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ABSTRACT

The ongoing digitalization of today’s world provides valuable opportunities for improving existing large
internal combustion engines (ICE) technology and enabling or supporting the development of new
solutions. In particular, machine learning has recently opened up promising new avenues. The
analysis and use of large amounts of data that has been generated either experimentally (e.g., by
sensors inside ICEs) or virtually (e.g., by simulation tools) effectively provide insights into previously
unknown correlations. On the one hand, this allows generation of an added value for research tools
such as engine testing and simulation. On the other hand, the additional benefits can eventually be
employed in series applications.

This paper presents actual applications of how machine learning approaches enhance the diverse
research being conducted on modern large engines. For all applications, realistic and application-
related data from experiments or simulations serve for model training and validation and the outcomes
are described by means of quantitative results to understand the achieved benefits. The topics
covered range from fundamental research on how to enhance simulation methods to fault diagnosis
on engine test beds to condition monitoring and predictive maintenance on key engine components
such as cylinder liners, fuel injection valves or sliding bearings and finally to engine control
applications for combustion anomalies. Each topic is introduced by discussing the underlying task as
well as the implemented machine learning approaches, which can include purely data-driven as well
as hybrid methods that also take physical relationships into account. Altogether this provides a
comprehensive overview of the versatile ways in which machine learning can be beneficially deployed.
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1 INTRODUCTION 

Large internal combustion engines (ICE) are widely 
used in power generation and transportation 
applications [1–3]. In the context of global issues 
such as climate change, environmental pollution 
and conservation of resources, ICE manufacturers 
are currently facing the challenge of achieving 
substantially reduced emissions of greenhouse 
gases (GHG) and pollutants while increasing 
efficiency and durability [4]. The global digital 
transformation that is ongoing provides valuable 
opportunities for improving existing ICE technology 
and enabling or supporting the development of new 
solutions [5–8]. Artificial intelligence and in 
particular its subfield machine learning (ML) have 
recently opened up promising new avenues [9, 10]. 
With the help of methods from this field, the 
analysis and use of large amounts of data 
generated either experimentally (e.g., by sensors 
inside ICEs) or virtually (e.g., by simulation tools) 
effectively provide insights into previously unknown 
correlations [11]. ML has the potential for 
generating added value in two main areas of large 
engine technology: 

• Development tools such as experimental 
testing and simulation, which are usually 
embedded in a comprehensive development 
methodology 

• Series engines, which include specific 
applications such as condition monitoring 
(CM), condition-based maintenance (CBM) 
and control systems 

Both areas ultimately contribute to meeting global 
challenges and will be further outlined below. 
Subsequently, this publication presents actual 
applications in which ML approaches enhance the 
diverse research being conducted on modern large 
engines. In all applications, realistic and 
application-related data from experiments or 
simulations is employed for model training and 
validation and the outcomes are described by 
means of quantitative results to understand the 
achieved benefits. Each topic is introduced by a 

discussion of the underlying task as well as the 
implemented ML approaches, which can include 
purely data-driven as well as hybrid methods that 
also consider physical relationships. Altogether this 
provides a comprehensive overview of the versatile 
ways in which ML can be beneficially deployed. 

1.1 Machine learning for development tools 

Several comprehensive development 
methodologies have been proposed for large 
engine technology that include close interaction 
between experimental testing and simulation-
based development and which feature a stepwise 
increase in complexity along with technological 
development [3, 12]. One example that is 
presented in detail is the LEC Development 
Methodology (LDM), which has been developed 
and continuously refined over the years and 
successfully applied to numerous engine 
development tasks. 

In the LDM (Figure 1), advanced experimental 
testing and simulation cover the complete range 
from basic experiments and simulations on 
fundamental test rigs (e.g., fuel characterization, 
ignition and combustion investigations, tribology 
and materials), to single-cylinder engine (SCE) and 
multicylinder engine (MCE) investigations (e.g., 
combustion system development and modeling, 
control systems, HiL testing), to complete systems 
(e.g., hybridization, exhaust gas aftertreatment, 
system simulation and life cycle analyses) on test 
beds as well as in real world labs (field trials) and 
actual applications. Each stage of advanced testing 
interacts closely with simulation-based 
development, which employs the appropriate 
simulation techniques both to augment 
experimental results for simulation-enhanced 
analysis and to enable model development for 
predicting detailed results purely by simulation. 
Furthermore, the methodology ensures that the 
results of measurements and simulations are 
transferable between different stages, which 
substantially improves the development process of 
complex systems.

 

Figure 1. LEC Development Methodology  
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In development methodologies such as the LDM, 
there is great potential for application of ML 
methods in the context of testing as well as 
simulation. The importance of simulation-based 
development has continuously increased in recent 
years in response to increasingly complex systems 
with a very large number of degrees of freedom. 
However, complex phenomena cannot always be 
fully understood and described by first principles. 
Hybrid approaches based on coupling physics-
based and data-driven methods are therefore a 
promising approach to further improving the quality 
of the methodology by increasing simulation 
accuracy or decreasing simulation time. In the field 
of advanced testing, there is the potential to exploit 
costly testing time more efficiently (e.g., through a 
design of experiments approach that reduces the 
required number of measurements and through 
advanced methods of measurement error detection 
to avoid unnecessary repetition of tests) and to 
obtain a more significant domain knowledge gain 
from experimental data through advanced data 
analytics instead of conventional methods. 

1.2 Machine learning for series engine 
applications 

In series engine applications, ML is employed in 
areas such as condition monitoring (CM), 
condition-based maintenance (CBM) and control 
systems. To some extent, these three areas feature 
an interrelationship which is illustrated in Figure 2. 

 

Figure 2. Condition monitoring, wear compensation 
and maintenance based on [13]. 

According to Mechefske [14], condition 
monitoring (including fault diagnostics) of 
machinery can be defined as “the field of technical 
activity in which selected physical parameters, 
associated with machinery operation, are observed 
for the purpose of determining machinery integrity.” 
Weck [13] divides CM into the following three 
subtasks, which were similarly summarized in [15]: 

1 Condition detection: One or more informative 
parameters are acquired which reflect the 
current condition of the machinery. 

2 Condition comparison: The actual condition 
is compared with a reference condition of the 
same parameter. 

3 Diagnosis: The results of the condition 
comparison are evaluated and the type and 
location of failure are determined. 

Within these subtasks, the potential of ML 
approaches may be exploited in various ways. For 
condition detection, for example, virtual sensors 
based on data-driven models can be employed in 
cases where an informative parameter (or more 
generally the relevant information) cannot be 
directly measured by a real sensor and where a 
physical model is either too complex or not 
accurate enough, cf. wear assessment of cylinder 
liners in section 3.5. 

For condition comparison, it is often expedient to 
determine the reference condition based on a data-
driven model of the investigated parameter, cf. 
sliding bearing temperature in section 3.3. 
Furthermore, ML also offers many different 
approaches to effectively recognizing 
abnormalities in data. This offers additional 
opportunities for condition “comparison,” where 
there is no longer an explicit reference condition for 
comparison but rather a ML-based determination 
that the detected condition is anomalous [10]. 

With diagnosis, which commonly involves the 
evaluation of multiple CM parameters to determine 
the type and location of failure, ML has the potential 
to augment or even replace common diagnosis 
systems based on expert knowledge or physical 
models [16]. In addition to the data available 
directly from the condition detection, the increasing 
connectivity of engines and their components offers 
interfaces with further relevant information for the 
diagnostic tasks (cf. Figure 2). Depending on the 
available data and the ML methods considered, the 
distinction between condition comparison and 
diagnosis might even become obsolete. Instead, a 
comprehensive ML framework could be employed 
for both tasks at once. Based on the diagnosis, 
further activities can be triggered [13, 17]: 

Wear compensation (with control systems, see 
also further below): An unwanted condition caused 
by phenomena such as wear and early failure 
indicators that impairs machine performance may 
be fully or at least partly compensated for. Control 
algorithms in particular have the potential to ensure 
that losses in performance remain minimal for as 
long as possible. 
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Maintenance: Wear and early failure indicators 
may be used for preventive condition-based 
maintenance approaches. While preventive time-
based maintenance without condition information 
may lead to premature replacement, CBM aims to 
utilize the majority of the available lifetime of the 
machine while avoiding unexpected failure. The 
prediction of the remaining useful lifetime (RUL) 
based on condition information can be employed to 
optimally schedule maintenance before failure 
occurs. For both prediction of RUL and optimization 
of maintenance scheduling, ML approaches show 
great potential [18, 19]. Unscheduled maintenance 
is required if the result of the diagnosis is a failure. 
Despite the inconvenient timing, such maintenance 
can still provide significant added value if it serves 
to avoid serious secondary damage (including all 
implications such as safety-related consequences). 

The concept illustrated in Figure 2 also provides the 
opportunity to discuss the integration of a digital 
twin. According to Vrabic et al. [20], “A digital twin 
is a digital representation of a physical item or 
assembly using integrated simulations and service 
data. The digital representation holds information 
from multiple sources across the product life cycle. 
This information is continuously updated and is 
visualised in a variety of ways to predict current and 
future conditions, in both design and operational 
environments, to enhance decision making.” Based 
on Fuller et al. [21], a digital twin is characterized 
by a bidirectional flow of data between the physical 
item and its digital representation so that “a change 
made to the physical object automatically leads to 
a change in the digital object and vice versa.” The 
existing literature furthermore emphasizes that in 
many digital twin applications, real-time capability 
is a key feature that can therefore be considered 
inherent to the digital twin concept [21–23]. Digital 
twins with the characteristics outlined above can be 
effectively utilized in the processes in Figure 2.  

 

Figure 3. Digital twin concept. 

Following the example illustrated in Figure 3, 
continuous data acquisition for condition detection 
on a fuel injection valve (physical item) during 
engine operation can provide data for condition 
comparison and diagnosis with a corresponding 
digital twin. Based on the results, the digital twin 
can in turn provide key data for performing accurate 
compensation measures on the physical item if 
required, e.g., due to wear phenomena. 

While control systems have already been referred 
to specifically in the context of wear compensation, 
this topic generally encompasses a much broader 
field of ICE technology. As a result of the ever-
increasing complexity of ICEs and the 
requirements to achieve near-zero GHG and 
pollutant emissions as well as high engine 
efficiency and durability, there is great demand for 
advanced engine controllers [9, 24, 25]. A wide 
variety of specific control problems affect ICEs, 
many of which are closely related to combustion 
(e.g., engine load and speed, combustion phasing, 
fuel consumption, airpath, knocking combustion, 
maximum pressure rise rate and engine-out 
emissions), while others are related to auxiliary 
systems (e.g., exhaust aftertreatment, coolant and 
waste heat recovery) [9, 24, 26–28]. The use of ML 
approaches in control systems opens up various 
opportunities such as ML-supported tuning of 
control parameters (which decrease the calibration 
effort of the control system), data-driven modeling 
of engine processes as a basis for model predictive 
control and even model-free machine learning 
control (MLC) designs [9, 10, 29]. Similar to the 
condition monitoring process illustrated in Figure 2, 
ML approaches can also evaluate the current state 
of the system. An example is the detection of 
knocking combustion, which is required as an input 
to corresponding combustion-related control 
systems (cf. section 3.6) [10, 30, 31]. 

In summary, the use of ML in both development 
tools and series engine applications is justified by 
its potential to generate added value through 
improved processes and products (characterized 
by parameters such as efficiency, GHG/pollutant 
emissions, durability and safety), to provide 
additional insight into these processes and 
products and understanding thereof (“domain 
knowledge gain”) and to lower costs (e.g., material 
and personnel).  
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2 METHODOLOGY 

ML techniques for enhancing large engine 
technology are commonly used based on specific 
objectives (e.g., to achieve a specific functionality 
in a series engine or in a development tool) in 
combination with the hypothesis that the 
correlations inherent in an associated database will 
allow these objectives to be achieved with ML 
approaches. Frequently, the key to generating such 
hypotheses is the availability of experts with the 
corresponding domain knowledge in the field of 
large ICEs. The LEC data-driven methodology 
illustrated in Figure 4 is applied to determine 
whether a hypothesis can be confirmed. As 
outlined by the three large arrows, the LEC 
approach is to cover the entire spectrum from data 
generation to knowledge discovery and knowledge 
application. 

 

Figure 4. The LEC data-driven methodology. 

Data generation and management deals with 
methods that generate, acquire, transmit and store 
data. These methods can be applied in both 
experimental and simulation data generation 
processes, resulting in a database that provides a 
solid foundation for further tasks as described 
below. Due to time and cost constraints, design of 
experiments (DoE) has proven to be a valuable tool 
for both testing and simulation and effectively 
generates databases suitable for employment in a 
data-driven context. In experimental investigations 
in particular, the selection of suitable measurement 
parameters and the employment of advanced 
sensor and data acquisition systems play key roles 
in database generation. 

At the knowledge discovery stage, the general 
objective is to gain new insights, expressed as the 
discovery and the modeling of yet unknown or 
unconfirmed correlations. Besides finding patterns 
and generating corresponding models, there is the 
potential for creating a significant domain 
knowledge gain. In the course of this stage, the 
entire spectrum of different ML and statistical 
methods is considered (and extended with physical 
relationships, if required): From explorative 
correlation analyses to easily interpretable 
statistical regression models to classical ML 
methods such as clustering algorithms or support 
vector machines to highly sophisticated neural 

networks for deep learning, a problem-related 
trade-off between the required complexity, 
interpretability and performance is achieved. This 
ensures that models in particular are both accurate 
and as easily understandable as possible. In 
general, a distinction is made between supervised, 
unsupervised and reinforcement learning. While 
supervised learning relies on known target data 
(e.g., measurement value or knock classification of 
a combustion cycle), unsupervised learning does 
not rely on this kind of information [32]. The result 
is different main application scenarios: supervised 
learning for regression and classification tasks and 
unsupervised learning for clustering or anomaly 
detection. In contrast, reinforcement learning 
involves an artificial “agent” learning to choose 
actions based on interaction with its environment 
[32]. Another important distinction is between 
offline and online learning. While offline learning is 
one-off learning, online learning involves 
continuous learning and thus adaptation to 
changing conditions. Depending on the particular 
problem and hypothesis, it is therefore necessary 
to determine a suitable learning strategy that 
fosters the application of the knowledge gained. 

For LEC’s data-driven methodology, hybrid 
approaches are also of particular interest. In 
general, there is a large variety of ways for 
integrating physical (and engine-related) expert 
knowledge into purely data-driven methods such as 
physics-based preprocessing, physics-guided 
neural network architectures, and hybrid physics-
ML models [33, 34]—LEC strives to address all of 
these in its data-driven methodology. 

In the last stage of the LEC data-driven 
methodology, knowledge application is achieved 
either by taking the obtained knowledge gain as an 
incentive for further research work (e.g., if a data-
driven engine model indicates promising engine 
operating parameter ranges, further experimental 
tests are conducted to investigate them in detail) or 
by integrating technology using the applications 
outlined in section 1 (e.g., digital twins in a 
CM/CBM framework). 

3 APPLICATIONS AND RESULTS 

This section presents selected applications of ML 
and corresponding results from research projects 
carried out at the LEC. The applications come from 
both development tools and series engine 
application areas and include fundamental 
research on how to enhance simulation methods; 
fault diagnosis on engine test beds; CM and CBM 
on key engine components such as cylinder liners, 
fuel injection valves or sliding bearings and engine 
control applications for combustion anomalies. 
Each topic is introduced by a discussion of the 
underlying task as well as the implemented ML 
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approaches. In all applications, realistic and 
application-related data from experiments or 
simulations is employed for model training and 
validation, and the outcomes are described by 
means of quantitative results in order to understand 
the achieved benefits. 

3.1 ML-supported simulation of cycle-to-
cycle variations in large gas engine 
combustion 

For large gas engines, lean operating conditions 
are beneficial for achieving high efficiencies while 
keeping CO2 and pollutant emissions at low levels. 
However, an increase in air-fuel ratio leads to less 
stable operation caused by combustion 
inhomogeneities between consecutive cycles. 
Since achieving sufficiently low cycle-to-cycle 
variations (CCV) is a great challenge for engine 
manufacturers, comprehensive investigations to 
better understand the cause of CCV and 
consequently reduce CCV are ongoing. The 
research on CCV over the last decades has 
identified several influencing factors which range 
from design (e.g., compression ratio, ignition 
system) to operating parameters (e.g., load, speed) 
to physiochemical phenomena (e.g., flow field, 
local mixture composition). Based on the variety of 
influencing factors, the prediction of CCV to 
develop efficient control strategies is a great 
challenge. Computational fluid dynamics (CFD) 
represent a state-of-the-art development tool for 
investigating CCV in an engine. The high spatial 
and temporal resolution of physical effects inside 
the combustion chamber enables a detailed 
investigation of CCV which is not possible or only 
possible on a limited basis with experimental tests. 
Large eddy simulation (LES) must be used to 
account for the CCV-related effects in ICEs. Since 
the numerical treatment of the governing equations 
in LES is based on a filtering approach rather than 
an averaging one as used in Reynolds-averaged 
Navier–Stokes (RANS) turbulence frameworks, the 
resolution of fluctuating phenomena is possible to 
a certain extent. However, the computational 
demands required for LES are significantly higher 
than for RANS simulations. Therefore, strategies 
for overcoming computational time issues which 
arise from a straight simulation of consecutive 
cycles have been proposed. One possibility is to 
perturbate flow field variables randomly and use 
the generated data as initial conditions for 
individual cycles which then can be computed in 
parallel, saving computational time required for gas 
exchange simulations. Although this approach was 
successfully applied in recent studies [35, 36] it has 
some drawbacks. First, the parallel simulation of 
ICE cycles with an LES framework requires 
enormous computational power and a 
comprehensive number of licenses is required if 
commercial software is used. Second, the random 

perturbation of flow field variables does not 
guarantee the generation of physically meaningful 
results. 

To overcome the second drawback, the LEC has 
investigated a ML-supported CFD methodology: a 
ML-based flow field generation method [37]. The 
basic idea of this approach is to train a variational 
autoencoder (VAE) with simulated flow fields prior 
to ignition timing and artificially generate new 
velocity fields as well as turbulence intensity fields 
via the VAE. With this method, the underlying flow 
structure is conserved to an extent not guaranteed 
by random perturbation. VAEs are deep-learning 
generative models which consist of an encoder, a 
decoder and a latent space. The dimension of the 
input data is reduced in the encoder to obtain a 
compact representation in the latent space. VAEs 
use specific regularization terms to enable a 
regular latent space and furthermore an 
interference between decoded points and points in 
their vicinity [38]. A common field in which this 
method has already been applied successfully is 
the generation of artificial images.  

To train the VAE, the LEC [37] used the velocity 
fields and the turbulent intensity fields of ten 
presimulated engine cycles of a large gas engine in 
a cylindrical region around the spark plug at ignition 
timing (snapshots), see Figure 5. These 
simulations are based on a production engine 
setup and were validated with SCE measurements. 
The artificially generated flow fields (which include 
velocity and turbulent kinetic energy, TKE) were 
then combined with the flow field snapshot of the 
first cycle (which includes all other relevant 
parameters). A total of 20 artificial flow fields was 
generated, yielding the initial conditions for further 
combustion simulations. Figure 6 shows the in-
cylinder pressure and the heat release rate of the 
artificially generated cycles in red color and the ten 
presimulated cycles in grey. The result highlights 
that flow field-induced CCV can be created while 
maintaining the underlying flow characteristics. 

 

Figure 5. Methodology for artificial flow field 
generation with VAE. 
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Figure 6. Comparison of presimulated cycles and 
cycles based on artificially generated flow fields. 

While the method is capable of producing 
physically meaningful results and reducing the 
required simulation time by approximately 50% 
compared to the straight simulation of the same 
number of cycles (due to the omission of the gas 
exchange process), CCV is weakened due to a 
certain generalization effect of the VAE which can 
be quantified by the coefficient of variation of the 
maximum cylinder pressure of 1.06% for the initial 
ten cycles and 0.65% for the artificially generated 
cycles. This weakening is currently subject to 
further investigations. 

3.2 ML-supported measurement fault 
diagnosis on engine test beds 

Experimental investigations on engine test beds 
are an integral part of the LEC Development 
Methodology, cf. section 1.1. Since the hypotheses 
derived from them greatly depend on the data 
obtained, measurement faults can have serious 
consequences. Finding such faults offline is 
possible with postprocessing, but it is also time-
consuming and costly because unnecessary test 
repetitions may be required. Therefore, it is of great 
importance to detect and diagnose faults early at 
the test bed. ML methods can play a decisive role 
in this process.  

The method for fault diagnosis on engine test beds 
developed by the LEC (Figure 7 a)) includes three 
main process steps: residual generation, fault 
detection and fault isolation. In the initial step, a set 
of residuals is generated using model-based 
methods, limit checks and plausibility rules 
(formulas) such as inequalities for various pressure 
and temperature values. In the next step, these 
residuals are checked by applying fault conditions 
to determine if there is a fault in the system or not 
(fault detection). In the final step, a geometrical 
classification method is used to calculate fault 
probabilities for all measured variables in order to 
determine which sensors are faulty (fault isolation) 
[39]. 

Since the modeling of internal combustion engines 
in their entirety is extremely complex, the use of 
physics-based methods for fault diagnosis on 
engine test benches is limited [40]. As a 
consequence, simple limit checks and plausibility 
checks are widely used in practice. With such 
methods, it is usually only possible to detect large 
measurement errors or total sensor failures. Since 
research engines are normally equipped with 
extensive measurement technology that produces 
large amounts of data and the measured variables 
are highly correlated, the LEC is researching how 
to enhance fault diagnosis by extracting suitable 
information for that purpose using ML methods.  

 

Figure 7. Overall fault diagnosis methodology a) 
including ML-supported process for residual 
generation b) and data selection technique c). 
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As shown in Figure 7 b), multiple linear regression 
models that represent the correlations of the 
measured variables in the fault-free case are built 
and trained. A crucial point for research engines is 
that a separate training data set normally does not 
exist, so model training and fault diagnosis have to 
be performed simultaneously [41]. As all data is not 
known a priori, the models have to adapt to new 
data situations directly on site, which requires an 
online learning strategy. This strategy must take 
into account computational costs and memory 
requirements as well as the risk of using faulty data 
points to build the models. 

Data selection techniques are used to filter 
incoming data to find appropriate data for model 
training. For this purpose, data points are 
compared in the space spanned by distance and a 
residual [42]. Points with a large residual and a 
comparatively small distance are excluded from 
model training since large residuals may indicate 
an error in the data and small distances in a training 
data space may be interpreted as low additional 
information content that does not need to be 
included in the model. Using a statistical method 
that combines these two measures, the data points 
can be classified as belonging to one of two 
categories and used either for model building or not 
(Figure 7 c)). The trained models are then used for 
residual generation in which the model results are 
compared to the measured values. In the 
subsequent residual evaluation step, these 
residuals are analyzed to diagnose faulty sensors. 
The residuals are divided into two classes using the 
expected value, which is zero, and an interval 
representing the allowable deviation from this 
perfect value. Residuals falling within this control 
range are considered fault-free, while the others 
are considered faulty, indicating an error in the 
data. 

Figure 8 shows the diagnostic results of a 
consistent series of SCE tests. Based on a 
measurement database that consists of 116 
measurements in steady-state operation and was 
judged by experts to be error-free, abrupt 
measurement errors were simulated for 27 
measured variables (including various mass flows, 
temperatures, pressures, speed, torque and 
exhaust composition) at four different 
measurement error levels (5%, 10%, 50% and 
100%) for each variable, resulting in a total of 108 
fault scenarios. The threshold values for fault 
detection were set with a certain safety margin so 
that no faults were detected in the base case. The 
diagnostic performance was evaluated using the 
detection rate (number of correctly detected faults 
divided by number of actual faults) and the isolation 
rate (number of correctly isolated faults divided by 
number of actual faults).  

 

Figure 8. Improvement of detection and isolation 
rates with machine learning. 

As illustrated, the use of ML methods to generate 
data-driven models for residual generation 
significantly improves both the detection rate and 
the isolation rate and can thus help in substantially 
reducing the time and cost required for 
unnecessary test repetitions. 

3.3 ML for condition monitoring of sliding 
bearings in ICEs 

Sliding bearings such as crankshaft main bearings 
are key components of ICEs recently subject to 
new challenges: Newly developed low viscosity oils 
that have the potential to reduce overall friction as 
well as advanced operating strategies that involve 
frequent starts and stops of ICEs (e.g., to react 
swiftly to power grid demands) are characterized by 
an increase in metal-to-metal contacts between the 
sliding bearing and the pin and therefore bearing 
wear [43, 44]. To avoid engine failure caused by 
excessive bearing wear or abrupt bearing failure, 
CM of sliding bearings has thus become an 
important element in monitoring ICEs in series 
applications. 

Several informative parameters or methods may 
help to detect the condition of a sliding bearing, for 
example vibration or acoustic emissions, oil 
contaminates, oil film thickness and metal-to-metal 
contacts  [43]. These methods differ not only in the 
effort in applying related measuring instruments 
and the complexity involved in extracting relevant 
information from raw measurement data but also 
whether information can be obtained about an 
individual bearing or just the entire bearing and 
lubrication system. Another bearing condition 
detection method that is fairly simple to apply, does 
not require any basic data processing routines and 
provides bearing-individual information is bearing 
temperature measurement. By following the LEC 
data-driven methodology, it was demonstrated that 
bearing temperature measurements are well-suited 
to bearing CM and helpful in obtaining detailed 
knowledge (domain knowledge gain) about the 
influence of engine operating parameters and 
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lubricant oil parameters on bearing temperature 
[15, 43]. 

First, experimental investigations employing an 
MAN D2676 LF51 in-line six-cylinder diesel engine 
with a displacement of approximately 12.4 dm³ 
were carried out at the LEC in order to create a 
meaningful database [43]. The temperature of the 
crankshaft main bearings was measured using type 
K thermocouples fitted into bores in each individual 
bearing support. Different engine operating 
parameters (e.g., speed, torque, oil temperature 
and pressure at the engine inlet) and lubricant 
viscosities were investigated in steady-state 
operation to generate a database consisting of 105 
engine operating points.  

 

Figure 9. Machine learning for model-based 
condition comparison of crankshaft main bearings 
in ICEs. 

Based on this database, LEC was able to develop 
a ML-based approach for bearing CM using 
bearing temperature measurements [15]. As 
illustrated in Figure 9, the approach employs a 
data-driven model of bearing temperature that is 
derived from readily available engine operating 
parameters from the electronic control unit (ECU). 
The parameters considered include engine speed 
and torque, oil temperature and pressure, intake air 
temperature and pressure and excess air ratio. To 
derive a reliable bearing temperature model, 
several ML methods for supervised regression 
tasks were evaluated (linear regression with and 
without lasso regularization, gradient boosting 
regression and support vector regression). A 
repeated nested k-fold cross-validation was applied 
to avoid overfitting and enable model comparison. 
The best model was a support vector regression 
with a radial basis kernel. Tested again on unseen 
data, this model was able to predict the bearing 
temperature with a mean absolute error of less than 
0.3°C. Considering the temperature range from 
approximately 76°C to 112°C, the results appear to 
be highly accurate. Therefore, the bearing 
temperature model is found to be suitable as a 

reference during condition comparison since even 
small discrepancies between the model result and 
the measured values can provide valuable 
information about anomalies in bearing condition. 
Further investigations are currently being carried 
out at the LEC to expand the presented approach 
to CM of crankshaft main bearings during transient 
engine operation. 

3.4 ML-based combustion parameter 
prediction using intelligent diesel fuel 
injection valves 

In large engines that rely on conventional diesel 
and diesel-ignited dual fuel combustion concepts, 
diesel fuel injection valves play a key role in engine 
performance. Through advanced instrumentation 
of such valves, there is the potential to obtain 
detailed information about the injection process for 
purposes such as closed-loop control of the 
injection process (e.g., to overcome manufacturing 
tolerances and wear phenomena), CM of the 
injection valve as well as recording of relevant 
parameters over time as a basis for CBM 
approaches [45]. Beyond these aims, which mostly 
focus on the injection valve itself, there is great 
potential for using such valves in combination with 
other digital systems in ICEs [45]. A specific topic 
jointly investigated by OMT SpA and the LEC is the 
potential for predicting combustion parameters that 
are usually obtained with costly and delicate 
cylinder pressure indication systems. In series 
engine applications, this could provide an 
alternative way to generate the data required for 
combustion control purposes or serve as the basis 
for backup capability and mutual CM of the fuel 
injection valves and the indication system [45]. 

To generate cycle-resolved value-added data 
(VAD) about the injection process, OMT SpA has 
developed an “intelligent” common rail diesel fuel 
injection valve which includes a piezoelectric 
pressure transducer in the orifice plate between the 
control valve and control volume. Its signal is 
processed in real time along with other 
measurements using a neural network-based 
framework [6]. The VAD includes informative 
parameters such as start of injection, end of 
injection and ballistic/non-ballistic operation. 
Experimental investigations employing this injector 
were carried out at the LEC using a medium-speed 
four-stroke SCE with a displacement of 
approximately 15.7 dm³ to study how accurately 
key combustion parameters such as indicated 
mean effective pressure (IMEP), maximum cylinder 
pressure (pMAX) and 50% fuel mass fraction burned 
point (MFB50) can be predicted from standard 
engine parameters and injector VAD (Figure 10). 
The former included readily available parameters 
from a production engine ECU such as engine 
speed and charge air and exhaust gas 
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temperatures and pressures. To assess the 
information gain from the injector VAD, two 
scenarios were considered: models with and 
models without injector VAD as features [45]. 715 
time-averaged measurements (from 247 different 
engine operating points with up to three repetitions 
each) were considered for modeling using several 
ML methods (linear regression with and without 
lasso regularization, kernel ridge regression, and 
gradient boosting regression). A repeated nested k-
fold cross-validation was applied for proper model 
tuning and comparison. In both scenarios and for 
all targets, either kernel ridge regression or 
gradient boosting regression yielded the best 
results. Based on an evaluation with unseen test 
data that was not used for model training and 
comparison, it was possible to evaluate the overall 
predictive performance of the ML approach as well 
as compare both scenarios. 

 

Figure 10. Combustion parameter prediction with 
an intelligent injection valve for combustion control 
and CM purposes. 

In general, the overall prediction accuracy was high 
(cf. Figure 10) and it was found that in terms of the 
root mean squared error, there is a slight 
advantage in accuracy when the injector VAD is 
included (IMEP: 0.24 vs. 0.23 bar; pMAX: 4.83 vs. 
2.87 bar; MFB50: 0.40 vs. 0.30°CA) [45]. With help 
of the generated models, the following application 
cases for production engines based on injector 
VAD can be conceived [45]: (1) For an engine 
without an indication system, it can be concluded 
that the accuracy achieved in the modeling results 
would be largely sufficient for combustion control 
purposes; (2) For an engine that features intelligent 

injection valves and an indication system, backup 
functionality of the combustion control system and 
mutual CM between the indication and injection 
system are conceivable, in particular to detect if the 
systems are affected by wear. To further 
investigate these wear-related considerations, a 
follow-up experimental investigation involving 
artificially worn injection equipment has been 
conducted. Its objective is to gain additional 
knowledge of injector wear and determine how it 
affects the data-driven prediction of combustion 
parameters. Ultimately, this may also contribute to 
the development of a digital twin concept for a large 
engine fuel injector, which allows for condition-
based maintenance and control system-based 
compensation of injector wear (cf. Figure 3). 

3.5 ML for optical wear assessment of 
cylinder liners in large ICEs 

Proper functional interaction between pistons and 
liners is essential in any reciprocating engine. Due 
to the movement of the pistons relative to the liners, 
the inner surface of the latter is subject to constant 
wear. To avoid out-of-spec function, cylinder liner 
wear monitoring is therefore advisable. During 
engine operation, liner wear can be assessed 
indirectly, for example by detecting wear debris in 
the lubricant oil system or by monitoring vibration 
signals [46]. However, position-resolved and 
precise wear quantification is hardly feasible with 
such indirect methods. In contrast, direct wear 
measurement is currently not possible during 
engine operation. For large gas engines in 
particular, the current state-of-the-art methods 
require disassembly and cutting of the examined 
liner followed by high-resolution microscopic 
surface depth measurement. These precise 
surface depth measurements are then commonly 
used for wear quantification based on material ratio 
curves (MRC) [47]. In summary, such a procedure 
for direct cylinder liner wear measurement is 
destructive, time-consuming and costly. Instead of 
using a stationary confocal microscope for the 
depth measurements, the LEC targets to apply a 
small handheld digital microscope that records 
ordinary color (RGB) images of the surface. Even 
though the color images do not contain direct depth 
information, deep learning-based computer vision 
methods such as convolutional neural networks 
(CNN) and cycle-consistent generative adversarial 
networks (CycleGANs) can compensate for this 
and obtain reliable surface depth information in the 
form of depth image, MRC or texture parameter 
predictions [48–50]. 

The data required for training and testing the ML-
based approach was acquired from an 
experimental database created using more than 
100 liners from Type 6 gas engines from INNIO 
Jenbacher GmbH & Co OG. For the 

ECU

parameters

Injector

V A D

Combustion 

parameters
▪ Combustion control

▪ Condition monitoring

pMAX [bar] MFB50 [ CA]IMEP [bar]

RMSE=0.23 RMSE=2.87 RMSE=0.30



 

CIMAC Congress 2023, Busan                Paper No. 069             Page 12 

 

measurements, two segments were cut out of each 
liner that covered the area near top dead center 
parallel to the piston pin axis and the area near 
bottom dead center perpendicular to the piston pin 
axis; these two areas are expected to include the 
most and the least surface wear. In both areas, up 
to 15 distinct measurement positions were optically 
measured with the high-accuracy stationary 
reference device as well as the simpler handheld 
one.  

 

Figure 11. Prediction of surface depth image and 
MRC with help of a deep learning framework. 

As shown in Figure 11, the high-resolved depth 
images from the confocal microscope are fully 
contained within the corresponding handheld 
device images. In the preprocessing step, the 
corresponding image sections were algorithmically 
registered. A total of 3075 image pairs were 

generated in this way. With liner operating hours 
ranging from 2550 h to 30000 h, the database 
includes a representative distribution of surface 
wear. 

As illustrated in Figure 11, the low-resolved 
handheld images serve as input for a deep learning 
framework. Depending on the actual target (depth 
image, MRC, texture parameters), a customized 
framework is applied (e.g., CNN- or CycleGAN-
based). In addition, an uncertainty quantification of 
the input images was introduced recently to detect 
quality deficiencies and strengthen the reliability of 
the approach [50]. Overfitting was prevented with 
help of an elaborate cross-validation strategy. For 
unseen data that has not been used during training, 
the best frameworks currently achieve a mean 
absolute error of 0.465 µm for the depth image and 
0.102 µm for the MRC prediction. Since the liner 
surface depth spans roughly 10 µm, these results 
provide reasonable predictions and highlight the 
potential of the presented approach. Nevertheless, 
several options may be explored to improve the 
approach such as obtaining additional data for 
training or investigating alternative handheld 
devices. In this way, it may ultimately be possible 
to develop a method for nondestructive, rapid and 
inexpensive on-site wear assessment during 
engine standstill. 

3.6 ML-based knock detection for large gas 
engines 

To increase the efficiency and thus reduce CO2 
emissions, large gas engines must be operated at 
high-load operating points with high compression 
ratios. Since these conditions promote knocking 
combustion, the reliable detection of knocking 
cycles in production engines is a key input for 
combustion control systems so that the engines 
can be operated near the knock limit and thus 
achieve high efficiencies. Regardless of whether 
cylinder pressure or vibration signals are used, the 
underlying idea behind conventional knock 
detection methods is to compare data from an 
individual cycle to a threshold value. If it is 
exceeded, the cycle is labeled as knocking. 
Although methods using maximum amplitude 
pressure oscillation or signal energy pressure 
oscillation criteria were able to achieve reasonable 
results especially at heavy knock cycles [51], these 
methods have one major disadvantage in common: 
Careful calibration to engine operation conditions is 
required, leading to detection methods that are 
highly tailored to one engine, one event or one 
operating point. Therefore, the goal was to use ML 
techniques to develop approaches for knock 
detection that are as generally applicable as 
possible and avoid engine-dependent model 
adjustments. Two approaches were established at 
the LEC using supervised ML approaches [30, 31].  
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Figure 12. ML-based knock detection methods: a) 
theory-guided 1D CNN, b) continuous wavelet 
transformation and 2D CNN. 

While both methods take the cylinder pressure 
signal as input, they differ in the preprocessing of 
the signal and the applied ML architecture. A brief 
description of both methods gives insight into their 
functionality and application to measured cylinder 
pressure. 

Theory-guided 1D CNN (Figure 12 a)): The main 
idea of this approach is to relate knocking 
combustion to a certain resonance frequency in the 
cylinder pressure signal. The resonance 
frequencies for certain modes can be calculated 
using the well-known Bessel equation. Based on 
these frequencies, a 1D CNN is built in which the 
size of the kernel (or filter) is adapted to the 
frequency values. This procedure helps the CNN to 
detect the relevant frequencies of knocking 
combustion efficiently. Since this approach builds 
the CNN with a focus on the resonance frequency 
of an engine, which depends on the speed of sound 
in the cylinder, it can be seen as a hybrid approach 
(physics-guided network architecture). As the 
resonance frequency is the key influencing 
parameter, tuning of model constants can be 
reduced to engine size rather than specific engine 
operation points. Further details of the approach 
are found in [30]. 

Continuous wavelet transformation and 2D 
CNN (Figure 12 b)): This method primarily aims to 
preprocess the cylinder pressure signal before the 
data is fed into a ML algorithm. A continuous 
wavelet transformation (CWT) is applied in which 
the pressure signal is transferred into the time-
frequency space by using a wavelet function, in this 
case the eighth Gaussian derivative. This step 
yields a 2D representation in form of a scalogram 
of the cylinder pressure. In the next step, the 
scalogram is processed by a 2D CNN which learns 
to detect knocking combustion by finding relevant 
features in the picture. By transforming the cylinder 
pressure signal into a picture of the time-frequency 
space, this method exploits the well-proved ability 
of CNNs to characterize pictures by their content. A 
detailed description of the approach and its 
validation is found in [31]. 

The applicability of both models was demonstrated 
with a representative dataset that includes 2880 
individual cycles of three large gas engines. The 
engine bores range from 145 mm to 190 mm. In 
order to generate a labeled dataset, five engine 
experts categorized each cycle as either knock or 
no-knock. For model training and testing, the data 
was split according to a stratified sampling of 
knocking cycles as well as engine operating points. 
Table 1 shows the comparison between the model 
predictions (ML1 [30] and ML2 [31]) and the 
individual expert label (E1–E5) as well as the 
majority vote label (EM). A high Matthews 
correlation coefficient value denotes a strong 
correlation between the expert label and the 
respective ML prediction. The results indicate that 
although the individual expert labels disagree to a 
certain extent, both models are able to predict the 
knock tendency very well and thus show a high 
potential of being generally applicable since the 
underlying data covered three different types of 
large gas engines. 

Table 1. Matthews correlation coefficients of the 
expert labels and the two investigated ML-based 
knock detection methods. 

 E1 E2 E3 E4 E5 EM ML1 ML2 

E1 1.00 0.72 0.66 0.71 0.66 0.81 0.73 0.76 

E2 0.72 1.00 0.71 0.76 0.71 0.87 0.79 0.77 

E3 0.66 0.71 1.00 0.72 0.65 0.81 0.76 0.78 

E4 0.71 0.76 0.72 1.00 0.69 0.86 0.83 0.83 

E5 0.66 0.71 0.65 0.69 1.00 0.78 0.72 0.72 

EM 0.81 0.87 0.81 0.86 0.78 1.00 0.85 0.87 

ML1 0.73 0.79 0.76 0.83 0.72 0.85 1.00 0.88 

ML2 0.76 0.77 0.78 0.83 0.72 0.87 0.88 1.00 
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4 SUMMARY AND OUTLOOK 

The digital transformation and in particular ML 
provide valuable opportunities for improving 
existing large ICE technology and enabling or 
supporting the development of new solutions. The 
analysis and use of large amounts of data 
generated either by experiments or simulations 
effectively provide insights into previously unknown 
correlations, which allows creation of added value 
for development tools as well as series engine 
applications. As part of development 
methodologies such as LDM, there exists a large 
potential for application of ML methods in the 
context of testing as well as simulation. In series 
engine applications, ML is employed in areas such 
as CM, CBM and control systems. Overall, added 
value is generated by improved processes and 
products (characterized by parameters such as 
efficiency, GHG/pollutant emissions, durability and 
safety), additional insight into these processes and 
products and understanding thereof (“domain 
knowledge gain”) and lower costs (e.g., material 
and personnel). 

ML techniques are commonly used to enhance 
large engine technology based on specific 
objectives in combination with the hypothesis that 
the correlations inherent in an associated database 
will allow these objectives to be achieved with ML 
approaches. To investigate if a hypothesis can be 
confirmed, the LEC data-driven methodology is 
applied, which covers the entire spectrum from 
data generation to knowledge discovery and 
knowledge application. This paper presented 
actual applications of how ML approaches enhance 
the diverse research being conducted by the LEC 
and its partners on modern large engines. In all 
applications, realistic and application-related data 
from experiments or simulations was employed for 
model training and validation and quantitative 
results were used to describe the outcomes and to 
understand the achieved benefits. Based on the 
added value that has already been generated and 
the overall high potential, it is expected that the use 
of ML approaches to enhance large engine 
technology will continue to expand in the future. 

5 DEFINITIONS, ACRONYMS, 
ABBREVIATIONS 

CBM: Condition-based maintenance 
CCV: Cycle-to-cycle variations 
CFD: Computational fluid dynamics 
CM: Condition monitoring 
CNN: Convolutional neural network 
CO2: Carbon dioxide 
CWT: Continuous wavelet transformation 
DoE: Design of experiments 
ECU: Electronic control unit 
GAN: Generative adversarial network 

GHG: Greenhouse gas 
HiL: Hardware-in-the-loop 
ICE: Internal combustion engine 
IMEP: Indicated mean effective pressure 
LES: Large eddy simulation 
LDM: LEC Development Methodology 
LEC: Large Engines Competence Center 
MCE: Multicylinder engine 
MFB50:  Mass fraction burned 50% point 
ML: Machine learning 
MLC: Machine learning control 
MRC: Material ratio curve 
pMAX: Maximum cylinder pressure 
RANS: Reynolds-averaged-Navier-Stokes 
RGB: Red green blue color model 
RUL: Remaining useful lifetime 
SCE: Single-cylinder research engine 
TKE: Turbulent kinetic energy 
VAD: Value-added data 
VAE: Variational autoencoder 
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