Primary decomposition of the ideal of polynomials whose fixed divisor is divisible by a prime power ${ }^{\text {KT }}$

Giulio Peruginelli
Institut für Analysis und Comput. Number Theory, Technische Universität, Steyrergasse 30, A-8010 Graz, Austria

A R T I C L E I N F O

Article history:

Received 10 May 2012
Available online xxxx
Communicated by Bernd Ulrich

MSC:

13B25
$13 F 20$

Keywords:
Integer-valued polynomial
Image of a polynomial
Fixed divisor
Factorization of integer-valued polynomials
Primary components
Primary decomposition

Abstract

We characterize the fixed divisor of a polynomial $f(X)$ in $\mathbb{Z}[X]$ by looking at the contraction of the powers of the maximal ideals of the overring $\operatorname{Int}(\mathbb{Z})$ containing $f(X)$. Given a prime p and a positive integer n, we also obtain a complete description of the ideal of polynomials in $\mathbb{Z}[X]$ whose fixed divisor is divisible by p^{n} in terms of its primary components. © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

To Sergio Paolini, whose teachings and memory I deeply preserve.

1. Introduction

In this work we investigate the image set of integer-valued polynomials over \mathbb{Z}. The set of these polynomials is a ring usually denoted by:

$$
\operatorname{Int}(\mathbb{Z}) \doteqdot\{f \in \mathbb{Q}[X] \mid f(\mathbb{Z}) \subset \mathbb{Z}\}
$$

Since an integer-valued polynomial $f(X)$ maps the integers in a subset of the integers, it is natural to consider the subset of the integers formed by the values of $f(X)$ over the integers and the ideal

[^0]generated by this subset. This ideal is usually called the fixed divisor of $f(X)$. Here is the classical definition.

Definition 1.1. Let $f \in \operatorname{Int}(\mathbb{Z})$. The fixed divisor of $f(X)$ is the ideal of \mathbb{Z} generated by the values of $f(n)$, as n ranges in \mathbb{Z} :

$$
d(f)=d(f, \mathbb{Z})=(f(n) \mid n \in \mathbb{Z})
$$

We say that a polynomial $f \in \operatorname{Int}(\mathbb{Z})$ is image primitive if $d(f)=\mathbb{Z}$.
It is well-known that for every integer $n \geqslant 1$ we have

$$
d(X(X-1) \cdots(X-(n-1)))=n!
$$

so that the so-called binomial polynomials $B_{n}(X) \doteqdot X(X-1) \cdots(X-(n-1)) / n$! are integer-valued (indeed, they form a free basis of $\operatorname{Int}(\mathbb{Z})$ as a \mathbb{Z}-module; see [4]).

Notice that, given two integer-valued polynomials f and g, we have $d(f g) \subset d(f) d(g)$ and we may not have an equality. For instance, consider $f(X)=X$ and $g(X)=X-1$; then we have $d(f)=$ $d(g)=\mathbb{Z}$ and $d(f g)=2 \mathbb{Z}$. If $f \in \operatorname{Int}(\mathbb{Z})$ and $n \in \mathbb{Z}$, then directly from the definition we have $d(n f)=$ $n d(f)$. If $\operatorname{cont}(F)$ denotes the content of a polynomial $F \in \mathbb{Z}[X]$, that is, the greatest common divisor of the coefficients of F, we have $F(X)=\operatorname{cont}(F) G(X)$, where $G \in \mathbb{Z}[X]$ is a primitive polynomial (that is, $\operatorname{cont}(G)=1$). We have the relation:

$$
d(F)=\operatorname{cont}(F) d(G) .
$$

In particular, the fixed divisor is contained in the ideal generated by the content. Hence, given a polynomial with integer coefficients, we can assume it to be primitive. In the same way, if we have an integer-valued polynomial $f(X)=F(X) / N$, with $f \in \mathbb{Z}[X]$ and $N \in \mathbb{N}$, we can assume that $(\operatorname{cont}(F), N)=1$ and $F(X)$ to be primitive.

The next lemma gives a well-known characterization of a generator of the above ideal (see [1, Lemma 2.7]).

Lemma 1.1. Let $f \in \operatorname{Int}(\mathbb{Z})$ be of degree d and set

1) $d_{1}=\sup \left\{n \in \mathbb{Z} \left\lvert\, \frac{f(X)}{n} \in \operatorname{Int}(\mathbb{Z})\right.\right\}$,
2) $d_{2}=\operatorname{GCD}\{f(n) \mid n \in \mathbb{Z}\}$,
3) $d_{3}=\operatorname{GCD}\{f(0), \ldots, f(d)\}$,
then $d_{1}=d_{2}=d_{3}$.
Let $f \in \operatorname{Int}(\mathbb{Z})$. We remark that the value d_{1} of Lemma 1.1 is plainly equal to:

$$
d_{1}=\sup \{n \in \mathbb{Z} \mid f \in n \operatorname{Int}(\mathbb{Z})\} .
$$

Moreover, given an integer n, we have this equivalence that we will use throughout the paper, a sort of ideal-theoretic characterization of the arithmetical property that all the values attained by $f(X)$ are divisible by n :

$$
f(\mathbb{Z}) \subset n \mathbb{Z} \quad \Longleftrightarrow \quad f \in n \operatorname{Int}(\mathbb{Z})
$$

$(n \operatorname{Int}(\mathbb{Z})$ is the principal ideal of $\operatorname{Int}(\mathbb{Z})$ generated by $n)$. From 1$)$ of Lemma 1.1 we see immediately that if $f(X)=F(X) / N$ is an integer-valued polynomial, where $F \in \mathbb{Z}[X]$ and $N \in \mathbb{N}$ coprime with the content of $F(X)$, then $d(f)=d(F) / N$, so we can just focus our attention on the fixed divisor of a primitive polynomial in $\mathbb{Z}[X]$.

We want to give another interpretation of the fixed divisor of a polynomial $f \in \mathbb{Z}[X]$ by considering the maximal ideals of $\operatorname{Int}(\mathbb{Z})$ containing $f(X)$ and looking at their contraction to $\mathbb{Z}[X]$. We recall first the definition of unitary ideal given in [12].

Definition 1.2. An ideal $I \subseteq \operatorname{Int}(\mathbb{Z})$ is unitary if $I \cap \mathbb{Z} \neq 0$.
That is, an ideal I of $\operatorname{Int}(\mathbb{Z})$ is unitary if it contains a non-zero integer, or, equivalently, $I \mathbb{Q}[X]=$ $\mathbb{Q}[X]$ (where $I \mathbb{Q}[X]$ denotes the extension ideal in $\mathbb{Q}[X])$. The whole ring $\operatorname{Int}(\mathbb{Z})$ is clearly a principal unitary ideal generated by 1 .

The next results are probably well-known, but for the ease of the reader we report them. The first lemma says that a principal unitary ideal I is generated by a non-zero integer, which generates the contraction of I to \mathbb{Z}. In particular, this lemma establishes a bijective correspondence between the nonzero ideals of \mathbb{Z} and the set of principal unitary ideals of $\operatorname{Int}(\mathbb{Z})$.

Lemma 1.2. Let $I \subseteq \operatorname{Int}(\mathbb{Z})$ be a principal unitary ideal. If $I \cap \mathbb{Z}=n \mathbb{Z}$ with $n \neq 0$ then $I=n \operatorname{Int}(\mathbb{Z})$. In particular, $n \operatorname{Int}(\mathbb{Z}) \cap \mathbb{Z}=n \mathbb{Z}$. Moreover, $n_{1} \operatorname{Int}(\mathbb{Z})=n_{2} \operatorname{Int}(\mathbb{Z})$ with $n_{1}, n_{2} \in \mathbb{Z}$ if and only if $n_{1}= \pm n_{2}$.

Proof. If $I=(f)$ for some $f \in \operatorname{Int}(\mathbb{Z})$ then $\operatorname{deg}(f)=0$ since a non-zero integer n is in I. Since $f(X)$ is integer-valued it must be equal to an integer and so it is contained in $I \cap \mathbb{Z}=n \mathbb{Z}$. Hence we get the first statement of the lemma. If $n_{1} \operatorname{Int}(\mathbb{Z})=n_{2} \operatorname{Int}(\mathbb{Z})$ then $n_{1}=n_{2} f$ with $f \in \operatorname{Int}(\mathbb{Z})$; this forces f to be a non-zero integer, so that n_{1} divides n_{2}. Similarly, we get that n_{2} divides n_{1}.

Lemma 1.3. Let $I_{1}, I_{2} \subseteq \operatorname{Int}(\mathbb{Z})$ be principal unitary ideals. Then $I_{1} \cap I_{2}$ is a principal unitary ideal too.
Proof. Suppose $I_{i}=n_{i} \operatorname{Int}(\mathbb{Z})$, where $n_{i} \in \mathbb{Z}, n_{i} \mathbb{Z}=I_{i} \cap \mathbb{Z}$, for $i=1,2$. We have $n_{1} \mathbb{Z} \cap n_{2} \mathbb{Z}=n \mathbb{Z}$, where $n=\operatorname{lcm}\left\{n_{1}, n_{2}\right\}$. The ideal $I_{1} \cap I_{2}$ is unitary since $n \in I_{1} \cap I_{2}$. In particular, we have $I_{1} \cap I_{2} \supseteq n \operatorname{Int}(\mathbb{Z})$. We have to prove that $I_{1} \cap I_{2} \subseteq n \operatorname{Int}(\mathbb{Z})$. Let $f \in I_{1} \cap I_{2}$. Then $f(\mathbb{Z}) \subset n_{1} \mathbb{Z} \cap n_{2} \mathbb{Z}=n \mathbb{Z}$, so that $\frac{f(X)}{n} \in$ $\operatorname{Int}(\mathbb{Z})$.

The previous lemma implies the following decomposition for a principal unitary ideal generated by an integer n, with prime factorization $n=\prod_{i} p_{i}^{a_{i}}$. We have

$$
n \operatorname{Int}(\mathbb{Z})=\bigcap_{i} p_{i}^{a_{i}} \operatorname{Int}(\mathbb{Z})=\prod_{i} p_{i}^{a_{i}} \operatorname{Int}(\mathbb{Z})
$$

where the last equality holds because the ideals $p_{i}^{a_{i}} \mathbb{Z}$ are coprime in \mathbb{Z}, hence they are coprime in $\operatorname{Int}(\mathbb{Z})$.

We are now ready to give the following definition.
Definition 1.3. Let $f \in \operatorname{Int}(\mathbb{Z})$. The extended fixed divisor of $f(X)$ is the minimal ideal of the set $\{n \operatorname{Int}(\mathbb{Z}) \mid n \in \mathbb{Z}, f \in n \operatorname{Int}(\mathbb{Z})\}$. We denote this ideal by $D(f)$.

Equivalently, in the above definition, we require that $n \operatorname{Int}(\mathbb{Z})$ contains the principal ideal in $\operatorname{Int}(\mathbb{Z})$ generated by the polynomial $f(X)$. Lemmas 1.2 and 1.3 show that the minimal ideal in the above definition does exist: it is equal to the intersection of all the principal unitary ideals containing $f(X)$. Notice that the extended fixed divisor is an ideal of $\operatorname{Int}(\mathbb{Z})$, while the fixed divisor is an ideal of \mathbb{Z}. The polynomial $f(X)$ is image primitive if and only if its extended fixed divisor is the whole ring $\operatorname{Int}(\mathbb{Z})$. In the next sections we will study the extended fixed divisor by considering the p-part of it, namely the principal unitary ideals of the form $p^{n} \operatorname{Int}(\mathbb{Z}), p \in \mathbb{Z}$ being prime and n a positive integer.

The following proposition gives a link between the fixed divisor and the extended fixed divisor: the latter is the extension of the former and conversely. So each of them gives information about the other one.

Proposition 1.1. Let $f \in \operatorname{Int}(\mathbb{Z})$. Then we have:
a) $D(f) \cap \mathbb{Z}=d(f)$,
b) $d(f) \operatorname{Int}(\mathbb{Z})=D(f)$.

Proof. Let $d, D \in \mathbb{Z}$ be such that $d(f)=d \mathbb{Z}$ and $D(f)=D \operatorname{Int}(\mathbb{Z})$. Since $d(f) \operatorname{Int}(\mathbb{Z})=d \operatorname{Int}(\mathbb{Z})$ is a principal unitary ideal containing $f(X)$, from the definition of extended fixed divisor, we have $D(f) \subseteq$ $d \operatorname{Int}(\mathbb{Z})$. In particular, $D \geqslant d$. We also have $f(X) / D \in \operatorname{Int}(\mathbb{Z})$ and so $d \geqslant D$, by characterization 1) of Lemma 1.1. Hence we get a). From that we deduce that $d(f) \subseteq D(f)$, so statement \mathfrak{b}) follows.

As already remarked in [5], the rings \mathbb{Z} and $\operatorname{Int}(\mathbb{Z})$ share the same units, namely $\{ \pm 1\}$. Then [5, Proposition 2.1] can be restated as follows.

Proposition 1.2 (Cahen-Chabert). Let $f \in \operatorname{Int}(\mathbb{Z})$ be irreducible in $\mathbb{Q}[X]$. Then $f(X)$ is irreducible in $\operatorname{Int}(\mathbb{Z})$ if and only if $f(X)$ is not contained in any proper principal unitary ideal of $\operatorname{Int}(\mathbb{Z})$.

The next lemma has been given in [6] and is analogous to the Gauss Lemma for polynomials in $\mathbb{Z}[X]$ which are irreducible in $\operatorname{Int}(\mathbb{Z})$.

Lemma 1.4 (Chapman-McClain). Let $f \in \mathbb{Z}[X]$ be a primitive polynomial. Then $f(X)$ is irreducible in $\operatorname{Int}(\mathbb{Z})$ if and only if it is irreducible in $\mathbb{Z}[X]$ and image primitive.

For example, the polynomial $f(X)=X^{2}+X+2$ is irreducible in $\mathbb{Q}[X]$ and also in $\mathbb{Z}[X]$ since it is primitive (because of Gauss Lemma). But it is reducible in $\operatorname{Int}(\mathbb{Z})$ since its extended fixed divisor is not trivial, namely it is the ideal $2 \operatorname{Int}(\mathbb{Z})$. So in $\operatorname{Int}(\mathbb{Z})$ we have the following factorization:

$$
f(X)=2 \cdot \frac{X^{2}+X+2}{2}
$$

and indeed this is a factorization into irreducibles in $\operatorname{Int}(\mathbb{Z})$, since the latter polynomial is image primitive and irreducible in $\mathbb{Q}[X]$, and by [5, Lemma 1.1], the irreducible elements in \mathbb{Z} remain irreducible in $\operatorname{Int}(\mathbb{Z})$. So the study of the extended fixed divisor of the elements in $\operatorname{Int}(\mathbb{Z})$ is a first step toward studying the factorization of the elements in this ring (which is not a unique factorization domain).

Here is an overview of the content of the paper. At the beginning of the next section we recall the structure of the prime spectrum of $\operatorname{Int}(\mathbb{Z})$. Then, for a fixed prime p, we describe the contractions to $\mathbb{Z}[X]$ of the maximal unitary ideals of $\operatorname{Int}(\mathbb{Z})$ containing p (Lemma 2.1). In Theorem 2.1 we describe the ideal I_{p} of $\mathbb{Z}[X]$ of those polynomials whose fixed divisor is divisible by p, namely the contraction to $\mathbb{Z}[X]$ of the principal unitary ideal $p \operatorname{Int}(\mathbb{Z})$, which is the ideal of integer-valued polynomials whose extended fixed divisor is contained in $p \operatorname{Int}(\mathbb{Z})$. It turns out that I_{p} is the intersection of the aforementioned contractions. In the third section we generalize the result of the second section to prime powers, by means of a structure theorem of Loper regarding unitary ideals of $\operatorname{Int}(\mathbb{Z})$. We consider the contractions to $\mathbb{Z}[X]$ of the powers of the prime unitary ideals of $\operatorname{Int}(\mathbb{Z})$ (Lemma 3.1). In Remark 2 we give a description of the structure of the set of these contractions; that allows us to give the primary decomposition of the ideal $I_{p^{n}}=p^{n} \operatorname{Int}(\mathbb{Z}) \cap \mathbb{Z}[X]$, made up of those polynomials whose fixed divisor is divisible by a prime power p^{n}. We shall see that we have to distinguish two cases: $p \leqslant n$ and $p>n$ (see also the examples in Remark 3). In Theorem 3.1 we describe $I_{p^{n}}$ in the case $p \leqslant n$. This result was already known in a slightly different context by Dickson (see [7, p. 22, Theorem 27]), but our different proof uses the primary decomposition of $I_{p^{n}}$ and that gives an insight to generalize the result to the second case. In Proposition 3.2 we give a set of generators for the primary components of $I_{p^{n}}$, in the case $p>n$. Finally in the last section, as an application, we explicitly compute the ideal $I_{p^{p+1}}$.

2. Fixed divisor via $\operatorname{Spec}(\operatorname{Int}(\mathbb{Z})$)

The study of the prime spectrum of the $\operatorname{ring} \operatorname{Int}(\mathbb{Z})$ began in [3]. We recall that the prime ideals of $\operatorname{Int}(\mathbb{Z})$ are divided into two different categories, unitary and non-unitary. Let P be a prime ideal of $\operatorname{Int}(\mathbb{Z})$. If it is unitary then its intersection with the ring of integers is a principal ideal generated by a prime p.
Non-unitary prime ideals: $P \cap \mathbb{Z}=\{0\}$.
In this case P is a prime (non-maximal) ideal and it is of the form

$$
\mathfrak{B}_{q}=q \mathbb{Q}[X] \cap \operatorname{Int}(\mathbb{Z})
$$

for some $q \in \mathbb{Q}[X]$ irreducible. By Gauss Lemma we may suppose that $q \in \mathbb{Z}[X]$ is irreducible and primitive.
Unitary prime ideals: $P \cap \mathbb{Z}=p \mathbb{Z}$.
In this case P is maximal and is of the form

$$
\mathfrak{M}_{p, \alpha}=\left\{f \in \operatorname{Int}(\mathbb{Z}) \mid f(\alpha) \in p \mathbb{Z}_{p}\right\}
$$

for some p prime in \mathbb{Z} and some $\alpha \in \mathbb{Z}_{p}$, the ring of p-adic integers. We have $\mathfrak{M}_{p, \alpha}=\mathfrak{M}_{q, \beta}$ if and only if $(p, \alpha)=(q, \beta)$. So if we fix the prime p, the elements of \mathbb{Z}_{p} are in bijection with the unitary prime ideals of $\operatorname{Int}(\mathbb{Z})$ above the prime p. Moreover, $\mathfrak{M}_{p, \alpha}$ is height 1 if and only if α is transcendental over \mathbb{Q}. If α is algebraic over \mathbb{Q} and $q(X)$ is its minimal polynomial then $\mathfrak{M}_{p, \alpha} \supset \mathfrak{B}_{q}$. We have $\mathfrak{B}_{q} \subset \mathfrak{M}_{p, \alpha}$ if and only if $q(\alpha)=0$. Every prime ideal of $\operatorname{Int}(\mathbb{Z})$ is not finitely generated.

For a detailed study of $\operatorname{Spec}(\operatorname{Int}(\mathbb{Z}))$ see $[4]$.
If we denote by $d\left(f, \mathbb{Z}_{p}\right)$ the fixed divisor of $f \in \operatorname{Int}(\mathbb{Z})$ viewed as a polynomial over the ring of p-adic integers \mathbb{Z}_{p} (that is, $d\left(f, \mathbb{Z}_{p}\right)$ is the ideal $\left(f(\alpha) \mid \alpha \in \mathbb{Z}_{p}\right)$), Gunji and McQuillan in [8] observed that

$$
d(f)=\bigcap_{p} d\left(f, \mathbb{Z}_{p}\right)
$$

where the intersection is taken over the set of primes in \mathbb{Z}. Moreover, $d\left(f, \mathbb{Z}_{p}\right)=d(f) \mathbb{Z}_{p} \subset \mathbb{Z}_{p}$. Remember that given an ideal $I \subset \mathbb{Z}$ and a prime p we have $I \mathbb{Z}_{p}=\mathbb{Z}_{p}$ if and only if $I \not \subset(p)$, so that in the previous equation we have a finite intersection. Since \mathbb{Z}_{p} is a DVR we have $d\left(f, \mathbb{Z}_{p}\right)=p^{n} \mathbb{Z}_{p}$, for some integer n (which of course depends on p), so that the exact power of p which divides $f(\mathbb{Z})$ is the same as the power of p dividing $f\left(\mathbb{Z}_{p}\right)$. Without loss of generality, we can restrict our attention to the p-part of the fixed divisor of a polynomial $f \in \mathbb{Z}[X]$. We begin our research by finding those polynomials in $\mathbb{Z}[X]$ whose fixed divisor is divisible by a fixed prime p, namely the ideal $p \operatorname{Int}(\mathbb{Z}) \cap \mathbb{Z}[X]$.

Lemma 2.1. Let p be a prime and $\alpha \in \mathbb{Z}_{p}$. Then $\mathfrak{M}_{p, \alpha} \cap \mathbb{Z}[X]=(p, X-a)$, where $a \in \mathbb{Z}$ is such that $\alpha \equiv$ $a(\bmod p)$. Moreover, if $\beta \in \mathbb{Z}_{p}$ is another p-adic integer, we have $\mathfrak{M}_{p, \alpha} \cap \mathbb{Z}[X]=\mathfrak{M}_{p, \beta} \cap \mathbb{Z}[X]$ if and only if $\alpha \equiv \beta(\bmod p)$.

Proof. Let a be an integer as in the statement of the lemma; it exists since \mathbb{Z} is dense in \mathbb{Z}_{p} for the p-adic topology. We immediately see that p and $X-a$ are in $\mathfrak{M}_{p, \alpha}$. Then the conclusion follows since $(p, X-a)$ is a maximal ideal of $\mathbb{Z}[X]$ and $\mathfrak{M}_{p, \alpha} \cap \mathbb{Z}[X]$ is not equal to the whole ring $\mathbb{Z}[X]$. The second statement follows from the fact that $(p, X-a)=(p, X-b)$ if and only if $a \equiv b(\bmod p)$.

We have just seen that the contraction of $\mathfrak{M}_{p, \alpha}$ to $\mathbb{Z}[X]$ depends only on the residue class modulo p of α. So, if p is a fixed prime, the contractions of $\mathfrak{M}_{p, \alpha}$ to $\mathbb{Z}[X]$ as α ranges through \mathbb{Z}_{p} are made up of p distinct maximal ideals, namely

$$
\left\{\mathfrak{M}_{p, \alpha} \cap \mathbb{Z}[X] \mid \alpha \in \mathbb{Z}_{p}\right\}=\{(p, X-j) \mid j \in\{0, \ldots, p-1\}\} .
$$

Conversely, the set of prime ideals of $\operatorname{Int}(\mathbb{Z})$ above a fixed maximal ideal of the form ($p, X-j$) is $\left\{\mathfrak{M}_{p, \alpha} \mid \alpha \in \mathbb{Z}_{p}, \alpha \equiv j(\bmod p)\right\}$, since \mathfrak{B}_{q} are non-unitary ideals and p is the only prime integer in $\mathfrak{M}_{p, \alpha}$.

For a prime p and an integer $j \in\{0, \ldots, p-1\}$, we set:

$$
\mathcal{M}_{p, j}=\mathcal{M}_{j} \doteqdot(p, X-j)
$$

Whenever the notation $\mathcal{M}_{p, j}$ is used, it will be implicit that $j \in\{0, \ldots, p-1\}$.
The next lemma computes the intersection of the ideals $\mathcal{M}_{p, j}$, for a fixed prime p, by finding an ideal whose primary decomposition is given by this intersection (and its primary components are precisely the p ideals $\mathcal{M}_{p, j}$). From now on we will omit the index p.

Lemma 2.2. Let $p \in \mathbb{Z}$ be a prime. Then we have

$$
\bigcap_{j=0, \ldots, p-1} \mathcal{M}_{j}=\left(p, \prod_{j=0, \ldots, p-1}(X-j)\right)
$$

Proof. Let J be the ideal on the right-hand side. If P is a prime minimal over J, then we see immediately that $P=\mathcal{M}_{j}$ for some $j \in\{0, \ldots, p-1\}$, since \mathcal{M}_{j} is a maximal ideal. Conversely, every such a maximal ideal contains J and is minimal over it. Then the minimal primary decomposition of J is of the form

$$
J=\bigcap_{j=0, \ldots, p-1} Q_{j}
$$

where Q_{j} is an \mathcal{M}_{j}-primary ideal. Since $X-i \notin \mathcal{M}_{j}$ for all $i \in\{0, \ldots, p-1\} \backslash\{j\}$, we have $(X-j) \in$ Q_{j}, so indeed $Q_{j}=(p, X-j)$ for each $j=0, \ldots, p-1$.

The next proposition characterizes the principal unitary ideals in $\operatorname{Int}(\mathbb{Z})$ generated by a prime p.
Proposition 2.1. Let $p \in \mathbb{Z}$ be a prime. Then the principal unitary ideal $p \operatorname{Int}(\mathbb{Z})$ is equal to

$$
p \operatorname{Int}(\mathbb{Z})=\bigcap_{\alpha \in \mathbb{Z}_{p}} \mathfrak{M}_{p, \alpha}
$$

Proof. We trivially have that $p \operatorname{Int}(\mathbb{Z})$ is contained in the above intersection, since p is in every ideal of the form $\mathfrak{M}_{p, \alpha}$. On the other hand, this intersection is equal to $\left\{f \in \operatorname{Int}(\mathbb{Z}) \mid f\left(\mathbb{Z}_{p}\right) \subset p \mathbb{Z}_{p}\right\}$. If $f(X)$ is in this intersection, since $f(X)$ is integer-valued and $p \mathbb{Z}_{p} \cap \mathbb{Z}=p \mathbb{Z}$, we have $f(\mathbb{Z}) \subset p \mathbb{Z}$. This is equivalent to saying that $f(X) / p \in \operatorname{Int}(\mathbb{Z})$, that is, $f \in p \operatorname{Int}(\mathbb{Z})$.

In particular, the previous proposition implies that $\operatorname{Int}(\mathbb{Z})$ does not have the finite character property (we recall that a ring has this property if every non-zero element is contained in a finite number of maximal ideals).

From the above results we get the following theorem, which characterizes the ideal of polynomials with integer coefficients whose fixed divisor is divisible by a prime p, that is, the ideal $p \operatorname{Int}(\mathbb{Z}) \cap \mathbb{Z}[X]$.

Theorem 2.1. Let p be a prime. Then

$$
p \operatorname{Int}(\mathbb{Z}) \cap \mathbb{Z}[X]=\left(p, \prod_{j=0, \ldots, p-1}(X-j)\right)
$$

Notice that Lemma 2.2 gives the primary decomposition of $p \operatorname{Int}(\mathbb{Z}) \cap \mathbb{Z}[X]$, so \mathcal{M}_{j} for $j=$ $0, \ldots, p-1$ are exactly the prime ideals belonging to it. As a consequence of this theorem we get the following well-known result: if $f \in \mathbb{Z}[X]$ is primitive and p is a prime such that $d(f) \subseteq p$ then $p \leqslant \operatorname{deg}(f)$. This immediately follows from the theorem, since the degree of $\prod_{j=0, \ldots, p-1}(X-j)$ is p.

We remark that by Fermat's little theorem the ideal on the right-hand side of the statement of Theorem 2.1 is equal to ($p, X^{p}-X$). This amounts to saying that the two polynomials $X \cdots \cdots(X-$ $(p-1))$ and $X^{p}-X$ induce the same polynomial function on $\mathbb{Z} / p \mathbb{Z}$.

3. Contraction of primary ideals

We remark that Proposition 2.1 also follows from a general result contained in [11]: every unitary ideal in $\operatorname{Int}(\mathbb{Z})$ is an intersection of powers of unitary prime ideals (namely the maximal ideals $\mathfrak{M}_{p, \alpha}$). In particular, every $\mathfrak{M}_{p, \alpha}$-primary ideal is a power of $\mathfrak{M}_{p, \alpha}$ itself, since $\mathfrak{M}_{p, \alpha}$ is maximal. From the same result we also have the following characterization of the powers of $\mathfrak{M}_{p, \alpha}$, for any positive integer n :

$$
\mathfrak{M}_{p, \alpha}^{n}=\left\{f \in \operatorname{Int}(\mathbb{Z}) \mid f(\alpha) \in p^{n} \mathbb{Z}_{p}\right\} .
$$

This fact implies the following expression for the principal unitary ideal generated by p^{n} :

$$
\begin{equation*}
p^{n} \operatorname{Int}(\mathbb{Z})=\bigcap_{\alpha \in \mathbb{Z}_{p}} \mathfrak{M}_{p, \alpha}^{n} \tag{1}
\end{equation*}
$$

We remark again that the previous ideal is made up of those integer-valued polynomials whose extended fixed divisor is contained in $p^{n} \operatorname{Int}(\mathbb{Z})$. Similarly to the previous case $n=1$ (see Theorem 2.1) we want to find the contraction of this ideal to $\mathbb{Z}[X]$, in order to find the polynomials in $\mathbb{Z}[X]$ whose fixed divisor is divisible by p^{n}. We set:

$$
\begin{equation*}
I_{p^{n}} \doteqdot p^{n} \operatorname{Int}(\mathbb{Z}) \cap \mathbb{Z}[X] \tag{2}
\end{equation*}
$$

Notice that by (1) we have $I_{p^{n}}=\bigcap_{\alpha \in \mathbb{Z}_{p}}\left(\mathfrak{M}_{p, \alpha}^{n} \cap \mathbb{Z}[X]\right)$.
Like before, we begin by finding the contraction to $\mathbb{Z}[X]$ of $\mathfrak{M}_{p, \alpha}^{n}$, for each $\alpha \in \mathbb{Z}_{p}$. The next lemma is a generalization of Lemma 2.1.

Lemma 3.1. Let p be a prime, n a positive integer and $\alpha \in \mathbb{Z}_{p}$. Then $\mathfrak{M}_{p, \alpha}^{n} \cap \mathbb{Z}[X]=\left(p^{n}, X-a\right)$, where $a \in \mathbb{Z}$ is such that $\alpha \equiv a\left(\bmod p^{n}\right)$. The ideal $\mathfrak{M}_{p, \alpha}^{n} \cap \mathbb{Z}[X]$ is $\mathcal{M}_{p, j}$-primary, where $j \equiv \alpha(\bmod p)$. Moreover, if $\beta \in \mathbb{Z}_{p}$ is another p-adic integer, we have $\mathfrak{M}_{p, \alpha}^{n} \cap \mathbb{Z}[X]=\mathfrak{M}_{p, \beta}^{n} \cap \mathbb{Z}[X]$ if and only if $\alpha \equiv \beta\left(\bmod p^{n}\right)$.

Proof. The case $n=1$ has been done in Lemma 2.1. For the general case, let $a \in \mathbb{Z}$ be such that $a \equiv \alpha\left(\bmod p^{n}\right)$ (again, such an integer exists since \mathbb{Z} is dense in \mathbb{Z}_{p} for the p-adic topology). We have ($\left.p^{n}, X-a\right) \subset \mathfrak{M}_{p, \alpha}^{n} \cap \mathbb{Z}[X]$ (notice that if $n>1$ then ($p^{n}, X-a$) is not a prime ideal). To prove the other inclusion let $f \in \mathfrak{M}_{p, \alpha}^{n} \cap \mathbb{Z}[X]$. By the Euclidean algorithm in $\mathbb{Z}[X]$ (the leading coefficient of $X-a$ is a unit) we have

$$
f(X)=q(X)(X-a)+f(a) .
$$

Since $f(\alpha) \in p^{n} \mathbb{Z}_{p}$ and $p^{n} \mid a-\alpha$ we have $p^{n} \mid f(a)$. Hence, $f \in\left(p^{n}, X-a\right)$ as we wanted. Since $\mathfrak{M}_{p, \alpha}^{n}$ is an $\mathfrak{M}_{p, \alpha}$-primary ideal in $\operatorname{Int}(\mathbb{Z})$ and the contraction of a primary ideal is a primary ideal, by Lemma 2.1 we get the second statement. Finally, like in the proof of Lemma 2.1, we immediately see that $\left(p^{n}, X-a\right)=\left(p^{n}, X-b\right)$ if and only if $a \equiv b\left(\bmod p^{n}\right)$, which gives the last statement of the lemma.

Remark 1. It is worth to write down the fact that we used in the above proof: given a polynomial $f \in \mathbb{Z}[X]$, we have

$$
\begin{equation*}
f \in\left(p^{n}, X-a\right) \quad \Longleftrightarrow \quad f(a) \equiv 0 \quad\left(\bmod p^{n}\right) . \tag{3}
\end{equation*}
$$

Remark 2. If p is a fixed prime and n is a positive integer, Lemma 3.1 implies

$$
\mathcal{I}_{p, n} \doteqdot\left\{\mathfrak{M}_{p, \alpha}^{n} \cap \mathbb{Z}[X] \mid \alpha \in \mathbb{Z}_{p}\right\}=\left\{\left(p^{n}, X-i\right) \mid i=0, \ldots, p^{n}-1\right\} .
$$

Let us consider an ideal $I=\mathfrak{M}_{p, \alpha}^{n} \cap \mathbb{Z}[X]=\left(p^{n}, X-i\right)$ in $\mathcal{I}_{p, n}$, with $i \in \mathbb{Z}, i \equiv \alpha\left(\bmod p^{n}\right)$. It is quite easy to see that I contains $\left(\mathfrak{M}_{p, \alpha} \cap \mathbb{Z}[X]\right)^{n}=\mathcal{M}_{p, j}^{n}=(p, X-j)^{n}$, where $j \in\{0, \ldots, p-1\}$, $j \equiv \alpha(\bmod p)($ notice that $j \equiv i(\bmod p))$. If $n>1$ this containment is strict, since $X-i \notin(p, X-j)^{n}$. We can group the ideals of $\mathcal{I}_{p, n}$ according to their radical: there are p radicals of these p^{n} ideals, namely the maximal ideals $\mathcal{M}_{p, j}, j=0, \ldots, p-1$. This amounts to making a partition of the residue classes modulo p^{n} into p different sets of elements congruent to j modulo p, for $j=0, \ldots, p-1$; each of these sets has cardinality p^{n-1}. Correspondingly we have:

$$
\mathcal{I}_{p, n}=\bigcup_{j=0, \ldots, p-1} \mathcal{I}_{p, n, j}
$$

where $\mathcal{I}_{p, n, j} \doteqdot\left\{\left(p^{n}, X-i\right) \mid i=0, \ldots, p^{n}-1, i \equiv j(\bmod p)\right\}$, for $j=0, \ldots, p-1$. Every ideal in $\mathcal{I}_{p, n, j}$ is $\mathcal{M}_{p, j}$-primary and it contains the n-th power of its radical, namely $\mathcal{M}_{p, j}^{n}$.

Now we want to compute the intersection of the ideals in $\mathcal{I}_{p, n}$, which is equal to the ideal $I_{p^{n}}$ in $\mathbb{Z}[X]$ (see (1) and (2)). We can express this intersection as an intersection of $\mathcal{M}_{p, j}$-primary ideals as we have said above, in the following way (in the first equality we make use of Eq. (1) and Lemma 3.1):

$$
\begin{equation*}
I_{p^{n}}=\bigcap_{i=0, \ldots, p^{n}-1}\left(p^{n}, X-i\right)=\bigcap_{j=0, \ldots, p-1} \mathcal{Q}_{p, n, j} \tag{4}
\end{equation*}
$$

where

$$
\mathcal{Q}_{p, n, j} \doteqdot \bigcap_{i=j(\bmod p)}\left(p^{n}, X-i\right)
$$

(notice that the intersection is taken over the set $\left\{i \in\left\{0, \ldots, p^{n}-1\right\} \mid i \equiv j(\bmod p)\right\}$). The ideal $\mathcal{Q}_{p, n, j}$ is an $\mathcal{M}_{p, j}$-primary ideal, for $j=0, \ldots, p-1$, since the intersection of M-primary ideals is an M-primary ideal. We will omit the index p in $\mathcal{Q}_{p, n, j}$ and in $\mathcal{M}_{p, j}$ if that will be clear from the context. The $\mathcal{M}_{p, j}$-primary ideal $\mathcal{Q}_{n, j}$ is just the intersection of the ideals in $\mathcal{I}_{p, n, j}$, according to the partition we made. It is equal to the set of polynomials in $\mathbb{Z}[X]$ which modulo p^{n} are zero at the residue classes congruent to j modulo p (see (3) of Remark 1). We remark that (4) is the minimal primary decomposition of $I_{p^{n}}$. Notice that there are no embedded components in this primary decomposition, since the prime ideals belonging to it (the minimal primes containing $I_{p^{n}}$) are $\left\{\mathcal{M}_{j} \mid j=0, \ldots, p-1\right\}$, which are maximal ideals.

We recall that if I and J are two coprime ideals in a ring R, that is $I+J=R$, then $I J=I \cap J$ (in general only the inclusion $I J \subset I \cap J$ holds). The condition for two ideals I and J to be coprime amounts to saying that I and J are not contained in a same maximal ideal M, that is, $I+J$ is not contained in any maximal ideal M. If M_{1} and M_{2} are two distinct maximal ideals then they are coprime, and the same holds for any of their respective powers. If R is Noetherian, then every primary ideal Q contains a power of its radical and moreover if the radical of Q is maximal then also the converse holds (see [14]). So if Q_{i} is an M_{i}-primary ideal for $i=1,2$ and M_{1}, M_{2} are distinct maximal ideals, then Q_{1} and Q_{2} are coprime.

Since $\left\{\mathcal{M}_{j}\right\}_{j=0, \ldots, p-1}$ are p distinct maximal ideals, for what we have just said above we have

$$
\bigcap_{j=0, \ldots, p-1} \mathcal{Q}_{n, j}=\prod_{j=0, \ldots, p-1} \mathcal{Q}_{n, j}
$$

Now we want to describe the \mathcal{M}_{j}-primary ideals $\mathcal{Q}_{n, j}$, for $j=0, \ldots, p-1$. The next lemma gives a relation of containment between these ideals and the n-th powers of their radicals.

Lemma 3.2. Let p be a fixed prime and n a positive integer. For each $j=0, \ldots, p-1$, we have

$$
\mathcal{Q}_{n, j} \supseteq \mathcal{M}_{j}^{n}
$$

Proof. The statement follows from Remark 2.

As a consequence of this lemma, we get the following result:
Corollary 3.1. Let p be a fixed prime and n a positive integer. Then we have:

$$
I_{p^{n}} \supseteq\left(p, \prod_{j=0, \ldots, p-1}(X-j)\right)^{n}
$$

Proof. By (4) and Lemma 3.2 we have

$$
I_{p^{n}}=\prod_{j=0, \ldots, p-1} \mathcal{Q}_{n, j} \supseteq \prod_{j=0, \ldots, p-1} \mathcal{M}_{j}^{n}
$$

where the last containment follows from Lemma 3.2. Finally, by Lemma 2.2, the product of the ideals \mathcal{M}_{j}^{n} is equal to

$$
\prod_{j=0, \ldots, p-1} \mathcal{M}_{j}^{n}=\left(p, \prod_{j=0, \ldots, p-1}(X-j)\right)^{n}
$$

Notice that the product of the \mathcal{M}_{j} 's is actually equal to their intersection, since they are maximal coprime ideals.

The last formula of the previous proof gives the primary decomposition of the ideal $\left(p, \prod_{j=0, \ldots, p-1}(X-j)\right)^{n}$.

Remark 3. In general, for a fixed $j \in\{0, \ldots, p-1\}$, the reverse containment of Lemma 3.2 does not hold, that is, the n-th power of \mathcal{M}_{j} can be strictly contained in the \mathcal{M}_{j}-primary ideal $\mathcal{Q}_{n, j}$. For example (again, we use (3) to prove the containment):

$$
X(X-2) \in\left(\bigcap_{k=0, \ldots, 3}\left(2^{3}, X-2 k\right)\right) \backslash(2, X)^{3}
$$

Because of that, in general we do not have an equality in Corollary 3.1. For example, let $p=2$ and $n=3$. We have

$$
X(X-1)(X-2)(X-3) \in I_{2^{3}} \backslash(2, X(X-1))^{3}
$$

It is also false that

$$
\bigcap_{i=0, \ldots, p^{n}-1}\left(p^{n}, X-i\right)=\left(p^{n}, \prod_{i=0, \ldots, p^{n}-1}(X-i)\right)
$$

See for example: $p=2, n=2: 2 X(X-1) \in \bigcap_{i=0, \ldots, 3}(4, X-i) \backslash\left(4, \prod_{i=0, \ldots, 3}(X-i)\right)$.
We want to study under which conditions the ideal $\mathcal{Q}_{n, j}$ is equal to \mathcal{M}_{j}^{n}. Our aim is to find a set of generators for $\mathcal{Q}_{n, j}$. For $f \in \mathcal{Q}_{n, j}$, we have $f \in\left(p^{n}, X-i\right)$ for each $i \equiv j(\bmod p), i \in\left\{0, \ldots, p^{n}-1\right\}$. By (3) that means $p^{n} \mid f(i)$ for each such an i. Equivalently, such a polynomial has the property that modulo p^{n} it is zero at the p^{n-1} residue classes of $\mathbb{Z} / p^{n} \mathbb{Z}$ which are congruent to j modulo p.

Without loss of generality, we proceed by considering the case $j=0$. We set $\mathcal{M}=\mathcal{M}_{0}=(p, X)$ and $\mathcal{Q}_{n}=\mathcal{Q}_{n, 0}=\bigcap_{i \equiv 0(\bmod p)}\left(p^{n}, X-i\right)$. Let $f \in \mathcal{Q}_{n}$, of degree m. We have

$$
\begin{equation*}
f(X)=q_{1}(X) X+f(0) \tag{5}
\end{equation*}
$$

where $q_{1} \in \mathbb{Z}[X]$ has degree equal to $m-1$. Since $f \in\left(p^{n}, X\right)$ we have $p^{n} \mid f(0)$.
Since $f \in\left(p^{n}, X-p\right)$, we have $p^{n} \mid f(p)=q_{1}(p) p+f(0)$, so $p^{n-1} \mid q_{1}(p)$. By the Euclidean algorithm,

$$
\begin{equation*}
q_{1}(X)=q_{2}(X)(X-p)+q_{1}(p) \tag{6}
\end{equation*}
$$

for some polynomial $q_{2} \in \mathbb{Z}[X]$ of degree $m-2$. So

$$
f(X)=q_{2}(X)(X-p) X+q_{1}(p) X+f(0) .
$$

We set $R_{1}(X)=q_{1}(p) X+f(0)$. Then $R_{1} \in \mathcal{M}^{n}$, since $p^{n-1} \mid q_{1}(p)$ and $p^{n} \mid f(0)$. Since $f \in\left(p^{n}, X-2 p\right)$, we have $p^{n} \mid f(2 p)=q_{2}(2 p) 2 p^{2}+q_{1}(p) 2 p+f(0)$. If $p>2$ then $p^{n-2} \mid q_{2}(2 p)$, because $p^{n} \mid q_{1}(p) 2 p+$ $f(0)$. If $p=2$ then we can just say $p^{n-3} \mid q_{2}(2 p)$. By the Euclidean algorithm again, we have

$$
q_{2}(X)=q_{3}(X)(X-2 p)+q_{2}(2 p)
$$

for some $q_{3} \in \mathbb{Z}[X]$. So we have

$$
f(X)=q_{3}(X)(X-2 p)(X-p) X+q_{2}(2 p)(X-p) X+q_{1}(p) X+f(0) .
$$

Like before, if we set $R_{2}(X)=q_{2}(2 p)(X-p) X+q_{1}(p) X+f(0)$, we have $R_{2} \in \mathcal{M}^{n}$ if $p>2$, or $R_{2} \in \mathcal{Q}_{n}$ if $p=2$.

We define now the following family of polynomials:
Definition 3.1. For each $k \in \mathbb{N}, k \geqslant 1$, we set

$$
G_{p, 0, k}(X)=G_{k}(X) \doteqdot \prod_{h=0, \ldots, k-1}(X-h p)
$$

We also set $G_{0}(X) \doteqdot 1$.
From now on, we will omit the index p in the above notation.
Notice that the polynomials $G_{k}(X)$, whose degree for each k is k, enjoy these properties:
i) For every $t \in \mathbb{Z}, G_{k}(t p)=p^{k} t(t-1) \cdots(t-(k-1))$. Hence, the highest power of p which divides all the integers in the set $\left\{G_{k}(t p) \mid t \in \mathbb{Z}\right\}$ is $p^{k+v_{p}(k!)}$. It is easy to see that $k+v_{p}(k!)=v_{p}((p k)!)$.
ii) $G_{k}(X)=(X-k p) G_{k-1}(X)$.
iii) since for every integer $h, X-h p \in \mathcal{M}$, we have $G_{k}(X) \in \mathcal{M}^{k}$. We remark that k is the maximal integer with this property, since $\operatorname{deg}\left(G_{k}\right)=k$ and $G_{k}(X)$ is primitive (since monic).

Recall that, by Lemma 3.2, for every integer n we have $\mathcal{Q}_{n} \supseteq \mathcal{M}^{n}$. By property iii) above $G_{k} \in \mathcal{M}^{n}$ if and only if $n \leqslant k$. By property i) we have $G_{k} \in \mathcal{Q}_{n}$ if and only if $k+v_{p}(k!) \geqslant n$. From these remarks, it is very easy to deduce that, in the case $p \geqslant n$, if $G_{k} \in \mathcal{Q}_{n}$ then $G_{k} \in \mathcal{M}^{n}$. In fact, if that is not the case, it follows from above that $k<n$. Since $n \leqslant p$ we get $k+v_{p}(k!)=k$. Since $G_{k} \in \mathcal{Q}_{n}$, we have $n \leqslant k$, contradiction.

The next lemma gives a sort of division algorithm between an element of \mathcal{Q}_{n} and the polynomials $\left\{G_{k}(X)\right\}_{k \in \mathbb{N}}$. In particular, we will deduce that $\mathcal{Q}_{n}=\mathcal{M}^{n}$, if $p \geqslant n$.

Lemma 3.3. Let p be a prime and n a positive integer. Let $f \in \mathcal{Q}_{p, n, 0}=\mathcal{Q}_{n}$ be of degree m. Then for each $1 \leqslant k \leqslant m$ there exists $q_{k} \in \mathbb{Z}[X]$ of degree $m-k$ such that

$$
f(X)=q_{k}(X) G_{k}(X)+R_{k-1}(X)
$$

where $R_{k-1}(X) \doteqdot \sum_{h=1, \ldots, k-1} q_{h}(h p) G_{h}(X)$ for $k \geqslant 2$ and $R_{0}(X) \doteqdot f(0)$.
We also have $q_{k}(X)=q_{k+1}(X)(X-k p)+q_{k}(k p)$ for $k=1, \ldots, m-1$. Moreover, for each such a k the following hold:
i) $p^{n-v_{p}((p k)!)} \mid q_{k}(k p)$, if $v_{p}((p k)!)<n$.
ii) $q_{k}(k p) G_{k}(X) \in \mathcal{Q}_{n}$ and if $k<p$ then $q_{k}(k p) G_{k}(X) \in \mathcal{M}^{n}$.
iii) If $m \leqslant p$ then $R_{k-1} \in \mathcal{M}^{n}$ for $k=1, \ldots, m$.

If $m>p$ then $R_{k-1} \in \mathcal{M}^{n}$ for $k=1, \ldots, p$ and $R_{k-1} \in \mathcal{Q}_{n}$ for $k=p+1, \ldots, m$.
Proof. We proceed by induction on k. The case $k=1$ follows from (5), and by (6) we have the last statement regarding the relation between $q_{1}(X)$ and $q_{2}(X)$. Suppose now the statement is true for $k-1$, so that

$$
f(X)=q_{k-1}(X) G_{k-1}(X)+R_{k-2}(X)
$$

with $R_{k-2}(X) \doteqdot \sum_{h=1, \ldots, k-2} q_{h}(h p) G_{h}(X)$ and

- $p^{n-v_{p}((p(k-1))!} \mid q_{k-1}((k-1) p)$, if $v_{p}((p(k-1)!))<n$,
- $q_{k-1}((k-1) p) G_{k-1}(X)$ belongs to \mathcal{Q}_{n} and if $k-1<p$ it belongs to \mathcal{M}^{n},
- $R_{k-2} \in \mathcal{Q}_{n}$ and if $k-2<p$ then $R_{k-2} \in \mathcal{M}^{n}$.

We divide $q_{k-1}(X)$ by ($X-(k-1) p$) and we get

$$
q_{k-1}(X)=q_{k}(X)(X-(k-1) p)+q_{k-1}((k-1) p)
$$

for some polynomial $q_{k} \in \mathbb{Z}[X]$ of degree $m-k$. We substitute this expression of $q_{k-1}(X)$ in the equation of $f(X)$ at the step $k-1$ and we get:

$$
\begin{equation*}
f(X)=q_{k}(X)(X-(k-1) p) G_{k-1}(X)+R_{k-1}(X) \tag{7}
\end{equation*}
$$

where $R_{k-1}(X) \doteqdot q_{k-1}((k-1) p) G_{k-1}(X)+R_{k-2}(X)$. This is the expression of $f(X)$ at step k, since $(X-(k-1) p) G_{k-1}(X)$ is equal to $G_{k}(X)$. By the inductive assumption, $R_{k-1} \in \mathcal{Q}_{n}$ and if $k-1<p$ we also have $R_{k-1} \in \mathcal{M}^{n}$. We still have to verify i) and ii).

We evaluate the expression (7) in $X=k p$ and we get

$$
f(k p)=q_{k}(k p) G_{k}(k p)+R_{k-1}(k p)=q_{k}(k p) p^{k} k!+R_{k-1}(k p) .
$$

Since p^{n} divides both $f(k p)$ and $R_{k-1}(k p)$ (by definition of $\left.\mathcal{Q}_{n}\right)$, if $v_{p}((p k)!)<n$ we get that $q_{k}(k p)$ is divisible by $p^{n-v_{p}((p k)!\text { ! }}$, which is statement i$)$ at the step k. Notice that $q_{k}(k p) G_{k}(X)$ is zero modulo p^{n} on every integer congruent to zero modulo p; hence, $q_{k}(k p) G_{k}(X) \in \mathcal{Q}_{n}$. Moreover, $k<p \Leftrightarrow$ $v_{p}(k!)=0$, so in that case $q_{k}(k p) G_{k}(X) \in \mathcal{M}^{n}$. So ii) follows.

Notice that by formula (3) of Remark 1, under the assumptions of Lemma 3.3 we have for each $k \in\{1, \ldots, p-1\}$ that

$$
q_{k} \in\left(p^{n-k}, X-k p\right)
$$

(see i) of Lemma 3.3: in this case $v_{p}((p k)!)=k$). If $k=m=\operatorname{deg}(f)$ then $q_{k} \in \mathbb{Z}$. Hence, we get the following expression for a polynomial $f \in \mathcal{Q}_{n}$ in the case $p \geqslant n>m$ (this assumption is not restrictive, since $X^{n} \in \mathcal{Q}_{n}$):

$$
\begin{equation*}
f(X)=q_{m} G_{m}(X)+R_{m-1}(X)=q_{m} G_{m}(X)+\sum_{k=1, \ldots, m-1} q_{k}(k p) G_{k}(X) \tag{8}
\end{equation*}
$$

where $q_{m} \in \mathbb{Z}$ is divisible by p^{n-m} and $R_{m-1}(X)$ is in \mathcal{M}^{n}.
The next proposition determines the primary components $\mathcal{Q}_{n, j}$ of $I_{p^{n}}$ of (4) in the case $p \geqslant n$. It shows that in this case the containment of Lemma 3.2 is indeed an equality.

Proposition 3.1. Let $p \in \mathbb{Z}$ be a prime and n a positive integer such that $p \geqslant n$. Then for each $j=0, \ldots, p-1$ we have

$$
\mathcal{Q}_{n, j}=\mathcal{M}_{j}^{n} .
$$

Proof. It is sufficient to prove the statement for $j=0$: for the other cases we consider the $\mathbb{Z}[X]$-automorphisms $\pi_{j}(X)=X-j$, for $j=1, \ldots, p-1$, which permute the ideals $\mathcal{Q}_{n, j}$ and \mathcal{M}_{j}. Let $\mathcal{Q}_{n}=\mathcal{Q}_{n, 0}$ and $\mathcal{M}=\mathcal{M}_{0}$.

The inclusion (\supseteq) follows from Lemma 3.2. For the other inclusion (\subseteq), let $f(X)$ be in \mathcal{Q}_{n}. We can assume that the degree m of $f(X)$ is less than n, since X^{n} is the smallest monic monomial in \mathcal{Q}_{n}. By Eq. (8) above, $f(X)$ is in \mathcal{M}^{n}, since p^{n-m} divides $q_{m}, G_{m} \in \mathcal{M}^{m}$ and $R_{m-1} \in \mathcal{M}^{n}$ by Lemma 3.3 (notice that $m-1<p$).

Remark 4. In the case $p \geqslant n$, Lemma 3.3 implies that \mathcal{Q}_{n} is generated by $\left\{p^{n-m} G_{m}(X)\right\}_{0 \leqslant m \leqslant n}$: it is easy to verify that these polynomials are in \mathcal{Q}_{n} (using (3) again) and (8) implies that every polynomial $f \in \mathcal{Q}_{n}$ is a \mathbb{Z}-linear combination of $\left\{p^{n-m} G_{m}(X)\right\}_{0 \leqslant m \leqslant n}$, since $q_{m}(m p)$ is divisible by p^{n-m}, for each of the relevant m.

The following theorem gives a description of the ideal $I_{p^{n}}$ in the case $p \geqslant n$. In this case the containment of Corollary 3.1 becomes an equality.

Theorem 3.1. Let $p \in \mathbb{Z}$ be a prime and n a positive integer such that $p \geqslant n$. Then the ideal in $\mathbb{Z}[X]$ of those polynomials whose fixed divisor is divisible by p^{n} is equal to

$$
I_{p^{n}}=\left(p, \prod_{i=0, \ldots, p-1}(X-i)\right)^{n} .
$$

Proof. By Proposition 3.1, for each $j=0, \ldots, p-1$ the ideal $\mathcal{Q}_{n, j}$ is equal to \mathcal{M}_{j}^{n}. So, by the last formula of the proof of Corollary 3.1, we get the statement.

As a consequence, we have the following remark. Let p be a prime and n a positive integer less than or equal to p. Let $f \in I_{p^{n}}$ such that the content of $f(X)$ is not divisible by p. Then $\operatorname{deg}(f) \geqslant n p$, since $n p=\operatorname{deg}\left(\prod_{i=0, \ldots, p-1}(X-i)^{n}\right)$. Another well-known result in this context is the following: if we fix the degree d of such a polynomial f, then the maximum n such that $f \in I_{p^{n}}$ is bounded by $n \leqslant \sum_{k \geqslant 1}\left[d / p^{k}\right]=v_{p}(d!)$.

If we drop the assumption $p \geqslant n$, the ideal $\mathcal{Q}_{n, j}$ may strictly contain \mathcal{M}_{j}^{n}, as we observed in Remark 3. The next proposition shows that this is always the case, if $p<n$. This result follows from Lemma 3.3 as Proposition 3.1 does, and it covers the remaining case $p<n$. It is stated for the case $j=0$. Remember that $\mathcal{M}=(p, X)$ and $\mathcal{Q}_{n}=\bigcap_{i \equiv 0(\bmod p)}\left(p^{n}, X-i\right)$.

Proposition 3.2. Let $p \in \mathbb{Z}$ be a prime and n a positive integer such that $p<n$. Then we have

$$
\mathcal{Q}_{n}=\mathcal{M}^{n}+\left(q_{n, p} G_{p}(X), \ldots, q_{n, n-1} G_{n-1}(X)\right)
$$

where, for each $k=p, \ldots, n-1, q_{n, k}$ is an integer defined as follows:

$$
q_{n, k} \doteqdot \begin{cases}p^{n-v_{p}((p k)!)}, & \text { if } v_{p}((p k)!)<n \\ 1, & \text { otherwise }\end{cases}
$$

In particular, \mathcal{M}^{n} is strictly contained in \mathcal{Q}_{n}.
Proof. We begin by proving the containment (\supseteq). Lemma 3.2 gives $\mathcal{M}^{n} \subseteq \mathcal{Q}_{n}$. We have to show that the polynomials $q_{n, k} G_{k}(X)$, for $k \in\{p, \ldots, n-1\}$, lie in \mathcal{Q}_{n}. This follows from property i) of the polynomials $G_{k}(X)$ and the definition of $q_{n, m}$.

Now we prove the other containment (\subseteq). Let $f \in \mathcal{Q}_{n}$ be of degree m. If $m<p$ then $f \in \mathcal{M}^{n}$ (see Lemma 3.3 and in particular (8)). So we suppose $p \leqslant m$. By Lemma 3.3 we have

$$
\begin{equation*}
f(X)=\sum_{k=p, \ldots, m} q_{h}(h p) G_{h}(X)+R_{p-1}(X) \tag{9}
\end{equation*}
$$

where $R_{p-1}(X)=\sum_{k=1, \ldots, p-1} q_{k}(h p) G_{h}(X) \in \mathcal{M}^{n}$ and $q_{m} \in \mathbb{Z}$, so that $q_{m}(m p)=q_{n, m}$. Then, since $q_{n, k}=p^{n-v_{p}((p k)!)} \mid q_{k}(k p)$ if $v_{p}((p k)!)<n$, it follows that the first sum on the right-hand side of the previous equation belongs to the ideal ($q_{n, p} G_{p}(X), \ldots, q_{n, n-1} G_{n-1}(X)$). For the last sentence of the proposition, we remark that the polynomials $\left\{q_{n, k} G_{k}(X)\right\}_{k=p, \ldots, n-1}$ are not contained in \mathcal{M}^{n} : in fact, for each $k \in\{p, \ldots, n-1\}$, by property iii) of the polynomials $G_{k}(X)$ we have that the minimal integer N such that $q_{n, k} G_{k}(X)$ is contained in \mathcal{M}^{N} is $n-v_{p}(k!)$ if $v_{p}((p k)!)=k+v_{p}(k!)<n$ and it is k otherwise. In both cases it is strictly less than n (since $v_{p}(k!) \geqslant 1$, if $k \geqslant p$).

Remark 5. The following remark allows us to obtain another set of generators for \mathcal{Q}_{n}. We set

$$
\begin{equation*}
\bar{m}=\bar{m}(n, p) \doteqdot \min \left\{m \in \mathbb{N} \mid v_{p}((p m)!) \geqslant n\right\} . \tag{10}
\end{equation*}
$$

Remember that $v_{p}((p m)!)=m+v_{p}(m!)$. If $p \geqslant n$ then $\bar{m}=n$ and if $p<n$ then $p \leqslant \bar{m}<n$.
Suppose $p<n$. Then for each $m \in\{\bar{m}, \ldots, n\}$ we have $v_{p}((p m)!) \geqslant n$, since the function $e(m)=$ $m+v_{p}(m!)$ is increasing. So for each such m we have $q_{n, m}=1$, hence $G_{m} \in\left(G_{\bar{m}}(X)\right)$. So we have the equalities:

$$
\begin{align*}
\mathcal{Q}_{n} & =\mathcal{M}^{n}+\left(q_{n, m} G_{m}(X) \mid m=p, \ldots, \bar{m}\right) \\
& =\left(q_{n, m} G_{m}(X) \mid m=0, \ldots, \bar{m}\right) \tag{11}
\end{align*}
$$

where $q_{n, m}=p^{n-m}$, for $m=0, \ldots, p-1$, and for $m=p, \ldots, \bar{m}$ is defined as in the statement of Proposition 3.2. The containment (\supseteq) is just an easy verification using the properties of the polynomials $G_{m}(X)$; the other containment follows by (9).

We can now group together Proposition 3.1 and 3.2 into the following one:
Proposition 3.3. Let $p \in \mathbb{Z}$ be a prime and n a positive integer. Then we have

$$
\mathcal{Q}_{n}=\left(q_{n, 0} G_{0}(X), \ldots, q_{n, \bar{m}} G_{\bar{m}}(X)\right)
$$

where $\bar{m}=\min \left\{m \in \mathbb{N} \mid v_{p}((p m)!) \geqslant n\right\}$ and for each $m=0, \ldots, \bar{m}, q_{n, m}$ is an integer defined as follows:

$$
q_{n, m} \doteqdot \begin{cases}p^{n-v_{p}((p m)!)}, & m<\bar{m}, \\ 1, & m=\bar{m} .\end{cases}
$$

It is clear what the primary ideals \mathcal{Q}_{j}, for $j=1, \ldots, p-1$, look like:

$$
\begin{aligned}
\mathcal{Q}_{n, j} & =\bigcap_{i \equiv j(\bmod p)}\left(p^{n}, X-i\right)=\mathcal{M}_{j}^{n}+\left(q_{n, p} G_{p}(X-j), \ldots, q_{n, \bar{m}} G_{\bar{m}}(X-j)\right) \\
& =\left(q_{n, 0} G_{0}(X-j), \ldots, q_{n, \bar{m}} G_{\bar{m}}(X-j)\right) .
\end{aligned}
$$

In fact, for each $j=1, \ldots, p-1$, it is sufficient to consider the automorphisms of $\mathbb{Z}[X]$ given by $\pi_{j}(X)=X-j$. It is straightforward to check that $\pi_{j}\left(I_{p^{n}}\right)=I_{p^{n}}$. Moreover, $\pi\left(\mathcal{Q}_{n, 0}\right)=\mathcal{Q}_{n, j}$ and $\pi\left(\mathcal{M}_{0}\right)=\mathcal{M}_{j}$ for each such a j, so that π_{j} permutes the primary components of the ideal $I_{p^{n}}$.

The ideal $I_{p^{n}}=p^{n} \operatorname{Int}(\mathbb{Z}) \cap \mathbb{Z}[X]$ was studied in [2] in a slightly different context, as the kernel of the natural map $\varphi_{n}: \mathbb{Z}[X] \rightarrow \Phi_{n}$, where the latter is the set of functions from $\mathbb{Z} / p^{n} \mathbb{Z}$ to itself. In that article a recursive formula is given for a set of generators of this ideal. Our approach gives a new point of view to describe this ideal.

For other works about the ideal $I_{p^{n}}$ in a slightly different context, see [9,10,13]. This ideal is important in the study of the problem of the polynomial representation of a function from $\mathbb{Z} / p^{n} \mathbb{Z}$ to itself.

4. Case I_{p+1}

As a corollary we give an explicit expression for the ideal $I_{p^{n}}$ in the case $n=p+1$. By Proposition 3.2 the primary components of $I_{p^{p+1}}$ are

$$
\begin{equation*}
\mathcal{Q}_{p+1, j}=\mathcal{M}_{j}^{p+1}+\left(G_{p}(X-j)\right) \tag{12}
\end{equation*}
$$

for $j=0, \ldots, p-1$.

Corollary 4.1.

$$
I_{p^{p+1}}=\left(p, \prod_{i=0, \ldots, p-1}(X-i)\right)^{p+1}+(H(X))
$$

where $H(X)=\prod_{i=0, \ldots, p^{2}-1}(X-i)$.

We want to stress that the polynomial $H(X)$ is not contained in the first ideal of the right-hand side of the statement. In [2] a similar result is stated with another polynomial $\mathrm{H}_{2}(X)$ instead of our $H(X)$. Indeed the two polynomials, as already remarked in [2], are congruent modulo the ideal $\left(p, \prod_{i=0, \ldots, p-1}(X-i)\right)^{p+1}$.

Proof of Corollary 4.1. Like before, we set $\mathcal{Q}_{p, p+1, j}=\mathcal{Q}_{p+1, j}$. The containment (\supseteq) follows from Corollary 3.1 and because the polynomial $H(X)$ is equal to $\prod_{j=0, \ldots, p-1} G_{p}(X-j)$ and for each $j=0, \ldots, p-1$ the polynomial $G_{p}(X-j)$ is in $\mathcal{Q}_{p+1, j}$ by Proposition 3.2. Since $\mathcal{Q}_{p+1, j}$, for $j=0, \ldots, p-1$, are exactly the primary components of $I_{p^{p+1}}$ (see (4)), we get the claim.

Now we prove the other containment (\subseteq). Let $f \in I_{p^{p+1}}=\bigcap_{j=0, \ldots, p-1} \mathcal{Q}_{p+1, j}$. By (12) we have:

$$
f(X) \equiv C_{p, j}(X) G_{p}(X-j) \quad\left(\bmod \mathcal{M}_{j}^{p+1}\right)
$$

for some $C_{p, j} \in \mathbb{Z}[X]$, for $j=0, \ldots, p-1$.
Since the ideals $\left\{\mathcal{M}_{j}^{p+1}=(p, X-j)^{p+1} \mid j=0, \ldots, p-1\right\}$ are pairwise coprime (because they are powers of distinct maximal ideals, respectively), by the Chinese Remainder Theorem we have the following isomorphism:

$$
\begin{equation*}
\mathbb{Z}[X] /\left(\prod_{j=0}^{p-1} \mathcal{M}_{j}^{p+1}\right) \cong \mathbb{Z}[X] / \mathcal{M}_{0}^{p+1} \times \cdots \times \mathbb{Z}[X] / \mathcal{M}_{p-1}^{p+1} \tag{13}
\end{equation*}
$$

We need now the following lemma, which tells us what is the residue of the polynomial $H(X)$ modulo each ideal \mathcal{M}_{j}^{p+1} :

Lemma 4.1. Let p be a prime and let $H(X)=\prod_{j=0, \ldots, p-1} G_{p}(X-j)$. Then for each $k=0, \ldots, p-1$ we have

$$
H(X) \equiv-G_{p}(X-k) \quad\left(\bmod \mathcal{M}_{k}^{p+1}\right)
$$

Proof. Let $k \in\{0, \ldots, p-1\}$ and set $I_{k}=\{0, \ldots, p-1\} \backslash\{k\}$. For each $j \in I_{k}$ we have $G_{p}(k-j) \equiv$ $(k-j)^{p}(\bmod p)$. We have

$$
H(X)+G_{p}(X-k)=G_{p}(X-k)\left[1+\prod_{j \in I_{k}} G_{p}(X-j)\right]
$$

Since $G_{p}(X-k) \in \mathcal{M}_{k}^{p}$ we have just to prove that $T_{k}(X)=1+\prod_{j \in I_{k}} G_{p}(X-j) \in \mathcal{M}_{k}$. By formula (3) in Remark 1 it is sufficient to prove that $T_{k}(k)$ is divisible by p. We have

$$
\begin{aligned}
T_{k}(k) & \equiv 1+\prod_{j \in I_{k}}(k-j)^{p} \quad(\bmod p) \\
& \equiv 1+\left(\prod_{s=1, \ldots, p-1} s\right)^{p}(\bmod p) \\
& \equiv 1+(p-1)!^{p} \quad(\bmod p) \\
& \equiv(1+(p-1)!)^{p} \quad(\bmod p)
\end{aligned}
$$

which is congruent to zero by Wilson's theorem.
We finish now the proof of the corollary.

By the Chinese Remainder Theorem, there exists a polynomial $P \in \mathbb{Z}[X]$ such that $P(X) \equiv$ $-C_{p, j}(X)\left(\bmod \mathcal{M}_{j}^{p+1}\right)$, for each $j=0, \ldots, p-1$. Then by the previous lemma $P(X) H(X) \equiv$ $C_{p, j}(X) G_{p}(X-j)\left(\bmod \mathcal{M}_{j}^{p+1}\right)$ and so again by the isomorphism (13) above we have

$$
f(X) \equiv P(X) H(X) \quad\left(\bmod \prod_{j=0, \ldots, p-1} \mathcal{M}_{j}^{p+1}\right)
$$

so we are done since $\prod_{j=0, \ldots, p-1} \mathcal{M}_{j}^{p+1}=\left(p, \prod_{i=0, \ldots, p-1}(X-i)\right)^{p+1}$ (see the proof of Corollary 3.1).

Acknowledgments

I want to thank the referee for his/her suggestions. I wish also to thank Sophie Frisch for the useful references. I deeply thank Elvira Carlotti for her continuous and strenuous help. The author was supported by the Austrian Science Foundation (FWF), Project Number P23245-N18.

References

[1] D.F. Anderson, P.-J. Cahen, S.T. Chapman, W. Smith, Some factorization properties of the ring of integer-valued polynomials, in: Zero-Dimensional Commutative Rings, Knoxville, TN, 1994, in: Lect. Notes Pure Appl. Math., vol. 171, Dekker, New York, 1995, pp. 125-142.
[2] A. Bandini, Functions $f: \mathbb{Z} / p^{n} \mathbb{Z} \rightarrow \mathbb{Z} / p^{n} \mathbb{Z}$ induced by polynomials of $\mathbb{Z}[X]$, Ann. Mat. Pura Appl. (4) 181 (1) (2002) 95-104.
[3] J.-L. Chabert, Anneaux de polynômes à valeurs entières et anneaux de Fatou, Bull. Soc. Math. France 99 (1971) $273-283$.
[4] P.-J. Cahen, J.-L. Chabert, Integer-Valued Polynomials, Math. Surv. Monogr., vol. 48, Amer. Math. Soc., Providence, 1997.
[5] P.-J. Cahen, J.-L. Chabert, Elasticity for integral-valued polynomials, J. Pure Appl. Algebra 103 (3) (1995) 303-311.
[6] S.T. Chapman, B. McClain, Irreducible polynomials and full elasticity in rings of integer-valued polynomials, J. Algebra 293 (2) (2005) 595-610.
[7] L.E. Dickson, Introduction to the Theory of Numbers, Univ. Chicago Press, Chicago, 1929.
[8] H. Gunji, D.L. McQuillan, On a class of ideals in an algebraic number field, J. Number Theory 2 (1970) 207-222.
[9] G. Keller, F.R. Olson, Counting polynomial functions (mod p^{n}), Duke Math. J. 35 (1968) 835-838.
[10] D.J. Lewis, Ideals and polynomial functions, Amer. J. Math. 78 (1956) 71-77.
[11] K.A. Loper, Ideals of integer-valued polynomial rings, Comm. Algebra 25 (3) (1997) 833-845.
[12] D.L. McQuillan, On Prüfer domains of polynomials, J. Reine Angew. Math. 358 (1985) 162-178.
[13] I. Niven, L.J. Warren, A generalization of Fermat's theorem, Proc. Amer. Math. Soc. 8 (1957) 306-313.
[14] D.G. Northcott, Ideal Theory, Cambridge University Press, 1953.

[^0]: ${ }^{5}$ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 E-mail address: peruginelli@math.tugraz.at.

