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ABSTRACT
Faults in spreadsheets are not uncommon and they can have signifi-

cant negative consequences in practice. Various approaches for fault

localization were proposed in recent years, among them techniques

that transferred ideas from spectrum-based fault localization (SFL)

to the spreadsheet domain. Applying SFL to spreadsheets proved to

be effective, but has certain limitations. Specifically, the constrained

computational structures of spreadsheets may lead to large sets of

cells that have the same assumed fault probability according to SFL

and thus have to be inspected manually. In this work, we propose to

combine SFL with a fault prediction method based on spreadsheet

metrics in a machine learning (ML) approach. In particular, we train

supervised ML models using two orthogonal types of features: (i)

variables that are used to compute similarity coefficients in SFL and

(ii) spreadsheet metrics that have shown to be good predictors for

faulty formulas in previous work. Experiments with a widely-used

corpus of faulty spreadsheets indicate that the combined model

helps to significantly improve fault localization performance in

terms of wasted effort and accuracy.
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1 INTRODUCTION
Spreadsheets are widely used in organizations for reporting and

decision making tasks. Faults in spreadsheets are, however, not

uncommon [22] and can represent a major risk to organizations. A

variety of approaches have been proposed over the years to avoid, lo-

cate, and fix faults in spreadsheets [11]. In the context of debugging,

adapting Spectrum-based Fault Localization (SFL) techniques [2, 26]

for the spreadsheet domain proved to be effective [7, 9]. However,

applying SFL to rank the elements of a spreadsheet with respect

to their assumed fault probability may easily lead to having many

elements with the same ranking, i.e., to large ties [7]. If the tie that

contains the faulty cell(s)—the critical tie—is large, many elements

must be inspected by the spreadsheet developer, ultimately leading

to more wasted effort [3]. The problem of large critical ties when

applying SFL techniques is particularly pronounced for spread-

sheets, which have more limited computational structures than

conventional programs, e.g., there are no loops.

In this work, we propose to combine SFL with orthogonal infor-

mation for improved fault prediction in spreadsheets. Previous work

has shown that product metrics (i.e. metrics that can be computed

directly from the spreadsheet), including spreadsheet smells [8],

can be highly effective predictors for faulty formulas in spread-

sheets [5, 15]. Technically, we rely on a supervised machine learn-

ing approach where the features to predict if a given formula in a

spreadsheet is faulty include (i) the statistics used for computing

suspiciousness values in SFL and (ii) a set of product metrics [15].

The two types of features leverage different types of information.

Whereas the SFL-based features are based on spreadsheet execu-

tions, the product metrics are statically derived from the structure

of the spreadsheets and their formulas.

To validate our approach, we conducted experiments with the

widely used EUSES spreadsheet corpus [10]. The experiments show

that the combined learning approach is highly effective, leading to

a substantial increase in prediction accuracy and, likewise, largely

reduced amounts of wasted effort for fault localization.

A further analysis of the rankings produced by the traditional

SFL procedure revealed that computing suspiciousness values, e.g.,

with the Ochiai coefficient, indeed often results in large critical ties.

Our learning technique is successful to break these ties and thus

leads to a finer-grained ranking. As a side result, we found that some

effort-based metrics from the literature can be non-informative or

misleading in case of large ties in the ranking.
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2 BACKGROUND & PREVIOUS WORK
Many techniques have been proposed over the years for the problem

of (automated) fault localization in software [26]. Among them, SFL

represents a modern statistical approach. Basically, it assumes that

statements that are executed in many failing test cases and only in a

few passing test cases are more likely to be responsible for failures

[13]. Similarity coefficients are central in SFL-based approaches.

They are used to compute the suspiciousness of individual program

statements based on four execution statistics, i.e., on pass and fail

statistics of executed and non-executed statements, see [20].

To use SFL for spreadsheets, some adaptations are necessary.

Since there are no execution traces available in spreadsheets, in-

formation about which cells directly or indirectly influence the

value of the correct and erroneous output cells is used instead [10].

Hofer et al. [9] empirically evaluated the performance of various

similarity coefficients for spreadsheets and found that using the

Ochiai index leads to good results. Therefore, we use SFL with the

Ochiai index as a baseline method. Moreover, instead of combining

the four input statistics in a pre-defined way (as done in the Ochiai

index), we try to learn how to combine the inputs—and thus to learn

the measure—from the data. An orthogonal approach to find more

effective coefficients would be to learn how to combine multiple

similarity coefficients as done in the Multric approach [29].

SFL, like other fault localization techniques, may suffer from the

problem of ties, where several program statements receive the same

suspiciousness score and, therefore, the same ranking [28]. As there

is no unique ranking of the statements, researchers have proposed

to report the average, best, and worst case of the metrics (e.g., the

wasted effort) to simulate the scenarios where the user inspects the

actual fault first, in the middle or last from a set of statements with

the same suspicious score.

In our work, we combine SFL with product metrics for improved

fault prediction (and tie breaking) in a machine learning approach.

Other researchers [14, 19] have combined spectrum-based metrics

with a variety of static (i.e., file, function, and statement metrics)

and dynamic metrics (i.e., spectrum-based and mutation-based met-

rics). Differently from these works, we rely on product metrics as

predictors and specifically focus on the domain of spreadsheets.

In the context of spreadsheet debugging, various heuristic, rea-

soning, or learning-based methods were put forward in the last

years [11, 23], and prominent examples include Melford [25], CUS-

TODES [5], Warder [17], SGUARD [18], ExceLint [4], CACheck [6],

EmptyCheck [27], and SmellChecker [15]. Thesemethods aremainly

designed for the problem of fault detection and fault prediction,
whereas SFL (and our present work) focuses on fault localization
and the root cause of an observed misbehavior. SFL therefore re-

quires information about the correctness of outputs given the inputs.

In our work, we combine such information with information that

can be statically derived from spreadsheets in the form of product

metrics. One effect of combining SFL with product metrics is that

it leads to smaller ties, and thus improved accuracy on average.

Alternative techniques for tie-breaking for spreadsheets scenarios

were proposed earlier by Getzner et al. [7], but these techniques do
not rely on additional information from metrics for tie-breaking.

3 METHOD
Weuse a supervised learning approach, where the features (predictor
variables) include (i) execution statistics from test cases and (ii)

product metrics derived from the spreadsheet. Each data point (row)

corresponds to the outcomes of test case execution, and the label
of the target variable is therefore either correct or faulty. Figure 1
illustrates the general setup. The goal is to train a machine learning

model from the data to predict the correctness or faultiness of a

specific formula. Like various previous works, we focus on the

localization of faulty formulas and not on faulty input values.

SFL-based Features Product Metrics
Feature1 . . . Featurem Featurem+1 . . . Featurer Label
value1,1 . . . value1,m value1,m+1 . . . value1,r correct

. . . . . . . . . . . . . . . . . . . . .

valuen,1 . . . valuen,m valuen,m+1 . . . valuen,r faulty

Figure 1: General structure of the learning problem

Overall, our approach is generic and extensible in that the set

of features—both the SFL-based ones and the product metrics—

can be chosen depending on the specific situation. Moreover, our

method is not tied to a particular machine learning approach, and

any supervised learning method can in principle be applied.

SFL-based Features. When applying SFL, we compute four statis-

tics for each formula cell. These four statistics capture how often

a formula cell was involved in the computation of a correct or er-

roneous output in a test case, and how often it was not involved.
1

They are commonly used to compute similarity coefficients that

determine the suspiciousness of a formula, as mentioned above.

Differently from previous work, we propose not to rely on a

static, predefined way to combine these statistics, but to learn to

combine the statistics from the data. The four statistics are therefore

part of the SFL-based features in our learning setup illustrated in

Figure 1. Since our learning approach is generic, it allows us to

easily add additional SFL-based features. In our experiments, we

engineered a fifth feature. This feature is computed as the ratio of

the number of involvements of a cell in an erroneous output (i.e.,

one of the four features from above) to the number of incorrect

output cells in a spreadsheet. This feature thus estimates the overall

involvement of a cell in the computation of erroneous output. The

inclusion of additional derived features is part of our ongoing work.

Product Metrics. Koch et al. [15] proposed a catalog of 64 product
metrics and demonstrated the predictive power of these metrics for

fault localization in spreadsheets. These metrics can be statically

derived from a given spreadsheet, and we therefore do not expect

that a predictor based on product metrics alone will on average be

more accurate than SFL-based methods, which rely on information

about passed and failed test cases. However, our hypothesis is

that the product metrics represent important information that is

orthogonal to what is used in SFL, and that combining SFL features

with metric-based features is synergistic, i.e., it will result in more

accurate rankings in terms of fault suspiciousness.

1
A formal definition of these metrics can be found in [9].
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To avoid the inclusion of too many features in our prediction

model and to balance the contribution of the SFL-based and metrics-

based features, we ran a feature importance analysis for the product

metrics on the data set used in this study (see later). Based on this

analysis, we retained the fivemost important metrics-based features

from [15]: (i) the number of range references referring to the cell;

(ii) the number of direct references; (iii) the total number references

to the cell, i.e., the sum of the two previous metrics; (iv) “standard
deviation (column)”, i.e., the absolute difference to the mean of the

numeric values in the same column; (v) “standard deviation (row)”.
To foster future research in the area, we publicly share the dataset

with all derived features (both SFL-based and metrics-based ones)

for the corpus of faulty spreadsheets used in our experiments.
2

Learning Method. Our final model for learning has 10 features.

We experimented with an artificial neural network (ANN) and with

a Random Forest (RF) model. Systematic hyperparameter tuning

was applied using ten-fold cross-validation andwith the F1-measure

as optimization goal. Our optimized ANN has 10 input nodes, one

hidden layer with 80 nodes, and a softmax output layer that repre-

sents the probability distribution of a formula being faulty.

When analyzing the available data from EUSES corpus, we found

that it contains many duplicate entries. These duplicate rows are

mainly the result of the limited computational structures in spread-

sheets and a larger number of copy-equivalent formulas in the

spreadsheets. To avoid that such duplicates distort the learning

process, we applied deduplication on the training data, i.e., we only

kept one representative of a set of duplicates. The training data is

reduced by about 90 % through the deduplication process, thereby

also making training more efficient. Moreover, the output classes

in our problem settings are highly imbalanced, as most data points

correspond to succeeding test cases. Therefore, before training

the models, we applied oversampling of the minority class with

SMOTE [16] until the classes in the training data were balanced.

4 EXPERIMENTAL EVALUATION
In this section, we first describe the experimental setup in Sec-

tion 4.1 and then present our findings in Section 4.2.

4.1 Experiment Setup
We used the modified EUSES corpus [10] for our experiments. The

corpus comprises 696 spreadsheets, each of them containing one

single fault, which was injected based on mutation operators pre-

sented in [1]. The average number of cells per spreadsheet is 1,302

(14 to 41,097). Overall, there are 218,320 rows in the data. To evalu-

ate our prediction models, we split the corpus into training (90 %)

and test sets (10 %) within a ten fold cross-validation procedure. The

training data was deduplicated and over-sampled for class balance

as described in the previous section.

After learning the model on the training data, we used it to rank

the cells with formulas in each spreadsheet according to the fault

scores predicted by the model. We use two types of evaluation

measures in our experiments:

• Hit Ratio@n: This metric indicates how often our model

ranked the faulty cell within the first n elements.

2
Code, data and hyperparameters: https://doi.org/10.5281/zenodo.6826795

Table 1: Compared Approaches

SFL-Ochiai “Standard” SFL with Ochiai coefficient [10].

ANN-SFL ANN model using only 4 SFL-based features.

ANN-SFL+ ANN-SFL plus 5
th
engineered feature.

ANN-Metrics ANN model based on five product metrics.

ANN-Combined ANN model with all ten features.

RF-SFL RF model using only 4 SFL-based features.

RF-SFL+ RF-SFL plus 5
th
engineered feature.

RF-Metrics RF model based on five product metrics.

RF-Combined RF model with all ten features.

• Wasted Effort: This metric, sometimes called EXAM score

[12], captures howmany non-faulty cells were ranked before

(or : have to be inspected before) the faulty cell. The wasted
effort is thus an absolute evaluation measure and not a per-

centage rank. Such measures are increasingly considered

favorable to assess software fault localization techniques [3].

As done, e.g., in [10] and as discussed above, we report the aver-
age, best, and worst results for both types of metrics. To understand

the contributions of different types of features in our combined

model, we created submodels that only use certain parts of the avail-

able information. Table 1 summarizes the approaches and machine

learning (ML) models that we compared in our experiments.

4.2 Results
The main results of our experiments are shown in Table 2. The

columns marked in gray show the average results for the ranking-
related measures (Hit Ratio, Wasted Effort) for all examined meth-

ods. Both combinedmodels (ANN-Combined,RF-Combined), which

rely on both types of features, clearly outperform the best-performing

SFL-based baseline SFL-Ochiai from [10]. The Hit Ratios increase

by 30-50 % and the Wasted Effort is reduced by about 25 %. Interest-

ingly, none of the two combined models consistently outperforms

the other on these measures. The ANN-Combined method is best

in terms of Wasted Effort, and the RF-Combined model succeeds in

terms of the Hit Ratio. Similar effects are found for the worst-case
results. The differences between the best model RF-Combined in

terms of the Hit Ratio and the baseline SFL-Ochiai method are

statistically significant (according to an ANOVA and t-tests with

α = 0.05). For the Wasted Effort the differences between baseline

and best model (ANN-Combined) appear solid (about 25 %), but

the variance is high for this absolute measure, which can take very

large values for some of the huge spreadsheets in the corpus. As a

result, statistical significance is not achieved (p=0.33). Removing

outliers that fall behind three standard deviations from the mean

would make the results significant (p<0.01).

The average wasted effort seems to be too high to be useful in

proactive. However, it can be explained by the outliers. For this

reason, we additionally indicate the median of the average case. The

medians of the average wasted effort range between 2.87 and 8.37,

meaning that for half of the spreadsheets less than 9 cells have to

be manually inspected until the faulty cells are found. In the case of

the best-case metrics, we find that the SFL-Ochiai and the RF-SFL

(and RF-SFL+) methods lead to better results than the combined

https://doi.org/10.5281/zenodo.6826795
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Table 2: Hit Ratios, mean Average, Best, Worst Wasted Effort andmean size (and std. deviation) of critical ties. The best results
across all methods are printed in bold face.

HitRatio@1 HitRatio@5 Wasted Effort Size of

Avg. Best Worst Avg. Best Worst Avg. (Std., Median) Best (Std.) Worst (Std.) critical ties (Std.)

SFL-Ochiai 0.18 0.92 0.11 0.48 0.96 0.31 40.85 (20.39, 4.87) 1.90 (1.05) 79.79 (40.61) 77.93 (421.91)

ANN-SFL 0.18 0.90 0.11 0.49 0.95 0.31 40.13 (19.97, 4.5) 2.48 (1.52) 77.78 (39.24) 75.33 (406.12)

ANN-SFL+ 0.18 0.91 0.11 0.49 0.96 0.30 37.06 (22.08, 4.75) 2.37 (3.05) 71.74 (41.82) 69.46 (369.78)

ANN-Metrics 0.14 0.68 0.13 0.39 0.81 0.32 83.00 (38.61, 9.37) 26.10 (22.61) 139.90 (67.30) 113.71 (487.34)

ANN-Combined 0.28 0.68 0.26 0.61 0.87 0.52 31.32 (19.96, 3.12) 18.42 (21.92) 44.22 (20.63) 25.83 (103.38)

RF-SFL 0.17 0.94 0.11 0.49 0.98 0.31 40.39 (19.95, 4.62) 1.63 (3.36) 79.16 (40.18) 77.57 (421.62)

RF-SFL+ 0.17 0.94 0.11 0.49 0.98 0.30 40.55 (19.65, 4.62) 1.78 (3.35) 79.32 (39.88) 77.55 (421.61)

RF-Metrics 0.19 0.73 0.18 0.42 0.84 0.34 96.37 (36.13, 8.37) 38.63 (24.79) 154.11 (63.34) 115.38 (488.37)

RF-Combined 0.33 0.77 0.30 0.62 0.90 0.51 38.93 (25.09, 2.87) 24.88 (27.46) 52.98 (24.67) 28.12 (110.98)

methods that rely on more features. The explanation of this effect

lies in the average size of the critical ties, also shown in Table 2,

where SFL-Ochiai and RF-SFL lead to the largest critical ties on

average among the SFL-based techniques. This means that these

methods have the strongest tendency to assign identical scores to a

larger number of cells. Now if the true fault is among such a large

critical tie, all the cells in this tie will be ranked before all other

cells, and in the best-case measurement, it is assumed that the true

fault is at position one. Larger ties may therefore directly lead to

better results in the best case. This observation leads us to question

the value of reporting the best case in general. Imagine a ranking

method that assigns the same score to all cells of a spreadsheet

(or all statements in a regular program). In this case, the true fault

will be assumed to be at the first position in the ranking across all

cells, and thus necessarily lead to the highest recall possible and

the lowest wasted effort.

Looking more closely at the rankings of the other compared

methods or submodels, we observe the following:

• ANN-SFL+ performs slightly better than ANN-SFL, but there

is almost no difference between RF-SFL and RF-SFL+. This

suggests that the ANN model is better able to leverage the

information contained in the fifth engineered SFL feature

that we proposed in Section 3.

• The models that solely rely on product metrics (RF-Metrics,

ANN-Metrics) do not perform well compared to the SFL-

based models. As described, this can be attributed to the

fact that product metrics only rely on a static analysis of the

spreadsheets and cannot leverage information from test cases

like SFL. However, the performance of the combined models

(ANN-Combined, RF-Combined) indicates that the prod-

uct metrics are helpful to break critical ties, and to thereby

increase the average results significantly.

• The combined models (ANN-Combined and RF-Combined)

lead to a significant reduction of the average size of the

critical ties (p<0.01), and they thus likely contributed to the

observed gains in ranking-based measures.

• Additional experiments show that leaving out the deduplica-

tion and oversampling steps consistently leads to results that

are worse in terms of Hit Ratio and Wasted Effort compared

to the combined models. Deduplication in the training data

generally seems to be helpful to reduce theWasted Effort but
lead to drops in Hit Ratio. More experiments are still needed

to better understand the interplay of deduplication and over-

sampling and their effects on ranking-based measures.

5 FUTURE PLANS
To our knowledge, our work is the first to explore the value of

combining SFL with product metrics for spreadsheet programs.

More work is thus required to validate the generalizability of the

findings reported in this paper. In particular, it is important to

expand the scope of the experiments to additional spreadsheet

corpora, e.g., ENRON [24] or INFO1 [7]. In order to perform such

experiments, it is, however, first required to create a suite of test

cases for each corpus to derive the SFL execution statistics.

We will further improve our machine learning models. Currently,

no clear winner was found across the metrics. Therefore, we will in

particular explore the value of using more complex deep learning

architectures in the future, which have the promise to be able to

better model non-linear dependencies in the data. Moreover, we will

investigate to what extent other types of static and dynamic features

that were successfully explored in related works (e.g., mutation-

related ones) are suited to further increase prediction accuracy.

Furthermore, wewill develop a plugin similar to the SmellChecker

plugin [21] to perform user studies. One last future strand of our re-

search will be directed towards the question if the proposed method

is also effective for programs written in functional, procedural or

object-oriented programming languages.

6 CONCLUSION
We propose a novel approach to significantly improve the perfor-

mance of SFL-based methods for spreadsheets, which combines

SFL-based features regarding execution statistics with product met-

rics that can be derived through static analyses. Overall, we see

our work as another step towards improved fault localization sup-

port for spreadsheets, which often serve as a basis even for critical

decision-making processes in organizations.
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