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Abstract
We study the quantitative behaviour of genus numbers
of abelian extensions of number fields with given Galois
group. We prove an asymptotic formula for the aver-
age value of the genus number and show that any given
genus number appears only 0% of the time.
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1 INTRODUCTION

Let 𝑘 be a number field. The Cohen–Lenstra heuristics give a prediction for the distribution of the
odd part of the class groups of quadratic extensions of 𝑘 [2]. These are known for the 3-torsion
in the class group [3, 4], but are wide open in general. On the other hand, the 2-torsion in the
class group of a quadratic extension admits a very simple description via Gauss’s genus theory. It
is this part of the class group that we shall focus on in this paper, in the more general setting of
genus numbers of abelian extensions. There has been a recent interest in statistics regarding the
genus group for other classes of field extensions, for example for cubic and quintic extensions [15,
16], with the only previous cases considered in the abelian setting being cyclic extensions of ℚ of
prime degree [14]. The definition of the genus group for an abelian extension is as follows.

Definition 1.1. Let 𝐾∕𝑘 be an abelian extension. The genus field of 𝐾∕𝑘 is the largest extension
𝔊𝐾∕𝑘 of 𝐾 that is unramified at all places of 𝐾 and such that 𝔊𝐾∕𝑘 is an abelian extension of 𝑘.
The genus group of 𝐾∕𝑘 is the Galois group Gal(𝔊𝐾∕𝑘∕𝐾). The genus number 𝔤𝐾∕𝑘 of 𝐾∕𝑘 is the
size of the genus group.

At archimedean places, we use the convention that ℂ∕ℝ is ramified.
By class field theory, there is a tower of fields 𝐾 ⊂ 𝔊𝐾∕𝑘 ⊂ 𝐻𝐾 . Here 𝐻𝐾 is the Hilbert class

field of 𝐾 and the class group Cl(𝐾) of 𝐾 is canonically isomorphic to Gal(𝐻𝐾∕𝐾). The subgroup
Gal(𝐻𝐾∕𝔊𝐾∕𝑘) ⊂ Cl(𝐾) is called the principal genus of 𝐾∕𝑘 and the genus group is the quotient
Cl(𝐾)∕Gal(𝐻𝐾∕𝔊𝐾∕𝑘) of the class group. Our main theorem concerns the average size of the
genus number as one sums over all abelian extensions of bounded conductor with given Galois
group. Write Φ(𝐾∕𝑘) for the absolute norm of the conductor of 𝐾 (viewed as an ideal in 𝑘).

Theorem 1.2. Let 𝐺 be a non-trivial finite abelian group. Then∑
Gal(𝐾∕𝑘)≅𝐺
Φ(𝐾∕𝑘)⩽𝐵

𝔤𝐾∕𝑘 ∼ 𝑐𝐵(log 𝐵)
𝜚(𝑘,𝐺)−1,

for some positive constant 𝑐, where

𝜚(𝑘, 𝐺) =
∑

g∈𝐺⧵{id𝐺}

ord g
[𝑘(𝜇ord g ) ∶ 𝑘]

. (1.1)

Our main result (Theorem 3.5) also gives an explicit expression for the leading constant in the
asymptotic formula. To prove our results, we consider the Dirichlet series

∑
Gal(𝐾∕𝑘)≅𝐺
Φ(𝐾∕𝑘)⩽𝐵

𝔤𝐾∕𝑘

Φ(𝐾∕𝑘)𝑠
.

Using class field theory, we may rewrite this in terms of an idelic series, as the genus number
has an idelic interpretation (Lemma 3.1). We then use Poisson summation to express this series in
terms of the Dedekind zeta function of 𝑘.

Remark 1.3. It is illustrative to compare the asymptotic in Theorem 1.2 with the unweighted count
of 𝐺-extensions, first established in [20]:
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DISTRIBUTION OF GENUS NUMBERS OF ABELIAN NUMBER FIELDS 2199

∑
Gal(𝐾∕𝑘)≅𝐺
Φ(𝐾∕𝑘)⩽𝐵

1 ∼ 𝑐′𝐵(log 𝐵)𝜔(𝑘,𝐺)−1, 𝜔(𝑘, 𝐺) =
∑

g∈𝐺⧵{id𝐺}

1

[𝑘(𝜇ord g ) ∶ 𝑘]
.

In particular, one can interpret Theorem 1.2 as saying that the average value of the genus number
is

𝑐

𝑐′
(logΦ(𝐾∕𝑘))

∑
g∈𝐺⧵{id𝐺}

(ord g−1)∕[𝑘(𝜇ord g )∶𝑘].

Note that this behaviour is in stark contrast to the case of cubic and quintic extensions [15, 16] of
ℚ (ordered by discriminant), where the average value of the genus number is constant.

Example 1.4.

(1) For 𝓁 prime, we have

𝜚(𝑘, ℤ∕𝓁ℤ) =
𝓁(𝓁 − 1)
[𝑘(𝜇𝓁) ∶ 𝑘]

.

In the case 𝑘 = ℚ, this recovers [14, Theorem 4.2] (here 𝜚(ℚ, ℤ∕𝓁ℤ) = 𝓁). All other cases are
new. The following examples are all completely new.

(2) Biquadratic extensions:

𝜚(𝑘, (ℤ∕2ℤ)2) = 6.

(3) A cyclic extension of non-prime degree:

𝜚(𝑘, ℤ∕4ℤ) =

{
6, 𝜇4 ⊄ 𝑘

10, 𝜇4 ⊂ 𝑘.

Remark 1.3 and the case of quadratic fields suggest that there should be very few 𝐺-extensions
with any fixed genus number g . Our next theorem confirms this by showing that every genus
number occurs at most 0% of the time. Again, this is in stark contrast to the results for cubic and
quintic extensions ordered by discriminant [15, 16].

Theorem 1.5. Let 𝑘 be a number field, 𝐺 a non-trivial finite abelian group and g ∈ ℕ. Then

lim
𝐵→∞

|{𝐾∕𝑘 ∶ Gal(𝐾∕𝑘) ≅ 𝐺, Φ(𝐾∕𝑘) ⩽ 𝐵 and 𝔤𝐾∕𝑘 = g}||{𝐾∕𝑘 ∶ Gal(𝐾∕𝑘) ≅ 𝐺, Φ(𝐾∕𝑘) ⩽ 𝐵}| = 0.

2 HARMONIC ANALYSIS

To prove Theorem 1.2, we will use a formula for the genus number (Lemma 3.1) that expresses
𝔤𝐾∕𝑘 in terms of various invariants of the extension 𝐾∕𝑘. Most importantly for us, it reduces
our task to counting abelian extensions for which a given unit is everywhere locally a norm,
weighted by the products of the ramification indices. We will achieve this via a general result
proved using harmonic analysis, which we state as Theorem 2.1. Let 𝐺 be a finite abelian group,
let 𝐹 be a field and �̄� a separable closure of 𝐹. We define a sub-𝐺-extension of 𝐹 to be a continuous
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2200 FREI et al.

homomorphism Gal(�̄�∕𝐹) → 𝐺. A sub-𝐺-extension corresponds to a pair (𝐿∕𝐹, 𝜓), where 𝐿∕𝐹 is
a Galois extension inside �̄� and 𝜓 is an injective homomorphism Gal(𝐿∕𝐹) → 𝐺. A 𝐺-extension
of 𝐹 is a surjective continuous homomorphism Gal(�̄�∕𝐹) → 𝐺.
Having fixed an algebraic closure �̄� of the number field 𝑘, we write 𝐺-ext(𝑘) for the set of 𝐺-

extensions of 𝑘. For each place 𝑣 of 𝑘, we fix an algebraic closure �̄�𝑣 and compatible embeddings
𝑘 ↪ �̄� ↪ �̄�𝑣 and 𝑘 ↪ 𝑘𝑣 ↪ �̄�𝑣. Hence, a sub-𝐺-extension 𝜑 of 𝑘 induces a sub-𝐺-extension 𝜑𝑣 of
𝑘𝑣 at every place 𝑣. We write 𝔢𝑣(𝜑) = 𝔢(𝜑𝑣) = 𝔢(𝐿𝑣∕𝑘𝑣) for the ramification index of the extension
𝐿𝑣∕𝑘𝑣 given by 𝜑𝑣. Our main counting result is the following:

Theorem 2.1. Let 𝑘 be a number field, 𝐺 a non-trivial finite abelian group and  ⊂ 𝑘× a finitely
generated subgroup. Let 𝑆 be a finite set of places of 𝑘 and for 𝑣 ∈ 𝑆 letΛ𝑣 be a set of sub-𝐺-extensions
of 𝑘𝑣 . For 𝑣 ∉ 𝑆 let Λ𝑣 be the set of sub-𝐺-extensions of 𝑘𝑣 corresponding to those extensions of local
fields 𝐿∕𝑘𝑣 for which every element of is a local norm from 𝐿∕𝑘𝑣 . Let Λ ∶= (Λ𝑣)𝑣∈Ω𝑘 . Then there
exist 𝑐𝑘,𝐺,Λ ⩾ 0 and 𝛿 = 𝛿(𝑘, 𝐺,) > 0 such that∑

𝜑∈𝐺-ext(𝑘)
Φ(𝜑)⩽𝐵

𝜑𝑣∈Λ𝑣∀𝑣∈Ω𝑘

∏
𝑣

𝔢𝑣(𝜑) = 𝑐𝑘,𝐺,Λ𝐵(log 𝐵)
𝜚(𝑘,𝐺,)−1 + 𝑂(𝐵(log 𝐵)𝜚(𝑘,𝐺,)−1−𝛿), 𝐵 → ∞,

where

𝜚(𝑘, 𝐺,) = ∑
g∈𝐺⧵{id𝐺}

ord g
[𝑘ord g ∶ 𝑘]

and 𝑘𝑑 = 𝑘(𝜇𝑑,
𝑑
√).

Moreover, 𝑐𝑘,𝐺,Λ > 0 if there exists a sub-𝐺-extension of 𝑘 that realises the given local conditions for
all places 𝑣.

Theorem 2.1 has a very similar statement to [7, Theorem 3.1]; the primary difference is that
the sum in Theorem 2.1 is weighted by the product of ramification indices

∏
𝑣 𝔢𝑣(𝜑). We prove

Theorem 2.1 using the method, based upon harmonic analysis, that we developed to prove [7,
Theorem 3.1], and many of the steps are formally similar. The ramification indices come into play
when calculating the relevant local Fourier transforms, and these in turn change the singularity
type of the resulting Dirichlet series. We now begin the proof of Theorem 2.1.

2.1 Möbius inversion and Poisson summation

These steps are very similar to those taken in [6, Section 3] and [7, Section 3], so we shall be brief.
To prove the result, we are free to increase the set 𝑆, so we assume that 𝑆 contains all archimedean
places of 𝑘 and all places of 𝑘 lying above the primes 𝑝 ⩽ |𝐺|2. Moreover, we assume that ⊂ ×

𝑆
and that 𝑆 has trivial class group. Let

𝑓Λ𝑣 ∶ Hom(Gal(�̄�𝑣∕𝑘𝑣), 𝐺) → ℤ, 𝜑𝑣 ↦ 𝟙Λ𝑣(𝜑𝑣)𝔢𝑣(𝜑𝑣),

where 𝔢𝑣(𝜑𝑣) denotes the ramification index of 𝜑𝑣 and 𝟙Λ𝑣 the indicator function ofΛ𝑣. We let 𝑓Λ
be the product of the 𝑓Λ𝑣 . The Dirichlet series for our counting problem is

𝐹(𝑠) =
∑

𝜑∈𝐺-ext(𝑘)

𝑓Λ(𝜑)

Φ(𝜑)𝑠
. (2.1)
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We perform Möbius inversion to write this as

𝐹(𝑠) =
∑
𝐻⊂𝐺

𝜇(𝐺∕𝐻)
∑

𝜑∈Hom(Gal(�̄�∕𝑘),𝐻)

𝑓Λ(𝜑)

Φ(𝜑)𝑠

where the sum is over subgroups 𝐻 of 𝐺 and 𝜇 denotes the Möbius function on isomorphism
classes of finite abelian groups (cf. [7, Section 3.3.1]). By global class field theory, we have the
identification

Hom(Gal(�̄�∕𝑘),𝐻) = Hom(𝐀×
𝑘
∕𝑘×,𝐻),

where𝐀×
𝑘
denotes the idèles of 𝑘. This allows us to view 𝑓Λ as a function onHom(𝐀×𝑘∕𝑘

×,𝐻), and
leads to the expression

𝐹(𝑠) =
∑
𝐻⊂𝐺

𝜇(𝐺∕𝐻)
∑

𝜒∈Hom(𝐀×
𝑘
∕𝑘×,𝐻)

𝑓Λ(𝜒)

Φ(𝜒)𝑠
. (2.2)

We approach the inner sums via Poisson summation. For each place 𝑣, we equip the finite group
Hom(𝑘×𝑣 ,𝐻) with the unique Haar measure d𝜒𝑣 such that

vol(Hom(𝑘×𝑣 ∕×𝑣 ,𝐻)) = 1
(for 𝑣 archimedean, we take𝑣 = 𝑘𝑣 by convention). The product of these measures yields a well-
definedmeasure d𝜒 onHom(𝐀×

𝑘
,𝐻). We say that an element ofHom(𝑘×𝑣 ,𝐻) is unramified if it lies

in the subgroupHom(𝑘×𝑣 ∕×𝑣 ,𝐻), that is, if it is trivial on×𝑣 . The Pontryagin dual ofHom(𝐀×𝑘 ,𝐻)
is naturally identified with𝐀×

𝑘
⊗ 𝐻∧, where𝐻∧ = Hom(𝐻,ℂ×) denotes the Pontryagin dual of𝐻

(similarly with 𝐀×
𝑘
replaced by 𝐀×

𝑘
∕𝑘× or 𝑘×𝑣 ; cf. [6, Section 3.1]).

The function 𝑓Λ∕Φ𝑠 is a product of local functions 𝑓Λ𝑣∕Φ
𝑠
𝑣 onHom(𝑘

×
𝑣 ,𝐻), whereΦ𝑣(𝜒𝑣) is the

reciprocal of the 𝑣-adic norm of the conductor ofKer𝜒𝑣. For 𝑣 ∉ 𝑆, these local functions take only
the value 1 on the unramified elements by our choice of 𝑆, thus 𝑓Λ∕Φ𝑠 extends to a well-defined
continuous function on Hom(𝐀×

𝑘
,𝐻). We define its Fourier transform to be

𝑓Λ,𝐻(𝑥; 𝑠) = ∫𝜒∈Hom(𝐀×
𝑘
,𝐻)

𝑓Λ(𝜒)⟨𝜒, 𝑥⟩
Φ(𝜒)𝑠

d𝜒,

where 𝑥 = (𝑥𝑣)𝑣 ∈ 𝐀×𝑘 ⊗ 𝐻
∧. Similarly, for 𝑥𝑣 ∈ 𝑘×𝑣 ⊗ 𝐻

∧ we have the local Fourier transform

𝑓Λ𝑣,𝐻(𝑥𝑣; 𝑠) = ∫𝜒𝑣∈Hom(𝑘×𝑣 ,𝐻)
𝑓Λ𝑣 (𝜒𝑣)⟨𝜒𝑣, 𝑥𝑣⟩
Φ𝑣(𝜒𝑣)

𝑠
d𝜒𝑣.

For Re 𝑠 ≫ 1, the global Fourier transform exists and defines a holomorphic function in this
domain, and there is a Euler product decomposition

𝑓Λ,𝐻(𝑥; 𝑠) =
∏
𝑣

𝑓Λ𝑣,𝐻(𝑥𝑣; 𝑠). (2.3)
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2202 FREI et al.

As in [7, Proposition 3.9], applying Poisson summation one obtains the following:

∑
𝜒∈Hom(𝐀×

𝑘
∕𝑘×,𝐻)

𝑓Λ(𝜒)

Φ(𝜒)𝑠
=

1|×
𝑘
⊗ 𝐻∧| ∑

𝑥∈×
𝑆
⊗𝐻∧

𝑓Λ,𝐻(𝑥; 𝑠), Re 𝑠 > 1. (2.4)

To analyse the Poisson sum, we need to calculate the Fourier transforms. We begin by studying
the local Fourier transforms.

2.2 Local Fourier transforms

We first give a formula for the ramification index via local class field theory. For any place 𝑣 of 𝑘,
we have the exact sequence

1 → ×𝑣 → 𝑘×𝑣 → 𝑘×𝑣 ∕×𝑣 → 1.
A choice of uniformiser gives an isomorphism 𝑘×𝑣 ≅ ×𝑣 ⨁ 𝑘×𝑣 ∕×𝑣 and thus

Hom(𝑘×𝑣 ,𝐻) ≅ Hom(×𝑣 ,𝐻)
⨁
Hom(𝑘×𝑣 ∕×𝑣 ,𝐻).

For a character 𝜒𝑣 ∶ 𝑘×𝑣 → 𝐻, we write its decomposition as

𝜒𝑣 = (𝜒𝑣,r, 𝜒𝑣,nr)

(𝜒𝑣,r is the ‘ramified part’ and 𝜒𝑣,nr is the ‘non-ramified part’). The following lemma is standard
class field theory; we include its proof for completeness.

Lemma 2.2. Wehave 𝔢𝑣(𝜒𝑣) = |𝜒𝑣(×𝑣 )| = | im𝜒𝑣,r|. If𝜒𝑣 is tamely ramified then im𝜒𝑣,r is a cyclic
group and therefore 𝔢𝑣(𝜒𝑣) = ord(𝜒𝑣,r).

Proof. The result for 𝑣 archimedean is immediate so let us assume that 𝑣 is non-archimedean. Let
𝐾𝑤 denote the field extension of 𝑘𝑣 corresponding via class field theory to 𝜒𝑣, and write 𝑤 for
the ring of integers of 𝐾𝑤. Let ord𝑣 ∶ 𝑘×𝑣 ↠ ℤ be the normalised valuation on 𝑘𝑣 and let ord𝑤 ∶
𝐾×𝑤 ↠ ℤ be the normalised valuation on𝐾𝑤. As ord𝑣 =

1

𝔢𝑣(𝜒𝑣)
ord𝑤 and [𝐾𝑤 ∶ 𝑘𝑣] = 𝔢𝑣(𝜒𝑣)𝔣𝑣(𝜒𝑣),

where 𝔣𝑣 denotes the residue degree, the following diagram commutes:

The snake lemma gives an exact sequence

0 → ×𝑣 ∕𝑁𝐾𝑤∕𝑘𝑣 (×𝑤) → 𝑘×𝑣 ∕𝑁𝐾𝑤∕𝑘𝑣 (𝐾×𝑤) → ℤ∕𝔣𝑣(𝐾)ℤ → 0.
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The local reciprocity map gives an isomorphism 𝑘×𝑣 ∕𝑁𝐾𝑤∕𝑘𝑣 (𝐾
×
𝑤) → Gal(𝐾𝑤∕𝑘𝑣), whereby|𝑘×𝑣 ∕𝑁𝐾𝑤∕𝑘𝑣 (𝐾×𝑤)| = [𝐾𝑤 ∶ 𝑘𝑣] = 𝔢𝑣(𝜒𝑣)𝔣𝑣(𝜒𝑣). Therefore,

𝔢𝑣(𝜒𝑣) = |×𝑣 ∕𝑁𝐾𝑤∕𝑘𝑣 (×𝑤)| = |×𝑣 ∕Ker 𝜒𝑣,r|,
as required. Now let 𝔪𝑣 denote the maximal ideal of 𝑣. If 𝐾𝑤∕𝑘𝑣 is tamely ramified then 1 +
𝔪𝑣 ⊂ 𝑁𝐾𝑤∕𝑘𝑣 (×𝑤) = Ker 𝜒𝑣,r and hence the cyclic group 𝔽×𝑣 surjects onto im𝜒𝑣,r. □

Lemma 2.3. Let 𝑣 ∉ 𝑆. The function 𝑓Λ𝑣 is Hom(𝑘
×
𝑣 ∕×𝑣 ,𝐻)-invariant and 𝑓Λ𝑣 (𝜓𝑣) = 1 for all

𝜓𝑣 ∈ Hom(𝑘
×
𝑣 ∕×𝑣 ,𝐻).

Proof. This follows from Lemma 2.2 and [7, Lemma 3.7]. □

For𝑥 ∈ 𝑘× ⊗ 𝐻∧, we denote by𝑥𝑣 the image of𝑥 under 𝑘× ⊗ 𝐻∧ → 𝑘×𝑣 ⊗ 𝐻
∧. By𝑣 wedenote

the image of our finitely generated subgroup ⊂ 𝑘× under 𝑘× ⊂ 𝑘×𝑣 . Recall that, by our choice of
𝑆, we have𝑣 ⊂ ×𝑣 for all 𝑣 ∉ 𝑆.
Lemma 2.4. For 𝑣 ∉ 𝑆 and 𝑥 ∈ ×

𝑆
⊗ 𝐻∧, let

𝑠𝑥,𝐻(𝑣) = −1 +
∑

𝜒𝑣∈Hom(×𝑣 ∕𝑣,𝐻)
ord(𝜒𝑣)⟨𝜒𝑣, 𝑥𝑣⟩.

Then

𝑓Λ𝑣,𝐻(𝑥𝑣; 𝑠) = 1 +
𝑠𝑥,𝐻(𝑣)

𝑞𝑠𝑣
.

Proof. Using Lemma 2.3 and following the proof of [7, Lemma 3.8] gives

𝑓Λ𝑣,𝐻(𝑥𝑣; 𝑠) =
∑

𝜒𝑣∈Hom(×𝑣 ,𝐻)

𝑓Λ𝑣 (𝜒𝑣)⟨𝜒𝑣, 𝑥𝑣⟩
Φ(𝜒𝑣)

𝑠
.

Nowmimic the start of the proof of [7, Lemma 3.10] and apply Lemma 2.2 to obtain the result. □

2.3 Frobenian functions

Wewill analyse the global Fourier transforms using the theory of frobenian functions from Serre’s
book [18, Section 3.3]. The parts of the theory relevant for us are also summarised in [7, Section 2].
Recall that a class function on a group is a function that is constant on conjugacy classes.

Definition 2.5. Let 𝑘 be a number field and 𝜌 ∶ Ω𝑘 → ℂ a function on the set of places of 𝑘. Let
𝑆 be a finite set of places of 𝑘. We say that 𝜌 is 𝑆-frobenian if there exist

(a) a finite Galois extension 𝐾∕𝑘, with Galois group Γ, such that 𝑆 contains all places that ramify
in 𝐾∕𝑘, and

(b) a class function 𝜑 ∶ Γ → ℂ,

such that for all 𝑣 ∉ 𝑆 we have

𝜌(𝑣) = 𝜑(Frob𝑣),
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2204 FREI et al.

where Frob𝑣 ∈ Γ denotes the Frobenius element of 𝑣. We say that 𝜌 is frobenian if it is 𝑆-frobenian
for some 𝑆. A subset of Ω𝑘 is called (𝑆-)frobenian if its indicator function is (𝑆-)frobenian.

In Definition 2.5, we adopt a common abuse of notation (see [18, Section 3.2.1]), and denote by
Frob𝑣 ∈ Γ the choice of some element of the Frobenius conjugacy class at 𝑣; note that 𝜑(Frob𝑣) is
well-defined as 𝜑 is a class function. We define themean of 𝜌 to be

𝑚(𝜌) =
1|Γ| ∑
𝛾∈Γ

𝜑(𝛾) ∈ ℂ.

2.4 Global Fourier transforms

Our next aim is to show that the function 𝑠𝑥,𝐻 from Lemma 2.4 is frobenian. This will allow us
to obtain analytic continuations of the corresponding global Fourier transforms (possibly with
branch point singularities).
For 𝑥𝑣 ∈ ×𝑣 ⊗ 𝐻∧, we abuse notation slightly and write 𝑥𝑣 ∈ ×𝑑𝑣 ⊗ 𝐻∧ if 𝑥𝑣 is in the image

of the not necessarily injective map ×𝑑𝑣 ⊗ 𝐻∧ → ×𝑣 ⊗ 𝐻∧.
Lemma 2.6. Let 𝑥 ∈ ×

𝑆
⊗ 𝐻∧ and let 𝑒 be the exponent of𝐻. For 𝑣 ∉ 𝑆, let

𝑑𝑥,𝐻(𝑣) = max{𝑑 ∣ gcd(𝑒, 𝑞𝑣 − 1) ∶ 𝑥𝑣 ∈ ×𝑑𝑣 ⊗ 𝐻∧},
𝑑,𝐻(𝑣) = max{𝑑 ∣ gcd(𝑒, 𝑞𝑣 − 1) ∶  mod 𝑣 ⊆ 𝔽×𝑑𝑣 }.

Then any functionΩ𝑘 → ℂ whose restriction toΩ𝑘 ⧵ 𝑆 is either 𝑑𝑥,𝐻 or 𝑑,𝐻 is 𝑆-frobenian.

Proof. We choose a presentation𝐻∧ = ℤ∕𝑛1ℤ ⊕⋯⊕ℤ∕𝑛𝑙ℤ, thus identifying 𝑥 ∈ ×
𝑆
⊗ 𝐻∧ with

a tuple (𝑥1×𝑛1𝑆 , … , 𝑥𝑙×𝑛𝑙𝑆 ) ∈ ×
𝑆
∕×𝑛1
𝑆
⊕⋯⊕ ×

𝑆
∕×𝑛𝑙
𝑆
. Then 𝑥𝑣 ∈ ×𝑑𝑣 ⊗ 𝐻∧ if and only if 𝑥𝑖 ∈

×(𝑑,𝑛𝑖)𝑣 for all 1 ⩽ 𝑖 ⩽ 𝑙.
For all 𝑑 ∣ 𝑒, let 𝐾𝑑 = 𝑘(𝜇𝑑, 𝑥

1∕ gcd(𝑑,𝑛1)

1
, … , 𝑥

1∕ gcd(𝑑,𝑛𝑙)

𝑙
), and define the sets

Υ𝑑 = Gal(𝐾𝑒∕𝐾𝑑) ⧵
⋃
𝑑′∣ 𝑒
𝑑

𝑑′≠1

Gal(𝐾𝑒∕𝐾𝑑𝑑′) ⊂ Gal(𝐾𝑒∕𝑘).

The Υ𝑑 form a partition of Gal(𝐾𝑒∕𝑘), and each Υ𝑑 is conjugacy invariant because the involved
subgroups are normal. A place 𝑣 ∉ 𝑆 satisfies Frob𝑣 ∈ Υ𝑑 if and only if 𝑑 is the largest divisor of
𝑒 such that 𝑣 splits completely in 𝐾𝑑. By the observations made at the start of this proof, 𝑣 splits
completely in 𝐾𝑑 if and only if 𝑑 ∣ 𝑞𝑣 − 1 and 𝑥𝑣 ∈ ×𝑑𝑣 ⊗ 𝐻∧.
Hence, if 𝜑 ∶ Gal(𝐾𝑒∕𝑘) → ℂ is the class function that takes the value 𝑑 on Υ𝑑, then 𝑑𝑥,𝐻(𝑣) =

𝜑(Frob𝑣) for all 𝑣 ∉ 𝑆.
That 𝑑,𝐻 is 𝑆-frobenian is proved in [7, Lemma 3.11]. The proof is similar to the above and

we briefly recall the relevant construction as we shall use it later. For every 𝑑 ∣ 𝑒, we define the
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number field 𝑘𝑑 = 𝑘(𝜇𝑑,
𝑑
√). The subsets
Σ𝑑 = Gal(𝑘𝑒∕𝑘𝑑) ⧵

⋃
𝑑′∣ 𝑒
𝑑

𝑑′≠1

Gal(𝑘𝑒∕𝑘𝑑𝑑′) ⊂ Gal(𝑘𝑒∕𝑘)

are conjugacy invariant and form a partition of Gal(𝑘𝑒∕𝑘). Let 𝜑 ∶ Gal(𝑘𝑒∕𝑘) → ℂ be the class
function that takes the constant value 𝑑 on Σ𝑑, for all 𝑑 ∣ 𝑒. Then 𝑑,𝐻(𝑣) = 𝜑(Frob𝑣) for all 𝑣 ∉ 𝑆,
so in particular it is 𝑆-frobenian. □

Proposition 2.7. Let 𝑥 ∈ ×
𝑆
⊗ 𝐻∧. Then any function Ω𝑘 → ℂ that sends 𝑣 ∉ 𝑆 to 𝑠𝑥,𝐻(𝑣) is 𝑆-

frobenian. Moreover, 𝑠𝑥,𝐻(𝑣) ∈ ℝ for all 𝑣 ∉ 𝑆.

Proof. For 𝑣 ∉ 𝑆, reduction modulo 𝑣 yields an isomorphism Hom(×𝑣 ,𝐻) ≅ Hom(𝔽×𝑣 ,𝐻). If
𝑚 ∣ 𝑞𝑣 − 1 is maximal with  mod 𝑣 ⊆ 𝔽×𝑚𝑣 , then  mod 𝑣 = 𝔽×𝑚𝑣 . This shows that any 𝜒𝑣 ∶×𝑣 ∕𝑣 → 𝐻 has order dividing 𝑑,𝐻(𝑣), and for 𝑚 ∣ 𝑑,𝐻(𝑣), the set {𝜒𝑣 ∶ ×𝑣 ∕𝑣 → 𝐻 ∶

𝜒𝑣 has order𝑚} can be naturally identified with {𝜒𝑣 ∶ ×𝑣 → 𝐻 ∶ Ker𝜒𝑣 = ×𝑚𝑣 }. Now Möbius
inversion yields

1 + 𝑠𝑥,𝐻(𝑣) =
∑

𝑚∣𝑑,𝐻(𝑣)
𝑚

∑
𝜒𝑣∈Hom(×𝑣 ,𝐻)
Ker 𝜒𝑣=×𝑚𝑣

⟨𝜒𝑣, 𝑥𝑣⟩
=

∑
𝑚∣𝑑,𝐻(𝑣)

𝑚
∑
𝑑∣𝑚

𝜇
(
𝑚

𝑑

) ∑
𝜒𝑣∈Hom(×𝑣 ∕×𝑑𝑣 ,𝐻)

⟨𝜒𝑣, 𝑥𝑣⟩.
Character orthogonality shows that for all 𝑑 ∣ gcd(𝑒, 𝑞𝑣 − 1) we have

∑
𝜒𝑣∈Hom(×𝑣 ∕×𝑑𝑣 ,𝐻)

⟨𝜒𝑣, 𝑥𝑣⟩ ={|Hom(×𝑣 ∕×𝑑𝑣 ,𝐻)| = |𝐻[𝑑]| if 𝑑 ∣ 𝑑𝑥,𝐻(𝑣),
0 otherwise,

where 𝑑𝑥,𝐻(𝑣) was defined in Lemma 2.6. Letting

𝐹(𝐴, 𝐵) = −1 +
∑
𝑚∣𝐴

𝑚
∑

𝑑∣gcd(𝑚,𝐵)

𝜇
(
𝑚

𝑑

)|𝐻[𝑑]|, (2.5)

we have shown that 𝑠𝑥,𝐻(𝑣) = 𝐹(𝑑,𝐻(𝑣), 𝑑𝑥,𝐻(𝑣)). This is 𝑆-frobenian, as the functions 𝑣 ↦
𝑑,𝐻(𝑣) and 𝑣 ↦ 𝑑𝑥,𝐻(𝑣) are 𝑆-frobenian by Lemma 2.6. From (2.5) it is also clear that 𝑠𝑥,𝐻(𝑣) ∈
ℝ. □

Again, we abuse notation and denote by 𝑣 ⊗ 𝐻∧ the image of the not necessarily injective
map𝑣 ⊗ 𝐻∧ → 𝑘×𝑣 ⊗ 𝐻∧. For 𝑣 ∉ 𝑆, we have𝑣 ⊗ 𝐻∧ ⊆ ×𝑣 ⊗ 𝐻∧.
Proposition 2.8. Let 𝜚(𝑘,𝐻,) be defined as in Theorem 2.1 (with 𝐺 replaced by 𝐻) and let
𝜚(𝑘,𝐻,, 𝑥) ∈ ℝ denote the mean of an 𝑆-frobenian function given by 𝑠𝑥,𝐻 from Proposition 2.7.

(1) For all 𝑥 ∈ ×
𝑆
⊗ 𝐻∧, we have 𝜚(𝑘,𝐻,, 𝑥) ⩽ 𝜚(𝑘,𝐻,, 1), with equality if and only if 𝑥𝑣 ∈𝑣 ⊗ 𝐻∧ ∀𝑣 ∉ 𝑆.

(2) We have 𝜚(𝑘,𝐻,, 1) = 𝜚(𝑘,𝐻,).
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2206 FREI et al.

Proof. Part (1) is clear because, by definition of 𝑠𝑥,𝐻 and character orthogonality, for all 𝑣 ∉ 𝑆
we have 𝑠𝑥,𝐻(𝑣) ⩽ 𝑠1,𝐻(𝑣), with equality if and only if ⟨𝜒𝑣, 𝑥𝑣⟩ = 1 for all 𝜒𝑣 ∈ Hom(×𝑣 ∕𝑣, 𝐻).
For part (2), writing 𝑘𝑑 = 𝑘(𝜇𝑑,

𝑑
√), it suffices to show that the mean of 𝑠1,𝐻(𝑣) + 1 equals∑

ℎ∈𝐻
ord ℎ

[𝑘ord ℎ∶𝑘]
. By definition, for 𝑣 ∉ 𝑆 we have

𝑠1,𝐻(𝑣) + 1 =
∑

𝜒𝑣∶×𝑣 ∕𝑣→𝐻
ord(𝜒𝑣).

We have Hom(×𝑣 ∕𝑣, 𝐻) ≅ Hom(𝔽×𝑣 ∕( mod 𝑣),𝐻) ≅ 𝐻[𝑑,𝐻(𝑣)] as abelian groups, where
𝑑,𝐻(𝑣) is as in Lemma 2.6. Hence,

𝑠1,𝐻(𝑣) + 1 =
∑

ℎ∈𝐻[𝑑,𝐻(𝑣)]
ord ℎ.

We now recall from the proof of Lemma 2.6 that the function 𝑑,𝐻(𝑣) is 𝑆-frobenian with
associated Galois group Gal(𝑘𝑒∕𝑘), where 𝑒 = exp(𝐻), determined by the subsets Σ𝑑. Using
inclusion–exclusion, the mean of 𝑠1,𝐻(𝑣) + 1 equals

1

[𝑘𝑒 ∶ 𝑘]

∑
𝑑∣𝑒

|Σ𝑑| ∑
ℎ∈𝐻[𝑑]

ord ℎ =
1

[𝑘𝑒 ∶ 𝑘]

∑
𝑑∣𝑒

∑
𝑐∣ 𝑒
𝑑

𝜇(𝑐)[𝑘𝑒 ∶ 𝑘𝑐𝑑]
∑
ℎ∈𝐻[𝑑]

ord ℎ

=
∑
𝑑∣𝑒

∑
𝑐∣ 𝑒
𝑑

𝜇(𝑐)

[𝑘𝑐𝑑 ∶ 𝑘]

∑
ℎ∈𝐻[𝑑]

ord ℎ

=
∑
𝑓∣𝑒

1

[𝑘𝑓 ∶ 𝑘]

∑
𝑑∣𝑓

𝜇(𝑓∕𝑑)
∑
ℎ∈𝐻[𝑑]

ord ℎ

=
∑
𝑓∣𝑒

𝑓|𝐻𝑓|
[𝑘𝑓 ∶ 𝑘]

,

where𝐻𝑓 denotes the set of elements of𝐻 of order 𝑓. It is clear that

∑
𝑓∣𝑒

𝑓|𝐻𝑓|
[𝑘𝑓 ∶ 𝑘]

=
∑
ℎ∈𝐻

ord ℎ

[𝑘ord ℎ ∶ 𝑘]
,

whence the claim. □

Proposition 2.9. Let 𝑥 ∈ ×
𝑆
⊗ 𝐻∧. The Fourier transform satisfies

𝑓Λ,𝐻(𝑥; 𝑠) = 𝜁𝑘(𝑠)
𝜚(𝑘,𝐻,,𝑥)𝐺(𝐻, 𝑥; 𝑠), Re 𝑠 > 1,

for a holomorphic function 𝐺(𝑠) = 𝐺(𝐻, 𝑥; 𝑠) on the region

Re 𝑠 > 1 −
𝑐

log(| Im 𝑠| + 3) ,
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DISTRIBUTION OF GENUS NUMBERS OF ABELIAN NUMBER FIELDS 2207

for some 𝑐 > 0, satisfying in this region the bound

|𝐺(𝑠)|≪ (1 + | Im 𝑠|)1∕2.
Moreover,

lim
𝑠→1
(𝑠 − 1)𝜚(𝑘,𝐻,,𝑥)𝑓Λ,𝐻(𝑥; 𝑠) = (Res𝑠=1 𝜁𝑘(𝑠))𝜚(𝑘,𝐻,,𝑥)

∏
𝑣∈Ω𝑘

𝑓Λ𝑣,𝐻(𝑥𝑣; 1)

𝜁𝑘,𝑣(1)
𝜚(𝑘,𝐻,,𝑥) ,

where 𝜁𝑘,𝑣(𝑠) denotes the Euler factor of the Dedekind zeta function 𝜁𝑘(𝑠) of 𝑘 at 𝑣 if 𝑣 is finite, and
𝜁𝑘,𝑣(𝑠) = 1 otherwise. When 𝑥 = 1 this limit is non-zero.

Proof. Recall the Euler product (2.3). The same argument as in [7, Lemma 3.6] shows that each
single Euler factor 𝑓Λ𝑣 (𝑥𝑣; 𝑠) satisfies 𝑓Λ𝑣 (𝑥𝑣; 𝑠) ≪𝑘,𝐻 1 on Re(𝑠) > 0 and 𝑓Λ𝑣 (1; 𝑠) > 0 for 𝑠 ∈ ℝ.
We use these facts to control the finite product

∏
𝑣∈𝑆 𝑓Λ𝑣 (𝑥𝑣; 𝑠).

The proposition is then an application of [7, Proposition 2.3] to the Euler product∏
𝑣∉𝑆 𝑓Λ𝑣,𝐻(𝑥𝑣; 𝑠), which satisfies the hypotheses of [7, Proposition 2.3] by Lemma 2.4, Propo-

sition 2.7 and the fact that 𝑠𝑥,𝐻(𝑣) ⩽ |𝐺|2 − 1 < 𝑞𝑣 by our assumption on 𝑆 in Subsection 2.1 (cf.
[7, Proposition 3.16]). □

2.5 Proof of the asymptotic formula in Theorem 2.1

Recall from (2.1) the Dirichlet series 𝐹(𝑠) relevant to Theorem 2.1. Putting our results from (2.2)
and (2.4) together, we have

𝐹(𝑠) =
∑
𝐻⊂𝐺

𝜇(𝐺∕𝐻)|×
𝑘
⊗ 𝐻∧| ∑

𝑥∈×
𝑆
⊗𝐻∧

𝑓Λ,𝐻(𝑥; 𝑠), Re 𝑠 > 1, (2.6)

and the analytic properties of the Fourier transforms 𝑓Λ,𝐻(𝑥; 𝑠) were summarised in Proposi-
tion 2.9. For every proper subgroup𝐻 ⪇ 𝐺, we see immediately from (1.1) that

𝜚(𝑘,𝐻,) < 𝜚(𝑘, 𝐺,). (2.7)

An application of the Selberg–Delange method [19, Theorem II.5.3] now gives the following (cf.
[7, Proposition 3.19]).

Proposition 2.10. There exists 𝛿 = 𝛿(𝑘, 𝐺,) > 0 such that∑
𝜑∈𝐺-ext(𝑘)
Φ(𝜑)⩽𝐵

𝜑𝑣∈Λ𝑣∀𝑣∈𝑆

∏
𝑣

𝔢𝑣(𝜑) = 𝑐𝑘,𝐺,Λ𝐵(log 𝐵)
𝜚(𝑘,𝐺,)−1 + 𝑂(𝐵(log 𝐵)𝜚(𝑘,𝐺,)−1−𝛿),

where

𝑐𝑘,𝐺,Λ =
1

Γ(𝜚(𝑘, 𝐺,))|×
𝑘
⊗ 𝐺∧| ∑

𝑥∈×
𝑆
⊗𝐺∧

𝜚(𝑘,𝐺,,𝑥)=𝜚(𝑘,𝐺,)

lim
𝑠→1
(𝑠 − 1)𝜚(𝑘,𝐺,)𝑓Λ,𝐺(𝑥; 𝑠).
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2208 FREI et al.

Proposition 2.10 shows the validity of the asymptotic formula in Theorem 2.1, so all that remains
is to study the leading constant 𝑐𝑘,𝐺,Λ and prove its positivity under certain assumptions.

2.6 The leading constant in Theorem 2.1

We first determine which 𝑥 contribute to the leading constant. Recall that for 𝑥 ∈ 𝑘× ⊗ 𝐺∧, we
denote by 𝑥𝑣 the image of 𝑥 under 𝑘× ⊗ 𝐺∧ → 𝑘×𝑣 ⊗ 𝐺

∧, and by 𝑣 ⊗ 𝐺∧ the image of the map𝑣 ⊗ 𝐺∧ → 𝑘×𝑣 ⊗ 𝐺∧. Recall from [7, Lemma 3.20] the set (𝑘, 𝐺,) defined as
(𝑘, 𝐺,) = {𝑥 ∈ 𝑘× ⊗ 𝐺∧ ∶ 𝑥𝑣 ∈ 𝑣 ⊗ 𝐺∧ for all but finitely many 𝑣}.

In [7, Lemma 3.20], it is shown that (𝑘, 𝐺,) is finite and
(𝑘, 𝐺,) = {𝑥 ∈ ×

𝑆
⊗ 𝐺∧ ∶ 𝑥𝑣 ∈ 𝑣 ⊗ 𝐺∧ for all 𝑣 ∉ 𝑆}. (2.8)

Lemma 2.11. For 𝑥 ∈ ×
𝑆
⊗ 𝐺∧, we have

𝜚(𝑘, 𝐺,, 𝑥) = 𝜚(𝑘, 𝐺,)⟺ 𝑥 ∈ (𝑘, 𝐺,).
Moreover, 𝑓Λ𝑣,𝐺(𝑥𝑣; 1) = 𝑓Λ𝑣,𝐺(1; 1) for 𝑥 ∈ (𝑘, 𝐺,) and 𝑣 ∉ 𝑆.
Proof. Let 𝑥 ∈ ×

𝑆
⊗ 𝐺∧ and 𝑣 ∉ 𝑆. Recall that 𝑠𝑥,𝐺(𝑣) ∈ ℝ by Proposition 2.7. From the definition

of 𝑠𝑥,𝐺(𝑣) in Lemma 2.4, we see that 𝑠𝑥,𝐺(𝑣) ⩽ 𝑠1,𝐺(𝑣), with equality if and only if ⟨𝜒𝑣, 𝑥𝑣⟩ = 1 for
all 𝜒𝑣 ∈ Hom(×𝑣 ∕𝑣, 𝐺). The latter condition holds if and only if 𝑥𝑣 ∈ 𝑣 ⊗ 𝐺∧. Hence, we see
that

𝑠𝑥,𝐺(𝑣) = 𝑠1,𝐺(𝑣) for all 𝑣 ∉ 𝑆⟺ 𝑥 ∈ (𝑘, 𝐺,). (2.9)

The equivalence in the lemma follows, as 𝑠𝑥,𝐺(𝑣) ⩽ 𝑠1,𝐺(𝑣) holds for all 𝑣 ∉ 𝑆 and both functions
are 𝑆-frobenian by Proposition 2.7.
The equality of Fourier transforms follows from Lemma 2.4 and (2.8). □

Theorem 2.12. Under the assumptions of Theorem 2.1 and the additional assumptions on 𝑆
imposed at the start of Subsection 2.1, the leading constant 𝑐𝑘,𝐺,Λ has the form

𝑐𝑘,𝐺,Λ =
(Res𝑠=1 𝜁𝑘(𝑠))

𝜚(𝑘,𝐺,)
Γ(𝜚(𝑘, 𝐺,))|×

𝑘
⊗ 𝐺∧||𝐺||𝑆𝑓 | ∏𝑣∉𝑆

⎛⎜⎜⎜⎜⎝
∑

𝜒𝑣∈Hom(×𝑣 ,𝐺)𝑣⊂Ker 𝜒𝑣

ord𝜒𝑣
Φ𝑣(𝜒𝑣)

⎞⎟⎟⎟⎟⎠
𝜁𝑘,𝑣(1)

−𝜚(𝑘,𝐺,)

×
∑

𝜒∈Hom(
∏
𝑣∈𝑆 𝑘

×
𝑣 ,𝐺)

𝜒𝑣∈Λ𝑣∀𝑣∈𝑆

(∏
𝑣∈𝑆

𝔢𝑣(𝜒𝑣)

Φ𝑣(𝜒𝑣)𝜁𝑘,𝑣(1)
𝜚(𝑘,𝐺,)

) ∑
𝑥∈(𝑘,𝐺,)

∏
𝑣∈𝑆

⟨𝜒𝑣, 𝑥𝑣⟩,
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DISTRIBUTION OF GENUS NUMBERS OF ABELIAN NUMBER FIELDS 2209

where 𝑆𝑓 denotes the set of non-archimedean places in 𝑆, and the product over 𝑣 ∉ 𝑆 is non-zero.
Moreover, 𝑐𝑘,𝐺,Λ > 0 if there exists a sub-𝐺-extension of 𝑘 that realises the given local conditions for
all places 𝑣.

Proof. The formula follows fromwriting the global Fourier transform as a product of local Fourier
transforms, and applying Lemma 2.4, Proposition 2.9, Proposition 2.10 and Lemma 2.11 (cf. [7,
Theorem 3.22]). It remains to show that 𝑐𝑘,𝐺,Λ > 0 if there is a sub-𝐺-extension 𝜑 ∶ Gal(�̄�∕𝑘) → 𝐺
that satisfies 𝜑𝑣 ∈ Λ𝑣 for all 𝑣 ∈ 𝑆. The argument is exactly the same as in [7, Section 3.8] and
hence omitted. □

Theorem 2.1 follows immediately from Proposition 2.10 and Theorem 2.12.

3 DISTRIBUTION OF GENUS NUMBERS

In this section, we use Theorem 2.1 to prove Theorem 1.2. We begin by studying some basic
properties of genus numbers.

3.1 Genus numbers

For a Galois extension𝐾∕𝑘 of number fields and places 𝑣 ∈ Ω𝑘 and𝑤0 ∈ Ω𝐾 with𝑤0 ∣ 𝑣, we have
the following equalities of subsets of 𝑘×𝑣 :

N𝐾∕𝑘
∏
𝑤∣𝑣

×𝐾,𝑤 = N𝐾𝑤0∕𝑘𝑣 ×𝐾,𝑤0 = ×𝑣 ∩ N𝐾𝑤0∕𝑘𝑣 𝐾×𝑤0 = ×𝑣 ∩ N𝐾∕𝑘
∏
𝑤∣𝑣

𝐾×𝑤.

Hence, being the norm of an idèle of 𝐾 or of an integral idèle of 𝐾 is the same for integral idèles
of 𝑘. The following result is a special case of the main theorem of [11]. It gives a purely adelic
interpretation of the genus number.

Lemma 3.1 (Furuta, [11, Section 5]). Let 𝐾∕𝑘 be abelian. Then

𝔤𝐾∕𝑘 =
ℎ(𝑘)

∏
𝑣∈Ω𝑘

𝔢𝑣(𝐾)

[𝐾 ∶ 𝑘][×
𝑘
∶ ×

𝑘
∩ N𝐾∕𝑘

∏
𝑤∈Ω𝐾

×
𝐾,𝑤
]
,

where 𝔢𝑣(𝐾) denotes the ramification index of a place of 𝐾 above 𝑣.

We have the following simple observations.

Lemma 3.2. Let 𝑒 be the exponent of 𝐺. Then we have[
×
𝑘
∶ ×

𝑘
∩ N𝐾∕𝑘

∏
𝑤∈Ω𝐾

×𝐾,𝑤
]
=

[
×
𝑘
∕×𝑒
𝑘
∶ (×

𝑘
∩ N𝐾∕𝑘

∏
𝑤∈Ω𝐾

×𝐾,𝑤)∕×𝑒𝑘
]
.

Proof. Third isomorphism theorem, as every element of×𝑒
𝑘
is everywhere locally a norm by local

class field theory, as observed in [7, Lemma 4.4]. □

 14697750, 2023, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12737 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [18/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2210 FREI et al.

Lemma 3.3. Let 𝐴 be a finite group and 𝐵 ⊂ 𝐴 a subgroup. Then∑
𝑎∈𝐴

𝟙𝐵(𝑎) = |𝐵| = |𝐴|∕[𝐴 ∶ 𝐵].
Proof. Immediate. □

We use these as follows. For a finitely generated subgroup  ⊂ 𝑘×, we let 𝑓 be the indicator
function for𝐺-extensions fromwhich every element of is everywhere locally a norm. For cyclic
subgroups ⟨𝜖⟩, we abbreviate this to 𝑓𝜖 = 𝑓⟨𝜖⟩. Then, writing 𝑒 for the exponent of 𝐺, Lemmas 3.2
and 3.3 give

∑
𝜖∈×

𝑘
∕×𝑒
𝑘

𝑓𝜖(𝐾) =
[×
𝑘
∶ ×𝑒

𝑘
]

[×
𝑘
∶ ×

𝑘
∩ N𝐾∕𝑘

∏
𝑤∈Ω𝐾

×
𝐾,𝑤
]
.

(Note that 𝑓𝜖 is well-defined because every element of ×𝑒𝑘 is everywhere locally a norm, see [7,
Lemma 4.4].)
Thus from Lemma 3.1, we obtain the following, which is the expression we will use to study the

average value of the genus number.

Proposition 3.4. We have∑
Gal(𝐾∕𝑘)≅𝐺
Φ(𝐾∕𝑘)⩽𝐵

𝔤𝐾∕𝑘 =
ℎ(𝑘)

[𝐾 ∶ 𝑘][×
𝑘
∶ ×𝑒

𝑘
]

∑
𝜖∈×

𝑘
∕×𝑒
𝑘

∑
Gal(𝐾∕𝑘)≅𝐺
Φ(𝐾∕𝑘)⩽𝐵

𝑓𝜖(𝐾)
∏
𝑣∈Ω𝑘

𝔢𝑣(𝐾).

3.2 Proof of Theorem 1.2

In this section, we prove Theorem 3.5. This is a strengthening of Theorem 1.2 that allows finitely
many local conditions and also gives an explicit constant.

Theorem 3.5. Let 𝑘 be a number field and𝐺 a finite abelian group with exponent 𝑒. Let 𝑆 be a finite
set of places of 𝑘 satisfying the conditions imposed at the start of Subsection 2.1 for = ×

𝑘
. For 𝑣 ∈ 𝑆

let Λ𝑣 be a set of sub-𝐺-extensions of 𝑘𝑣 . Then there exist 𝐶𝑘,𝐺,Λ ⩾ 0 and 𝛿 = 𝛿(𝑘, 𝐺) > 0 such that∑
𝜑∈𝐺-ext(𝑘)
Φ(𝜑)⩽𝐵

𝜑𝑣∈Λ𝑣∀𝑣∈𝑆

𝔤𝐾𝜑∕𝑘 = 𝐶𝑘,𝐺,Λ𝐵(log 𝐵)
𝜚(𝑘,𝐺)−1 + 𝑂(𝐵(log 𝐵)𝜚(𝑘,𝐺)−1−𝛿), 𝐵 → ∞.

The leading constant 𝐶𝑘,𝐺,Λ equals

ℎ(𝑘)(Res𝑠=1 𝜁𝑘(𝑠))
𝜚(𝑘,𝐺)

Γ(𝜚(𝑘, 𝐺))|×
𝑘
⊗ 𝐺∧||𝐺||𝑆𝑓|+1[×

𝑘
∶ ×𝑒

𝑘
]

∏
𝑣∉𝑆

⎛⎜⎜⎝
∑

𝜒𝑣∈Hom(×𝑣 ,𝐺)
ord𝜒𝑣
Φ𝑣(𝜒𝑣)

⎞⎟⎟⎠𝜁𝑘,𝑣(1)−𝜚(𝑘,𝐺)
×

∑
𝜖∈×

𝑘
∕×𝑒
𝑘
∩Ш𝜔(𝑘,𝜇𝑒)

∑
𝜒∈Hom(

∏
𝑣∈𝑆 𝑘

×
𝑣 ,𝐺)

𝜒𝑣∈Λ𝑣∀𝑣∈𝑆
𝜖𝑣∈Ker𝜒𝑣∀𝑣∈𝑆

(∏
𝑣∈𝑆

𝔢𝑣(𝜒𝑣)

Φ𝑣(𝜒𝑣)𝜁𝑘,𝑣(1)
𝜚(𝑘,𝐺)

) ∑
𝑥∈(𝑘,𝐺,1)

∏
𝑣∈𝑆

⟨𝜒𝑣, 𝑥𝑣⟩,
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DISTRIBUTION OF GENUS NUMBERS OF ABELIAN NUMBER FIELDS 2211

and 𝐶𝑘,𝐺,Λ > 0 if there exists a sub-𝐺-extension of 𝑘 that realises the given local conditions for all
places 𝑣 ∈ 𝑆.

In this statement, we use some notation concerning Tate–Shafarevich groups, which we now
introduce. For a number field 𝑘, commutative group scheme 𝐺 over 𝑘, and a finite set of places 𝑆
of 𝑘, we write

Ш𝑆(𝑘, 𝐺) = Ker

(
H1(𝑘, 𝐺) →

∏
𝑣∉𝑆

H1(𝑘𝑣, 𝐺)

)
, Ш𝜔(𝑘, 𝐺) = lim��→

𝑆

Ш𝑆(𝑘, 𝐺).

We are interested in the case 𝐺 = 𝜇𝑛, where by Kummer theory we have

Ш𝜔(𝑘, 𝜇𝑛) = {𝑥 ∈ 𝑘
×∕𝑘×𝑛 ∶ 𝑥𝑣 ∈ 𝑘

×𝑛
𝑣 for all but finitely many 𝑣}.

The natural map ×
𝑘
∕×𝑛
𝑘
→ 𝑘×∕𝑘×𝑛 is injective and we write ×

𝑘
∕×𝑛
𝑘
∩Ш𝜔(𝑘, 𝜇𝑛) to mean the

intersection taken inside 𝑘×∕𝑘×𝑛.

Proof of Theorem 3.5. As in Proposition 3.4, we have

∑
𝜑∈𝐺-ext(𝑘)
Φ(𝜑)⩽𝐵

𝜑𝑣∈Λ𝑣∀𝑣∈𝑆

𝔤𝐾𝜑∕𝑘 =
ℎ(𝑘)|𝐺|[×
𝑘
∶ ×𝑒

𝑘
]

∑
𝜖∈×

𝑘
∕×𝑒
𝑘

∑
𝜑∈𝐺-ext(𝑘)
Φ(𝜑)⩽𝐵

𝜑𝑣∈Λ𝑣∀𝑣∈𝑆

𝑓𝜖(𝐾𝜑)
∏
𝑣∈Ω𝑘

𝔢𝑣(𝐾𝜑), (3.1)

where 𝐾𝜑 denotes the fixed field of Ker 𝜑 in �̄� and 𝑒 is the exponent of 𝐺.
We now prepare to apply Theorem 2.1. For 𝜖 ∈ 𝑘×, define (Λ, 𝜖) ∶= ((Λ, 𝜖)𝑣)𝑣∈Ω𝑘 as follows.

For 𝑣 ∉ 𝑆, let (Λ, 𝜖)𝑣 be the set of sub-𝐺-extensions of 𝑘𝑣 corresponding to those extensions of
local fields 𝐿∕𝑘𝑣 for which 𝜖 is a local norm from 𝐿∕𝑘𝑣. For 𝑣 ∈ 𝑆, let (Λ, 𝜖)𝑣 be the subset of Λ𝑣
consisting of those extensions 𝐿∕𝑘𝑣 for which 𝜖 is a local norm from 𝐿∕𝑘𝑣. Note that this definition
only depends on the image of 𝜖 in 𝑘×∕𝑘×𝑒, and for 𝑣 ∈ 𝑆 the set (Λ, 𝜖)𝑣 may be empty.
Applying Theorems 2.1 and 2.12 (with generated by 𝜖) to the inner sum of (3.1) yields∑

𝜑∈𝐺-ext(𝑘)
Φ(𝜑)⩽𝐵

𝜑𝑣∈Λ𝑣∀𝑣∈𝑆

𝑓𝜖(𝐾𝜑)
∏
𝑣∈Ω𝑘

𝔢𝑣(𝐾𝜑) = 𝑐𝑘,𝐺,(Λ,𝜖)𝐵(log 𝐵)
𝜚(𝑘,𝐺,𝜖)−1 + 𝑂(𝐵(log 𝐵)𝜚(𝑘,𝐺,𝜖)−1−𝛿),

where

𝜚(𝑘, 𝐺, 𝜖) =
∑

g∈𝐺⧵{id𝐺}

ord g
[𝑘ord g ,𝜖 ∶ 𝑘]

and 𝑘𝑑,𝜖 = 𝑘(𝜇𝑑,
𝑑
√
𝜖) (3.2)

and 𝑐𝑘,𝐺,(Λ,𝜖) ⩾ 0 is as in Theorem 2.12, with local conditions coming from Λ and the requirement
that 𝜖 is everywhere locally a norm. If these two sets of conditions are not compatible, that is,
there are no𝐺-extensions𝜑with𝜑𝑣 ∈ Λ𝑣 for all 𝑣 ∈ 𝑆 fromwhich a given 𝜖 is everywhere locally a
norm, then 𝑐𝑘,𝐺,(Λ,𝜖) = 0 and this 𝜖 does not contribute to the sum in (3.1). Note that if 𝑐𝑘,𝐺,(Λ,1) = 0
then there are no 𝐺-extensions 𝜑 with 𝜑𝑣 ∈ Λ𝑣 for all 𝑣 ∈ 𝑆 and hence 𝑐𝑘,𝐺,(Λ,𝜖) = 0 for all 𝜖 ∈×
𝑘
∕×𝑒
𝑘
. The next lemma shows that themain term in (3.1) comes from those 𝜖 lying in×

𝑘
∕×𝑒
𝑘
∩

Ш𝜔(𝑘, 𝜇𝑒).
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2212 FREI et al.

Lemma 3.6. We have 𝜚(𝑘, 𝐺, 𝜖) ⩽ 𝜚(𝑘, 𝐺), with equality if and only if 𝜖 ∈ ×
𝑘
∕×𝑒
𝑘
∩Ш𝜔(𝑘, 𝜇𝑒).

Proof. It follows from the definition (3.2) that 𝜚(𝑘, 𝐺, 𝜖) ⩽ 𝜚(𝑘, 𝐺, 1), with equality if and only if
𝜖 ∈ 𝑘(𝜇𝑑)

×𝑑 for all 𝑑 ∣ 𝑒. This is equivalent to 𝜖 ∈ 𝑘×𝑒𝑣 for all but finitely many places 𝑣 of 𝑘 (see [7,
Theorem 1.6], for example). □

Thus, the main term in (3.1) is

ℎ(𝑘)|𝐺|[×
𝑘
∶ ×𝑒

𝑘
]

∑
𝜖∈×

𝑘
∕×𝑒
𝑘
∩Ш𝜔(𝑘,𝜇𝑒)

∑
𝜑∈𝐺-ext(𝑘)
Φ(𝜑)⩽𝐵

𝜑𝑣∈Λ𝑣∀𝑣∈𝑆

𝑓𝜖(𝐾𝜑)
∏
𝑣∈Ω𝑘

𝔢𝑣(𝐾𝜑)

=
ℎ(𝑘)|𝐺|[×
𝑘
∶ ×𝑒

𝑘
]

∑
𝜖∈×

𝑘
∕×𝑒
𝑘
∩Ш𝜔(𝑘,𝜇𝑒)

𝑐𝑘,𝐺,(Λ,𝜖)𝐵(log 𝐵)
𝜚(𝑘,𝐺)−1 + 𝑂(𝐵(log 𝐵)𝜚(𝑘,𝐺)−1−𝛿).

Hence in the setting of Theorem 3.5, we obtain the stated asymptotic formula with the leading
constant

𝐶𝑘,𝐺,Λ =
ℎ(𝑘)|𝐺|[×
𝑘
∶ ×𝑒

𝑘
]

∑
𝜖∈×

𝑘
∕×𝑒
𝑘
∩Ш𝜔(𝑘,𝜇𝑒)

𝑐𝑘,𝐺,(Λ,𝜖). (3.3)

Applying Theorem 2.12 to the term for 𝜖 = 1 already shows that 𝐶𝑘,𝐺,Λ is positive if there exists a
sub-𝐺-extension of 𝑘 that realises the local conditions imposed byΛ for all places 𝑣 ∈ 𝑆. It remains
to prove that 𝐶𝑘,𝐺,Λ has the form claimed in Theorem 3.5.
We begin by noting that the sum in (3.3) has either one or two terms. To see this, let 2𝑟 be the

largest power of 2 dividing 𝑒. It follows from [17, Theorem 9.1.11] that Ш𝜔(𝑘, 𝜇𝑒) is trivial unless
𝑘(𝜇2𝑟 )∕𝑘 is non-cyclic, in which case Ш𝜔(𝑘, 𝜇𝑒) ≅ ℤ∕2ℤ (see [7, Lemma 4.9]).
We next show that the elements 𝜖 ∈ ×

𝑘
∕×𝑒
𝑘
∩Ш𝜔(𝑘, 𝜇𝑒) can only be non-trivial at a uniformly

bounded (in terms of [𝑘 ∶ ℚ]) subset of the places in 𝑆. We write 𝜖𝑣 for the image of 𝜖 in 𝑘×𝑣 ∕𝑘
×𝑒
𝑣 .

Recall that a place 𝑣 of a number field 𝐿 is said to split (or decompose) in an extension𝑀∕𝐿 if there
exist at least two distinct places of𝑀 above 𝑣.

Lemma3.7. Let 𝜖 ∈ ×
𝑘
∕×𝑒
𝑘
∩Ш𝜔(𝑘, 𝜇𝑒), where 𝑒 is the exponent of𝐺. Let 2𝑟 be the largest power of

2 dividing 𝑒 and let 𝑅 be a set of places of 𝑘 containing all places above 2 that do not split in 𝑘(𝜇2𝑟 )∕𝑘.
Then 𝜖𝑣 ∈ 𝑘×𝑒𝑣 for all 𝑣 ∉ 𝑅.

Proof. By definition, there exists a cofinite set of places 𝑇 such that 𝜖𝑣 ∈ 𝑘×𝑒𝑣 for all 𝑣 ∈ 𝑇. Let
𝑈 = Ω𝑘 ⧵ 𝑅. By Grunwald–Wang [17, Theorem 9.1.11], we have

Ker

(
𝑘×∕𝑘×𝑒 →

∏
𝑣∈𝑇

𝑘×𝑣 ∕𝑘
×𝑒
𝑣

)
= Ker

(
𝑘×∕𝑘×𝑒 →

∏
𝑣∈𝑇∪𝑈

𝑘×𝑣 ∕𝑘
×𝑒
𝑣

)
,

proving that 𝜖𝑣 ∈ 𝑘×𝑒𝑣 for all 𝑣 ∉ 𝑅. □

By Lemma 3.7 and (2.8), we have (𝑘, 𝐺, 𝜖) = (𝑘, 𝐺, 1) for 𝜖 ∈Ш𝜔(𝑘, 𝜇𝑒). Together with
Theorem 2.12, Lemma 3.6, Lemma 3.7 and our assumptions on 𝑆, this shows that, for
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DISTRIBUTION OF GENUS NUMBERS OF ABELIAN NUMBER FIELDS 2213

𝜖 ∈ ×
𝑘
∕×𝑒
𝑘
∩Ш𝜔(𝑘, 𝜇𝑒),

𝑐𝑘,𝐺,(Λ,𝜖) =
(Res𝑠=1 𝜁𝑘(𝑠))

𝜚(𝑘,𝐺)

Γ(𝜚(𝑘, 𝐺))|×
𝑘
⊗ 𝐺∧||𝐺||𝑆𝑓 | ∏𝑣∉𝑆

⎛⎜⎜⎝
∑

𝜒𝑣∈Hom(×𝑣 ,𝐺)
ord𝜒𝑣
Φ𝑣(𝜒𝑣)

⎞⎟⎟⎠𝜁𝑘,𝑣(1)−𝜚(𝑘,𝐺)
×

∑
𝜒∈Hom(

∏
𝑣∈𝑆 𝑘

×
𝑣 ,𝐺)

𝜒𝑣∈Λ𝑣∀𝑣∈𝑆
𝜖𝑣∈Ker 𝜒𝑣∀𝑣∈𝑆

(∏
𝑣∈𝑆

𝔢𝑣(𝜒𝑣)

Φ𝑣(𝜒𝑣)𝜁𝑘,𝑣(1)
𝜚(𝑘,𝐺)

) ∑
𝑥∈(𝑘,𝐺,1)

∏
𝑣∈𝑆

⟨𝜒𝑣, 𝑥𝑣⟩.

Plugging this into (3.3) gives the correct leading constant for Theorem 3.5. □

3.3 Remarks on Theorem 3.5

The constant 𝑐 in Theorem 1.2 is equal to 𝐶𝑘,𝐺,Λ∕|Aut(𝐺)|, where 𝐶𝑘,𝐺,Λ is as in Theorem 3.5
and Λ𝑣 is taken to be the set of all sub-𝐺-extensions of 𝑘𝑣 for each 𝑣 ∈ 𝑆. This is because in the
counting function in Theorem 1.2 we do not fix a choice of isomorphism from Gal(𝐾∕𝑘) to 𝐺.
Next, we observe that the exponent occurring in Theorem 1.2 is an integer.

Lemma 3.8. The number 𝜚(𝑘, 𝐺) is a non-negative integer.

Proof. Let 𝜑(𝑛) = |(ℤ∕𝑛ℤ)×|. We have
𝜚(𝑘, 𝐺) =

∑
𝑛>1

𝑛

[𝑘(𝜇𝑛) ∶ 𝑘]
#{g ∈ 𝐺 ∶ ord g = 𝑛}.

It suffices to note that [𝑘(𝜇𝑛) ∶ 𝑘] ∣ 𝜑(𝑛) and that 𝜑(𝑛) ∣ #{g ∈ 𝐺 ∶ ord g = 𝑛}, as if g ∈ 𝐺 has
order 𝑛 then so does g𝑎 for all 1 ⩽ 𝑎 ⩽ 𝑛 with gcd(𝑎, 𝑛) = 1, and these elements are distinct. □

Nextwe show that the group×
𝑘
∕×𝑒
𝑘
∩Ш𝜔(𝑘, 𝜇𝑒), which occurs in the formula for the constant

𝐶𝑘,𝐺,Λ in Theorem 3.5, can be non-trivial.

Example 3.9. Here we give an example of a number field 𝑘 such that the map

×
𝑘
∕×8
𝑘
→

∏
𝑣∈Ω𝑘

×𝑣 ∕×8𝑣

is not injective and hence ×
𝑘
∕×𝑒
𝑘
∩Ш𝜔(𝑘, 𝜇𝑒) ≅ ℤ∕2.

Take 𝑘 = ℚ(
√
7). Then it is well-known that 16 is an 8th power everywhere locally in 𝑘, but not

globally an 8th power (Wang’s counter-example to Grunwald’s theorem). Note that 2 is ramified
in 𝑘, so that (2) = 𝔭2 for some prime ideal 𝔭. Then 𝔭8∕(16) is the trivial ideal. But the class number
of 𝑘 is 1 so, writing 𝔭 = (𝑎), we have that 𝑎8∕16 is a unit that is an 8th power everywhere locally
but not an 8th power globally, as required.
Explicitly, we have 𝔭 = (3 +

√
7), so we may take 𝑎 =

√
7 + 3. Then 𝑢 = 𝑎8∕16 = 32257 +

12192
√
7 is the sought-after unit. Note that 𝑢 = 𝜖4, where 𝜖 = 8 + 3

√
7 is the fundamental unit.
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2214 FREI et al.

4 ZERO DENSITYWITH FIXED GENUS NUMBER

In this section, we prove Theorem 1.5. Let 𝑒 again denote the exponent of 𝐺. From Lemma 3.1, we
see at once that any 𝐺-extension 𝐾∕𝑘 satisfies

𝔤𝐾∕𝑘 ⩾
ℎ(𝑘)|𝐺|[×
𝑘
∶ ×𝑒

𝑘
]

∏
𝑣∈Ω𝑘

𝔢𝑣(𝐾) ≫ 2
𝜔(𝐾∕𝑘),

where 𝜔(𝐾∕𝑘) denotes the number of places of 𝑘 that ramify in 𝐾∕𝑘. With this observation,
Theorem 1.5 follows immediately from the following result.

Theorem 4.1. Let 𝑘 be a number field, 𝐺 a finite abelian group and 𝑟 ∈ ℕ. Then

lim
𝐵→∞

|{𝐾∕𝑘 ∶ Gal(𝐾∕𝑘) ≅ 𝐺, Φ(𝐾∕𝑘) ⩽ 𝐵 and 𝜔(𝐾∕𝑘) ⩽ 𝑟}||{𝐾∕𝑘 ∶ Gal(𝐾∕𝑘) ≅ 𝐺, Φ(𝐾∕𝑘) ⩽ 𝐵}| = 0. (4.1)

Proof. We show that the limit in (4.1) is smaller than any 𝜀 > 0. To this end, we will apply Cheby-
shev’s inequality in the form of [8, Lemma 5.1], which is a straightforward generalisation of its
special case [5, Lemma 3.1] for 𝑘 = ℚ.
Let 𝑧 be a fixed positive constant, chosen sufficiently large in terms of 𝑘, 𝐺 and 𝜀. Write 𝑃(𝑧) =

{𝔭 ∶ 𝑁(𝔭) ⩽ 𝑧} for the set of all non-zero prime ideals of 𝑘 with norm bounded by 𝑧. Moreover,
fix a sufficiently large finite set 𝑆0 of places of 𝑘.
For any 𝐵 > 1, let

A = {𝐾∕𝑘 ∶ Gal(𝐾∕𝑘) ≅ 𝐺 and Φ(𝐾∕𝑘) ⩽ 𝐵}

and write 𝑁 = |A |. For any prime ideal 𝔭 ∈ 𝑆0, we take A𝔭 = A . For 𝔭 ∉ 𝑆0, we take

A𝔭 = {𝐾 ∈ A ∶ 𝔭 ramifies in 𝐾}.

For any distinct prime ideals 𝔭, 𝔮, writeA𝔭,𝔮 = A𝔭 ∩A𝔮. To determine the cardinalities of the sets
A𝔭 andA𝔭,𝔮 asymptotically for 𝐵 → ∞, we apply [7, Theorem 3.1]. We take in the statement of
[7, Theorem 3.1] to be the trivial subgroup. For 𝑣 ∈ 𝑆0, we take Λ𝑣 = Hom(𝑘×𝑣 , 𝐺). For 𝑣 ∈ 𝑆 ⧵ 𝑆0,
we take

Λ𝑣 = {𝜒 ∈ Hom(𝑘
×
𝑣 , 𝐺) ∶ 𝜒 is ramified}.

As 𝑆0 is sufficiently large, the explicit description of the leading constant in [7, Theorem 3.22]
applies to any finite set of places 𝑆 ⊃ 𝑆0. Hence, applying [7, Theorems 3.1 and 3.22] with 𝑆 = 𝑆0,
𝑆 = 𝑆0 ∪ {𝔭} and 𝑆 = 𝑆0 ∪ {𝔭, 𝔮}, respectively, we obtain the estimates

𝑁 = |A | = 𝑐𝑘,𝐺𝐵(log 𝐵)𝜔(𝑘,𝐺)−1 + 𝑂(𝐵(log 𝐵)𝜔(𝑘,𝐺)−1−𝛼),|A𝔭| = 𝛿𝔭𝑁 + 𝑅𝔭,|A𝔭,𝔮| = 𝛿𝔭𝛿𝔮𝑁 + 𝑅𝔭,𝔮,
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DISTRIBUTION OF GENUS NUMBERS OF ABELIAN NUMBER FIELDS 2215

where 𝜔(𝑘, 𝐺) > 0 is given in Remark 1.3, 𝛼 = 𝛼(𝑘, 𝐺) > 0, 𝑐𝑘,𝐺 > 0,

𝑅𝔭 = 𝑂𝔭(𝐵(log 𝐵)
𝜔(𝑘,𝐺)−1−𝛼), 𝑅𝔭,𝔮 = 𝑂𝔭,𝔮(𝐵(log 𝐵)

𝜔(𝑘,𝐺)−1−𝛼),

and 𝛿𝔭 is given as follows. For 𝔭 ∈ 𝑆0 we have 𝛿𝔭 = 1, and for 𝔭 ∉ 𝑆0 corresponding to the place
𝑣, we have

𝛿𝔭 =

∑
𝜒𝑣∈Λ𝑣

1

Φ𝑣(𝜒𝑣)∑
𝜒𝑣∈Hom(𝑘

×
𝑣 ,𝐺)

1

Φ𝑣(𝜒𝑣)

.

Here we have used the fact that Euler factors for places 𝑣 ∈ 𝑆 ⧵ 𝑆0 can be split off the formula for
the constant 𝑐𝑘,𝐺,Λ given in [7, Theorem 3.22], as explained in the proof of [7, Lemma 4.5]. We
evaluate 𝛿𝔭 further as follows. By [7, Lemma 3.10], we have, for 𝑣 ∉ 𝑆0,

1|𝐺| ∑
𝜒𝑣∈Hom(𝑘

×
𝑣 ,𝐺)

1

Φ𝑣(𝜒𝑣)
= 1 + (|Hom(𝔽×𝑣 , 𝐺)| − 1)𝑞−1𝑣 = 1 + (|𝐺[𝑞𝑣 − 1]| − 1)𝑞−1𝑣 .

As the unramified homomorphisms 𝜒𝑣 contribute exactly the ‘1’ in the above formula, we also get
that

1|𝐺| ∑
𝜒𝑣∈Λ𝑣

1

Φ𝑣(𝜒𝑣)
= (|Hom(𝔽×𝑣 , 𝐺)| − 1)𝑞−1𝑣 = (|𝐺[𝑞𝑣 − 1]| − 1)𝑞−1𝑣 ,

and hence

𝛿𝔭 =
(|𝐺[𝑞𝑣 − 1]| − 1)𝑞−1𝑣
1 + (|𝐺[𝑞𝑣 − 1]| − 1)𝑞−1𝑣 ⩾

𝐺[𝑞𝑣 − 1] − 1

2𝑞𝑣
⩾
1

2𝑞𝑣

for sufficiently large 𝑣 with gcd(𝑞𝑣 − 1, 𝑒) > 1. As the set of 𝑣 satisfying the latter condition has
positive density by Chebotarev, we have shown that the series∑

𝔭

𝛿𝔭

diverges. For any field 𝐾 ∈ A , we clearly have

𝜔𝑧(𝐾∕𝑘) ∶= |{𝔭 ∈ 𝑃(𝑧) ∶ 𝐾 ∈ A𝔭}| ⩽ 𝜔(𝐾∕𝑘),
hence we are interested in bounding

𝐸(𝐵; 𝑧, 𝑟) = {𝐾 ∈ A ∶ 𝜔𝑧(𝐾∕𝑘) ⩽ 𝑟}

for sufficiently large 𝐵. To do so, we consider the mean

𝑀(𝑧) ∶=
1

𝑁

∑
𝐾∈A

𝜔𝑧(𝐾∕𝑘) =
1

𝑁

∑
𝔭∈𝑃(𝑧)

|A𝔭|
=

∑
𝔭∈𝑃(𝑧)

𝛿𝔭 + 𝑂𝑧((log 𝐵)
−𝛼) = 𝑈(𝑧) + 𝑂𝑧((log 𝐵)

−𝛼),
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2216 FREI et al.

where we have written 𝑈(𝑧) =
∑
𝔭∈𝑃(𝑧) 𝛿𝔭. As the sum over 𝛿𝔭 diverges, we may choose 𝑧 large

enough so that 𝑈(𝑧) > 4𝑟. Then we have 𝑀(𝑧) > 𝑈(𝑧)∕2 > 2𝑟 for all sufficiently large 𝐵. By [8,
Lemma 5.1], we get

𝐸(𝐵; 𝑧, 𝑟)

𝑁
⩽

4

𝑀(𝑧)2

⎛⎜⎜⎝𝑈(𝑧) + 1𝑁
∑

𝔭,𝔮∈𝑃(𝑧)

|𝑅𝔭,𝔮| + 2𝑈(𝑧)𝑁 ∑
𝔭∈𝑃(𝑧)

|𝑅𝔭| +(
1

𝑁

∑
𝔭∈𝑃(𝑧)

|𝑅𝔭|)2⎞⎟⎟⎠,
where 𝑅𝔭,𝔭 is interpreted as 𝑅𝔭. The expression on the left-hand side of (4.1) is bounded above by

lim
𝐵→∞

𝐸(𝐵; 𝑧, 𝑟)

𝑁
⩽
16

𝑈(𝑧)2
(𝑈(𝑧) + 0 + 0 + 0) =

16

𝑈(𝑧)
< 𝜀,

provided 𝑧 is chosen large enough. □

5 NARROWGENUS NUMBERS AND GENERALISATIONS

We finish by discussing the narrow genus number 𝔤+
𝐾∕𝑘

. For abelian 𝐾∕𝑘, this is defined analo-
gously to Definition 1.1, but instead taking the largest extension of 𝐾 that is abelian over 𝑘 and
unramified only at all non-archimedean places of 𝐾. Warning: some authors take this as the def-
inition of the genus number; this is due to Fröhlich’s original convention [9] and is, for example,
the definition used in [14]. As 𝔤+

𝐾∕𝑘
⩾ 𝔤𝐾∕𝑘, it is clear that an analogue of Theorem 1.5 holds for

narrow genus numbers as well.
Analogously to Lemma 3.1, we have the formula (see [12, Theorem 4])

𝔤+
𝐾∕𝑘
=

ℎ+(𝑘)
∏
𝑣∈Ωf

𝑘
𝔢𝑣(𝐾)

[𝐾 ∶ 𝑘][×,+
𝑘
∶ ×,+

𝑘
∩ N𝐾∕𝑘

∏
𝑤∈Ω𝐾

×
𝐾,𝑤
]
, (5.1)

where ℎ+(𝑘) denotes the narrow class number of 𝑘, ×,+
𝑘

denotes the group of totally positive
units of 𝑘, and Ωf

𝑘
denotes the set of finite places of 𝑘.

The narrow genus number and the genus number only differ by a power of 2. More precisely,
𝔤+
𝐾∕𝑘
∕𝔤𝐾∕𝑘 divides 2𝑟1 where 𝑟1 is the number of real places of 𝑘. This can be seen by taking the

quotient of (5.1) by the expression in Lemma 3.1 and recalling that ℎ+(𝑘)∕ℎ(𝑘) = 2𝑟1∕[×
𝑘
∶ ×,+

𝑘
]

(see [1, Exercise 3], for example). Moreover, for odd degree extensions ofℚ the genus number and
the narrow genus number coincide, see [10, 2.9 Proposition].
Using (5.1) in place of Lemma 3.1 during the proof of Theorem 3.5, one can obtain an asymptotic

formula for the sum of 𝔤+
𝐾∕𝑘

with the same order of magnitude, but a different leading constant.
More generally, Horie [13] has defined the genus field with respect to an arbitrary modu-

lus of 𝐾 and given a formula for the corresponding generalisation of the genus number, see
[13, Corollary of Theorem 2]. For moduli induced from a fixed modulus of 𝑘, our methods
can also be used to give an asymptotic formula for the sum of these generalised genus num-
bers, again having the same order of magnitude as in Theorem 3.5 but with a different leading
constant.
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