

collected data in the office, as visualized in Figure 1.

Figure 1 Example Workflow for Planning and Execution of

Home Insurance Damage Investigation

The planning step is performed by an insurance claim specialist

on a desktop computer and results in the creation of an

insurance claim file including an address and details of the

photography to be collected by the field agent. This claim is

then uploaded to a cloud service, through which it can be

discovered by a field agent’s query for open claims based on

location and other criteria. The query results are presented to

the agent on a map which also allows navigation to the desired

location. The field agent hence heads out to the given location,

records the requested photographs covering details of the

damage, and uploads the recorded data to the web service,

where the claim is removed from the list of open claims. To

confirm whether the uploaded images represent the scene well

enough e.g. to allow later 3D reconstruction, an image matching

service such as the one described in Kroepfl et. al. 2009 or the

Bing Vision Service, can be consumed in order to verify that a

sufficient number of matching photographs have been captured.

As the last step, the insurance claim specialist in the office can

review the collected information, and decide to either request

further data or close the file. This step can optionally be

supported by feeding the images acquired through the

ClaimSnap application to a service called Photosynth™, which

computes a 3D reconstruction of the captured scene allowing a

more immersive viewing experience for the claim specialist.

For simplicity of the application design, and to avoid distraction

from the key components of a geospatial application, we

decided to omit the notion of user identity, although this could

easily be achieved by making use of the Windows Azure Access

Control Service (ACS) (See References).

2. SYSTEM COMPONENTS

In this section we provide an overview of the system

components, including the service and database used to store

the data assets, the client application allowing a mobile user to

access and contribute to the data assets, as well as the image

matching service used to verify the completeness of the data

acquired.

As mentioned above, several competing ecosystems are

available for cloud computing, mobile mapping platforms

(Amazon EC2™, Google Apps™), as well as mobile phone

operating systems. For the specific implementation described in

this paper, we used Windows Azure™ as the cloud operating

system, in combination with SQL Azure™, a cloud-based

version of Microsoft’s® SQL Server™.

For the client software development we used the Silverlight™

functionality provided through the Windows Phone™ SDK

v7.1. Silverlight™ is a development platform which, in

combination with the .NET framework allows a software

developer to design and program a visually compelling and easy

to use graphical user interface within a very short development

time. We chose C# as the programming language for the server

and the client code. The .NET framework also support other

languages such as C++ and Visual Basic.NET.

2.1 Service and Database

The core of the system is the ClaimSnap Service. Figure 2

illustrates the interactions of the service and all attached

components. They break down as follows:

1. Receive requests from the client devices

2. Delegate storage requests to the database

3. Consume the Bing Vision Matching Service

4. Employ business logic to decide whether claims

meet the completeness criteria

5. Interact with a web-based management portal to

create claims and oversee the claims process. This

portal is beyond the scope of this paper.

2.1.1 Service: The service exposes all methods that are

consumed by the client application using Windows

Communication Foundations (WCF). This allows for a clean

separation between the describing data contract, binding, and

endpoint configurations. The service itself is deployed to

Windows Azure™ as a web node. Windows Azure™ allows for

configuration-based scaling, redundancy, and geo-distribution

of web and compute nodes.

As mentioned initially, the service forms the core of the system

and acts as an accumulator, delegator, and processor of requests

and data.

Database
SQL Azure

ClaimSnap Service
WCF

Azure Compute

Bing Vision Service
WCF

Azure Compute

Management
ASP.NET MVC

Azure Web Node

Figure 2 ClaimSnap Service and connected components

2.1.2 Database: The service sends storage requests (i.e. for

claims and claim photo asset metadata) to a dedicated SQL

Azure™ deployment. Again, the database server is not an on-

premise installation that requires management by IT personnel

but a virtual instance in the cloud, distributed over several

machines for redundancy, and fully managed by Windows

Azure™. As the data requirements grow, a virtual database

instance can be scaled simply by changing its configuration

through the Windows Azure™ Management Portal. In an on-

premise solution scaling up could mean buying new hardware

and extensive management overhead.

It’s interesting to note that SQL Azure™ behaves no different

than a traditional on-premise database when it comes to

interfacing with it. In this specific solution the database holds

the entity relationship model that describes how claims interact

with their photo assets and how they relate and match against

each other. Also the claim status is a modelled entity enabling

client queries for claims in different processing stages. Figure 3

exhibits the relationship model in detail.

Figure 3 Entity Relationship Model

2.1.3 Bing™ Vision Service: The Bing Vision service

exposes state-of-the-art image matching technology as a service.

This technology is used for the visual product search features in

both Windows Phone™ and the iPhone™ Bing™ app.

The matching technology is general enough enabling the service

for matching photographs that have only a slight overlap. While

this technology is traditionally used to find similar images or

images of the same subject (i.e. a book, a landmark, etc.) the

ClaimSnap service consumes the Bing™ Vision Service to

compare an already submitted photograph for a claim. This

introduces the central quality control component in the

ClaimSnap system. The Bing™ Vision Service exposes its

functionality through a (Representational State Transfer)

RESTful interface, based on HTTP multipart/form-data requests

and JSON-formatted responses for ease-of-use. The

implemented metric will be described in detail in the next

section.

2.1.4 Business Logic Component: As a central piece to the

claims process, the business logic layer serves as the quality

assurance component. The implemented logic demands that for

each claim at least three photographs have to be recorded and

that all three photographs have to match against each other to

guarantee appropriate damage situation coverage; and allow for

potential 3D reconstruction based on the photographs.

The business logic layer is consumed by the service through

which it signals to the client application whether more

photographs are required before a claim can be marked as

complete. This component is located in the ClaimSnap Service

deployment illustrated in Figure 2.

2.2 Windows Phone™ Client

Silverlight™ and the Windows Phone™ SDK offer a large

variety of controls which can be used to design a versatile user

interface leveraging the various input and output modes

available on a state-of-the-art mobile device.

While it would exceed the scope of this work to describe the

different controls in detail (a comprehensive documentation can

be found in the Windows Phone™ Developer Resources and

Quickstarts listed in the references), it is worthwhile to point

out how little effort is required to implement a few very basic

but common scenarios for LBS.

2.2.1 Hello World Map App for Windows Phone™: The

first scenario explained is to display a map control and visualize

some data points as pushpins superimposed on the map. After

creating a new Windows Phone™ application in Visual

Studio™ 2010 using a standard template, only three steps are

required to achieve the desired functionality.

a) Create application and add map control

b) Add map layer

c) Draw pushpins on layer

First, a map control needs to be added to the design view

window which provides a What-You-See-Is-What-You-Get

(WYSIWYG) preview of the phone screen. This can be

achieved literally with a few mouse clicks by selecting the

“Map” control in the toolbox window and drawing a rectangular

map region in the design view, such as presented in Figure 4.

Figure 4 Toolbox and Design View for Windows Phone 7

Application Design using Silverlight™

This application could theoretically be built as is and deployed

to a Windows Phone device. It would provide a simple map

view which can be scrolled and zoomed using touch commands.

Figure 5 Original XAML Code Snippet of Design Shown in

Figure 4

Figure 6 Modified XAML Code with Added Map Layer and

Updated Names for Page and Application

In order to be able to draw pushpins on the map, it is necessary

to add a map layer, which serves as a canvas for showing geo-

located information. The necessary code changes to the XAML

file describing the elements of the UI are shown in Figure 5.

Figure 7 Source Code to Draw Pushpins on Map Layer

In addition to adding the MapLayer, the page and application

title on the page have also been updated. Finally, the actual

source code to draw the pushpins has to be added; see Figure 7.

The map is centred and zoomed to a certain viewport, and a

number of randomly positioned pushpins are created on the

previously created map-layer, as can be seen in Figure 8).

Figure 8 Completed Hello-World Application

Other, similarly useful tasks which we used during the creation

of the ClaimSnap client software are the control of the built-in

camera, as well as the location services APIs to access the

current location through GPS and cell tower triangulation of the

device. These tasks can be achieved using the Windows

Phone™ SDK with a few lines of code, as demonstrated in

Figure 9 and Figure 10.

Both examples make use of certain supporter classes

(CameraCaptureTask or GeoCoordinateWatcher) to access the

phone’s functionality. Since the respective functions are

implemented asynchronously on the phone, a callback is

required to define what should happen when the task completes.

Figure 9 Code snippets to control camera

Figure 10 Code snippet to obtain geographic coordinates from

the location API

2.2.2 ClaimSnap Client Design: When designing the

ClaimSnap client app, we had primarily two user scenarios in

mind, both assuming the user to be an insurance field agent:

 Query the web service for nearby claims and

display them on the map; including the status of each

claim

 Explore the details of claims, and allow

capturing and uploading of supporting photographs to

web service.

Therefore, we have organized the app into two pages according

to these two user scenarios.

The first page as shown in Figure 11 a) contains a map showing

the current location of the user (crosshairs-shaped pushpin) as

well as the locations of nearby insurance claims. The map also

contains buttons allowing zooming in and out. Below the map is

a list of nearby claims, their status (New, SurveyStarted,

SurveyCompleted, and Closed) and how many photographic

assets have already been added. The list was implemented by

using a Silverlight™ ScrollViewer as well as a StackPanel, into

which TextBlock UI-Elements can be stacked.

Each of the claims can be selected by either touching the

pushpin or the corresponding claim title in the list. This will

cause the map to centre on the location of the selected claim,

and highlight the respective claim in the list.

Below the ScrollViewer is a TextBlock showing the current app

status. At the bottom of the screen are three buttons. The left

button can be used to update the current position of the user

using the location services of the phone. The centre button is

used to initiate a query to the web service for nearby claims.

The third button is only accessible if a claim is selected; to

move to the second page as shown in Figure 11 b) and to

manage the details of a claim.

The second page of the app is intended to show more details of

a claim and is organized in four regions. The top-left part

contains metadata about the claim such as title, description, and

latitude / longitude of the object that the claim refers to.

 a) b)

Figure 11 Graphical User Interface (GUI) for Windows

Phone™ Client a) ClaimMap page showing an overview of

different claims; b) Claim Info page showing details for a

specific claim

Below that is an area containing one of the photographs of the

claim object that have already been captured by an insurance

field agent. The right side of the page holds a scrollable list of

thumbnails of all related claim photographs. The colour of the

thumbnail borders indicate whether the image has already been

uploaded to the service and whether it has been accepted

(green). Yellow means that it has not yet been uploaded, and

red that it was uploaded but could not yet be matched to other

photographs.

The three buttons below can be used to capture a new

photograph, upload all newly captured photos or mark the

active claim as “SurveyCompleted” (Left to right). The latter is

only available if at least 3 photographs have been uploaded and

could be matched to each other using the match service.

Uploading image data consists of writing the file to Windows

Azure™ Blob Storage in the cloud, and adding the new photo

asset to the database. For the latter, as well as changing the

status of a claim, the respective service endpoints of the

ClaimSnap service are used.

3. RESULTS

After developing the ClaimSnap service as well as the client

software, we have tested the system on various claim datasets

we had previously created on the server database. Given the

relatively short development time, both the cloud service as well

as the client application were working well, and apart from

network latencies on the 3G network, no major problems have

been noticed. The data assed creation happened manually by

using Microsoft® SQL Server™ Management Studio.

Figure 12 a) shows a graph of all 6 captured and matched

images of a specific claim superimposed on the map, which was

a feature we added late in the development to allow easier

visualization of the geographic distribution of claim photo

assets.

 a) b)

Figure 12 a) Graph of Matching Photographs on Mobile Client

and b) on Desktop Silverlight™ Client

Figure 12 b) shows a similar match graph shown in a Desktop

PC browser window, which is also using Silverlight™

technology for map and data visualization. The match graph

was generated by the Bing Vision Service.

Figure 13 PhotoSynth™ 3D Reconstruction of a Building

In order to allow easier interpretation of the captured scene, the

recorded photographs can further be processed using the

Photosynth™ service, to form a 3D representation of the area.

An example building shown in the Photosynth™ 3D image

viewer is presented in Figure 13. Additionally, the reconstructed

3D scene can be observed in a top-down view (Figure 14),

comprising a better and more accurate representation of the

layout and the capture locations of individual photos than from

just the GPS locations shown in Figure 12.

Concerning the application for insurance claims, we realized

that it would have been advantageous to add a user identity

model to the application, in order to avoid parallel processing of

the same claim by multiple agents. Additionally, a notification

function for new claims added to the database using push

notifications to the clients would be a useful addition.

4. CONCLUSION

In this work, we have demonstrated that by using state-of-the-

art technologies for cloud-based computing and databases

(Windows Azure™ and SQL Azure™), as well as a modern

smart phone architecture (Windows Phone™), a simple

geospatial application can be developed within a very short time

period of approximately 30 labour hours.

Figure 14 Top-Down View

This was possible by using high a high level programming

language such as C# in combination with the Silverlight™

platform to create a visually rich and easy to use user interface

involving natural user interface elements such as multi-touch

panning and zooming of a map. Running the service and

deploying an application to a set of mobile phones virtually free

of cost, and available to any developer.

5. REFERENCES

Kroepfl, M., Wexler, Y., Ofek, E.

2010. Efficiently Locating Photographs in Many Panoramas.

In: GIS '10 Proceedings of the 18th SIGSPATIAL International

Conference on Advances in Geographic Information Systems.

Microsoft® Corp. 2011, Read / Write / World

2011. Presented at Where 2.0 Conference. 2011

http://www.readwriteworld.net Apr. 15. 2011

http://whereconf.com/where2011/public/schedule/detail/17794

Microsoft® Corp. 2012, Microsoft Photosynth™

http://www.photosynth.net/

Microsoft® Corp. 2012, .NET and Silverlight™

http://www.microsoft.com/net/

http://www.silverlight.net/

Microsoft® Corp. 2012, Windows Azure™ and Windows

Azure™ Access Control Service

http://www.windowsazure.com

http://www.windowsazure.com/en-us/home/tour/access-control/

Microsoft® Corp. 2012, Windows Phone™ Development

Resources and Quickstarts http://create.msdn.com/en-

US/education/quickstarts http://create.msdn.com/en-

US/education/basics/developer_resources

Apple Inc. 2012, Apple iOS™

http://www.apple.com/ios/

Amazon Inc. 2012, Amazon Elastic Compute Cloud™ (EC2)

http://aws.amazon.com/ec2/

Google Inc. 2012, Google Android™ and Google Apps™

http://www.android.com/

http://www.google.com/enterprise/apps/business/

http://www.readwriteworld.net/
http://whereconf.com/where2011/public/schedule/detail/17794
http://www.photosynth.net/
http://www.microsoft.com/net/
http://www.silverlight.net/
http://www.windowsazure.com/
http://www.windowsazure.com/en-us/home/tour/access-control/
http://create.msdn.com/en-US/education/quickstarts
http://create.msdn.com/en-US/education/quickstarts
http://create.msdn.com/en-US/education/basics/developer_resources
http://create.msdn.com/en-US/education/basics/developer_resources
http://www.apple.com/ios/
http://aws.amazon.com/ec2/
http://www.android.com/
http://www.google.com/enterprise/apps/business/

