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ABSTRACT

The ongoing digitalization of today’s world provides valuable opportunities for improving existing large
internal combustion engines (ICE) technology and enabling or supporting the development of new
solutions. In particular, machine learning has recently opened up promising new avenues. The
analysis and use of large amounts of data that has been generated either experimentally (e.g., by
sensors inside ICESs) or virtually (e.g., by simulation tools) effectively provide insights into previously
unknown correlations. On the one hand, this allows generation of an added value for research tools
such as engine testing and simulation. On the other hand, the additional benefits can eventually be
employed in series applications.

This paper presents actual applications of how machine learning approaches enhance the diverse
research being conducted on modern large engines. For all applications, realistic and application-
related data from experiments or simulations serve for model training and validation and the outcomes
are described by means of quantitative results to understand the achieved benefits. The topics
covered range from fundamental research on how to enhance simulation methods to fault diagnosis
on engine test beds to condition monitoring and predictive maintenance on key engine components
such as cylinder liners, fuel injection valves or sliding bearings and finally to engine control
applications for combustion anomalies. Each topic is introduced by discussing the underlying task as
well as the implemented machine learning approaches, which can include purely data-driven as well
as hybrid methods that also take physical relationships into account. Altogether this provides a
comprehensive overview of the versatile ways in which machine learning can be beneficially deployed.



1 INTRODUCTION

Large internal combustion engines (ICE) are widely
used in power generation and transportation
applications [1-3]. In the context of global issues
such as climate change, environmental pollution
and conservation of resources, ICE manufacturers
are currently facing the challenge of achieving
substantially reduced emissions of greenhouse
gases (GHG) and pollutants while increasing
efficiency and durability [4]. The global digital
transformation that is ongoing provides valuable
opportunities for improving existing ICE technology
and enabling or supporting the development of new
solutions [5-8]. Artificial intelligence and in
particular its subfield machine learning (ML) have
recently opened up promising new avenues [9, 10].
With the help of methods from this field, the
analysis and use of large amounts of data
generated either experimentally (e.g., by sensors
inside ICEs) or virtually (e.g., by simulation tools)
effectively provide insights into previously unknown
correlations [11]. ML has the potential for
generating added value in two main areas of large
engine technology:

e Development tools such as experimental
testing and simulation, which are usually
embedded in a comprehensive development
methodology

e Series engines, which include specific
applications such as condition monitoring
(CM), condition-based maintenance (CBM)
and control systems

Both areas ultimately contribute to meeting global
challenges and will be further outlined below.
Subsequently, this publication presents actual
applications in which ML approaches enhance the
diverse research being conducted on modern large
engines. In all applications, realistic and
application-related data from experiments or
simulations is employed for model training and
validation and the outcomes are described by
means of quantitative results to understand the
achieved benefits. Each topic is introduced by a
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Figure 1. LEC Development Methodology
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discussion of the underlying task as well as the
implemented ML approaches, which can include
purely data-driven as well as hybrid methods that
also consider physical relationships. Altogether this
provides a comprehensive overview of the versatile
ways in which ML can be beneficially deployed.

1.1  Machine learning for development tools

Several comprehensive development
methodologies have been proposed for large
engine technology that include close interaction
between experimental testing and simulation-
based development and which feature a stepwise
increase in complexity along with technological
development [3, 12]. One example that is
presented in detail is the LEC Development
Methodology (LDM), which has been developed
and continuously refined over the years and
successfully applied to numerous engine
development tasks.

In the LDM (Figure 1), advanced experimental
testing and simulation cover the complete range
from basic experiments and simulations on
fundamental test rigs (e.g., fuel characterization,
ignition and combustion investigations, tribology
and materials), to single-cylinder engine (SCE) and
multicylinder engine (MCE) investigations (e.g.,
combustion system development and modeling,
control systems, HiL testing), to complete systems
(e.g., hybridization, exhaust gas aftertreatment,
system simulation and life cycle analyses) on test
beds as well as in real world labs (field trials) and
actual applications. Each stage of advanced testing
interacts closely with simulation-based
development, which employs the appropriate
simulation  techniques both to augment
experimental results for simulation-enhanced
analysis and to enable model development for
predicting detailed results purely by simulation.
Furthermore, the methodology ensures that the
results of measurements and simulations are
transferable between different stages, which
substantially improves the development process of
complex systems.

System Testing Real World Lab Application
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In development methodologies such as the LDM,
there is great potential for application of ML
methods in the context of testing as well as
simulation. The importance of simulation-based
development has continuously increased in recent
years in response to increasingly complex systems
with a very large number of degrees of freedom.
However, complex phenomena cannot always be
fully understood and described by first principles.
Hybrid approaches based on coupling physics-
based and data-driven methods are therefore a
promising approach to further improving the quality
of the methodology by increasing simulation
accuracy or decreasing simulation time. In the field
of advanced testing, there is the potential to exploit
costly testing time more efficiently (e.g., through a
design of experiments approach that reduces the
required number of measurements and through
advanced methods of measurement error detection
to avoid unnecessary repetition of tests) and to
obtain a more significant domain knowledge gain
from experimental data through advanced data
analytics instead of conventional methods.

1.2 Machine learning for series engine
applications

In series engine applications, ML is employed in
areas such as condition monitoring (CM),
condition-based maintenance (CBM) and control
systems. To some extent, these three areas feature
an interrelationship which is illustrated in Figure 2.

Condition monitoring

Condition Condition . .
) ) Diagnosis
detection comparison

Wear & early failure
indicators

Wear
compensation

Control system

Failure

Unscheduled

Maintenance

Connectivity: Additional parameters from other parts of

the engine system to potentially improve diagnosis

Figure 2. Condition monitoring, wear compensation
and maintenance based on [13].

According to Mechefske [14], condition
monitoring (including fault diagnostics) of
machinery can be defined as “the field of technical
activity in which selected physical parameters,
associated with machinery operation, are observed
for the purpose of determining machinery integrity.”
Weck [13] divides CM into the following three
subtasks, which were similarly summarized in [15]:
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1 Condition detection: One or more informative
parameters are acquired which reflect the
current condition of the machinery.

2 Condition comparison: The actual condition
is compared with a reference condition of the
same parameter.

3 Diagnosis: The results of the condition
comparison are evaluated and the type and
location of failure are determined.

Within these subtasks, the potential of ML
approaches may be exploited in various ways. For
condition detection, for example, virtual sensors
based on data-driven models can be employed in
cases where an informative parameter (or more
generally the relevant information) cannot be
directly measured by a real sensor and where a
physical model is either too complex or not
accurate enough, cf. wear assessment of cylinder
liners in section 3.5.

For condition comparison, it is often expedient to
determine the reference condition based on a data-
driven model of the investigated parameter, cf.
sliding bearing temperature in section 3.3.
Furthermore, ML also offers many different
approaches to effectively recognizing
abnormalities in data. This offers additional
opportunities for condition “comparison,” where
there is no longer an explicit reference condition for
comparison but rather a ML-based determination
that the detected condition is anomalous [10].

With diagnosis, which commonly involves the
evaluation of multiple CM parameters to determine
the type and location of failure, ML has the potential
to augment or even replace common diagnosis
systems based on expert knowledge or physical
models [16]. In addition to the data available
directly from the condition detection, the increasing
connectivity of engines and their components offers
interfaces with further relevant information for the
diagnostic tasks (cf. Figure 2). Depending on the
available data and the ML methods considered, the
distinction between condition comparison and
diagnosis might even become obsolete. Instead, a
comprehensive ML framework could be employed
for both tasks at once. Based on the diagnosis,
further activities can be triggered [13, 17]:

Wear compensation (with control systems, see
also further below): An unwanted condition caused
by phenomena such as wear and early failure
indicators that impairs machine performance may
be fully or at least partly compensated for. Control
algorithms in particular have the potential to ensure
that losses in performance remain minimal for as
long as possible.

Page 4



Maintenance: Wear and early failure indicators
may be used for preventive condition-based
maintenance approaches. While preventive time-
based maintenance without condition information
may lead to premature replacement, CBM aims to
utilize the majority of the available lifetime of the
machine while avoiding unexpected failure. The
prediction of the remaining useful lifetime (RUL)
based on condition information can be employed to
optimally schedule maintenance before failure
occurs. For both prediction of RUL and optimization
of maintenance scheduling, ML approaches show
great potential [18, 19]. Unscheduled maintenance
is required if the result of the diagnosis is a failure.
Despite the inconvenient timing, such maintenance
can still provide significant added value if it serves
to avoid serious secondary damage (including all
implications such as safety-related consequences).

The concept illustrated in Figure 2 also provides the
opportunity to discuss the integration of a digital
twin. According to Vrabic et al. [20], “A digital twin
is a digital representation of a physical item or
assembly using integrated simulations and service
data. The digital representation holds information
from multiple sources across the product life cycle.
This information is continuously updated and is
visualised in a variety of ways to predict current and
future conditions, in both design and operational
environments, to enhance decision making.” Based
on Fuller et al. [21], a digital twin is characterized
by a bidirectional flow of data between the physical
item and its digital representation so that “a change
made to the physical object automatically leads to
a change in the digital object and vice versa.” The
existing literature furthermore emphasizes that in
many digital twin applications, real-time capability
is a key feature that can therefore be considered
inherent to the digital twin concept [21-23]. Digital
twins with the characteristics outlined above can be
effectively utilized in the processes in Figure 2.

Real fuel injection valve Digital twin
Condition Condition
detection comparison

L Bidirectional data i 9
transmission
Wear . .
. Diagnosis
compensation

Real-time capability
on both real item
and digital twin

Figure 3. Digital twin concept.
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Following the example illustrated in Figure 3,
continuous data acquisition for condition detection
on a fuel injection valve (physical item) during
engine operation can provide data for condition
comparison and diagnosis with a corresponding
digital twin. Based on the results, the digital twin
can in turn provide key data for performing accurate
compensation measures on the physical item if
required, e.g., due to wear phenomena.

While control systems have already been referred
to specifically in the context of wear compensation,
this topic generally encompasses a much broader
field of ICE technology. As a result of the ever-
increasing complexity of ICEs and the
requirements to achieve near-zero GHG and
pollutant emissions as well as high engine
efficiency and durability, there is great demand for
advanced engine controllers [9, 24, 25]. A wide
variety of specific control problems affect ICEs,
many of which are closely related to combustion
(e.g., engine load and speed, combustion phasing,
fuel consumption, airpath, knocking combustion,
maximum pressure rise rate and engine-out
emissions), while others are related to auxiliary
systems (e.g., exhaust aftertreatment, coolant and
waste heat recovery) [9, 24, 26—-28]. The use of ML
approaches in control systems opens up various
opportunities such as ML-supported tuning of
control parameters (which decrease the calibration
effort of the control system), data-driven modeling
of engine processes as a basis for model predictive
control and even model-free machine learning
control (MLC) designs [9, 10, 29]. Similar to the
condition monitoring process illustrated in Figure 2,
ML approaches can also evaluate the current state
of the system. An example is the detection of
knocking combustion, which is required as an input
to corresponding combustion-related control
systems (cf. section 3.6) [10, 30, 31].

In summary, the use of ML in both development
tools and series engine applications is justified by
its potential to generate added value through
improved processes and products (characterized
by parameters such as efficiency, GHG/pollutant
emissions, durability and safety), to provide
additional insight into these processes and
products and understanding thereof (“domain
knowledge gain”) and to lower costs (e.g., material
and personnel).
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2 METHODOLOGY

ML techniques for enhancing large engine
technology are commonly used based on specific
objectives (e.g., to achieve a specific functionality
in a series engine or in a development tool) in
combination with the hypothesis that the
correlations inherent in an associated database will
allow these objectives to be achieved with ML
approaches. Frequently, the key to generating such
hypotheses is the availability of experts with the
corresponding domain knowledge in the field of
large ICEs. The LEC data-driven methodology
illustrated in Figure 4 is applied to determine
whether a hypothesis can be confirmed. As
outlined by the three large arrows, the LEC
approach is to cover the entire spectrum from data
generation to knowledge discovery and knowledge
application.

Data generation Knowledge Knowledge
and management discovery application
gse 4 all crl

Figure 4. The LEC data-driven methodology.

Data generation and management deals with
methods that generate, acquire, transmit and store
data. These methods can be applied in both
experimental and simulation data generation
processes, resulting in a database that provides a
solid foundation for further tasks as described
below. Due to time and cost constraints, design of
experiments (DoE) has proven to be a valuable tool
for both testing and simulation and effectively
generates databases suitable for employment in a
data-driven context. In experimental investigations
in particular, the selection of suitable measurement
parameters and the employment of advanced
sensor and data acquisition systems play key roles
in database generation.

At the knowledge discovery stage, the general
objective is to gain new insights, expressed as the
discovery and the modeling of yet unknown or
unconfirmed correlations. Besides finding patterns
and generating corresponding models, there is the
potential for creating a significant domain
knowledge gain. In the course of this stage, the
entire spectrum of different ML and statistical
methods is considered (and extended with physical
relationships, if required): From explorative
correlation analyses to easily interpretable
statistical regression models to classical ML
methods such as clustering algorithms or support
vector machines to highly sophisticated neural
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networks for deep learning, a problem-related
trade-off between the required complexity,
interpretability and performance is achieved. This
ensures that models in particular are both accurate
and as easily understandable as possible. In
general, a distinction is made between supervised,
unsupervised and reinforcement learning. While
supervised learning relies on known target data
(e.g., measurement value or knock classification of
a combustion cycle), unsupervised learning does
not rely on this kind of information [32]. The result
is different main application scenarios: supervised
learning for regression and classification tasks and
unsupervised learning for clustering or anomaly
detection. In contrast, reinforcement learning
involves an artificial “agent” learning to choose
actions based on interaction with its environment
[32]. Another important distinction is between
offline and online learning. While offline learning is
one-off learning, online learning involves
continuous learning and thus adaptation to
changing conditions. Depending on the particular
problem and hypothesis, it is therefore necessary
to determine a suitable learning strategy that
fosters the application of the knowledge gained.

For LEC’'s data-driven methodology, hybrid
approaches are also of particular interest. In
general, there is a large variety of ways for
integrating physical (and engine-related) expert
knowledge into purely data-driven methods such as
physics-based preprocessing, physics-guided
neural network architectures, and hybrid physics-
ML models [33, 34]—LEC strives to address all of
these in its data-driven methodology.

In the last stage of the LEC data-driven
methodology, knowledge application is achieved
either by taking the obtained knowledge gain as an
incentive for further research work (e.g., if a data-
driven engine model indicates promising engine
operating parameter ranges, further experimental
tests are conducted to investigate them in detail) or
by integrating technology using the applications
outlined in section 1 (e.g., digital twins in a
CM/CBM framework).

3 APPLICATIONS AND RESULTS

This section presents selected applications of ML
and corresponding results from research projects
carried out at the LEC. The applications come from
both development tools and series engine
application areas and include fundamental
research on how to enhance simulation methods;
fault diagnosis on engine test beds; CM and CBM
on key engine components such as cylinder liners,
fuel injection valves or sliding bearings and engine
control applications for combustion anomalies.
Each topic is introduced by a discussion of the
underlying task as well as the implemented ML
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approaches. In all applications, realistic and
application-related data from experiments or
simulations is employed for model training and
validation, and the outcomes are described by
means of quantitative results in order to understand
the achieved benefits.

3.1 ML-supported simulation of cycle-to-
cycle variations in large gas engine
combustion

For large gas engines, lean operating conditions
are beneficial for achieving high efficiencies while
keeping CO: and pollutant emissions at low levels.
However, an increase in air-fuel ratio leads to less
stable operation caused by combustion
inhomogeneities between consecutive cycles.
Since achieving sufficiently low cycle-to-cycle
variations (CCV) is a great challenge for engine
manufacturers, comprehensive investigations to
better understand the cause of CCV and
consequently reduce CCV are ongoing. The
research on CCV over the last decades has
identified several influencing factors which range
from design (e.g., compression ratio, ignition
system) to operating parameters (e.g., load, speed)
to physiochemical phenomena (e.g., flow field,
local mixture composition). Based on the variety of
influencing factors, the prediction of CCV to
develop efficient control strategies is a great
challenge. Computational fluid dynamics (CFD)
represent a state-of-the-art development tool for
investigating CCV in an engine. The high spatial
and temporal resolution of physical effects inside
the combustion chamber enables a detailed
investigation of CCV which is not possible or only
possible on a limited basis with experimental tests.
Large eddy simulation (LES) must be used to
account for the CCV-related effects in ICEs. Since
the numerical treatment of the governing equations
in LES is based on a filtering approach rather than
an averaging one as used in Reynolds-averaged
Navier—Stokes (RANS) turbulence frameworks, the
resolution of fluctuating phenomena is possible to
a certain extent. However, the computational
demands required for LES are significantly higher
than for RANS simulations. Therefore, strategies
for overcoming computational time issues which
arise from a straight simulation of consecutive
cycles have been proposed. One possibility is to
perturbate flow field variables randomly and use
the generated data as initial conditions for
individual cycles which then can be computed in
parallel, saving computational time required for gas
exchange simulations. Although this approach was
successfully applied in recent studies [35, 36] it has
some drawbacks. First, the parallel simulation of
ICE cycles with an LES framework requires
enormous  computational power and a
comprehensive number of licenses is required if
commercial software is used. Second, the random
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perturbation of flow field variables does not
guarantee the generation of physically meaningful
results.

To overcome the second drawback, the LEC has
investigated a ML-supported CFD methodology: a
ML-based flow field generation method [37]. The
basic idea of this approach is to train a variational
autoencoder (VAE) with simulated flow fields prior
to ignition timing and artificially generate new
velocity fields as well as turbulence intensity fields
via the VAE. With this method, the underlying flow
structure is conserved to an extent not guaranteed
by random perturbation. VAEs are deep-learning
generative models which consist of an encoder, a
decoder and a latent space. The dimension of the
input data is reduced in the encoder to obtain a
compact representation in the latent space. VAEs
use specific regularization terms to enable a
regular latent space and furthermore an
interference between decoded points and points in
their vicinity [38]. A common field in which this
method has already been applied successfully is
the generation of artificial images.

To train the VAE, the LEC [37] used the velocity
fields and the turbulent intensity fields of ten
presimulated engine cycles of a large gas engine in
a cylindrical region around the spark plug at ignition
timing (snapshots), see Figure 5. These
simulations are based on a production engine
setup and were validated with SCE measurements.
The artificially generated flow fields (which include
velocity and turbulent kinetic energy, TKE) were
then combined with the flow field snapshot of the
first cycle (which includes all other relevant
parameters). A total of 20 artificial flow fields was
generated, yielding the initial conditions for further
combustion simulations. Figure 6 shows the in-
cylinder pressure and the heat release rate of the
artificially generated cycles in red color and the ten
presimulated cycles in grey. The result highlights
that flow field-induced CCV can be created while
maintaining the underlying flow characteristics.

Straight presimulation of 10 consecutive cycles
Snapshots |1 |2 |3 |4 |5 Ie |7 I8 |9 I1o

All other
parameters

Trained VAE — — N_eW .
. simulation
Velocity &

TKE fields ~ Combined snapshot

Figure 5. Methodology for artificial flow field
generation with VAE.
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Figure 6. Comparison of presimulated cycles and
cycles based on artificially generated flow fields.

While the method is capable of producing
physically meaningful results and reducing the
required simulation time by approximately 50%
compared to the straight simulation of the same
number of cycles (due to the omission of the gas
exchange process), CCV is weakened due to a
certain generalization effect of the VAE which can
be quantified by the coefficient of variation of the
maximum cylinder pressure of 1.06% for the initial
ten cycles and 0.65% for the artificially generated
cycles. This weakening is currently subject to
further investigations.

3.2 ML-supported measurement fault
diagnosis on engine test beds

Experimental investigations on engine test beds
are an integral part of the LEC Development
Methodology, cf. section 1.1. Since the hypotheses
derived from them greatly depend on the data
obtained, measurement faults can have serious
consequences. Finding such faults offline is
possible with postprocessing, but it is also time-
consuming and costly because unnecessary test
repetitions may be required. Therefore, it is of great
importance to detect and diagnose faults early at
the test bed. ML methods can play a decisive role
in this process.

The method for fault diagnosis on engine test beds
developed by the LEC (Figure 7 a)) includes three
main process steps: residual generation, fault
detection and fault isolation. In the initial step, a set
of residuals is generated using model-based
methods, limit checks and plausibility rules
(formulas) such as inequalities for various pressure
and temperature values. In the next step, these
residuals are checked by applying fault conditions
to determine if there is a fault in the system or not
(fault detection). In the final step, a geometrical
classification method is used to calculate fault
probabilities for all measured variables in order to
determine which sensors are faulty (fault isolation)
[39].
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Since the modeling of internal combustion engines
in their entirety is extremely complex, the use of
physics-based methods for fault diagnosis on
engine test benches is limited [40]. As a
consequence, simple limit checks and plausibility
checks are widely used in practice. With such
methods, it is usually only possible to detect large
measurement errors or total sensor failures. Since
research engines are normally equipped with
extensive measurement technology that produces
large amounts of data and the measured variables
are highly correlated, the LEC is researching how
to enhance fault diagnosis by extracting suitable
information for that purpose using ML methods.
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Figure 7. Overall fault diagnosis methodology a)
including ML-supported process for residual
generation b) and data selection technique c).
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As shown in Figure 7 b), multiple linear regression
models that represent the correlations of the
measured variables in the fault-free case are built
and trained. A crucial point for research engines is
that a separate training data set normally does not
exist, so model training and fault diagnosis have to
be performed simultaneously [41]. As all data is not
known a priori, the models have to adapt to new
data situations directly on site, which requires an
online learning strategy. This strategy must take
into account computational costs and memory
requirements as well as the risk of using faulty data
points to build the models.

Data selection techniques are used to filter
incoming data to find appropriate data for model
training. For this purpose, data points are
compared in the space spanned by distance and a
residual [42]. Points with a large residual and a
comparatively small distance are excluded from
model training since large residuals may indicate
an error in the data and small distances in a training
data space may be interpreted as low additional
information content that does not need to be
included in the model. Using a statistical method
that combines these two measures, the data points
can be classified as belonging to one of two
categories and used either for model building or not
(Figure 7 c)). The trained models are then used for
residual generation in which the model results are
compared to the measured values. In the
subsequent residual evaluation step, these
residuals are analyzed to diagnose faulty sensors.
The residuals are divided into two classes using the
expected value, which is zero, and an interval
representing the allowable deviation from this
perfect value. Residuals falling within this control
range are considered fault-free, while the others
are considered faulty, indicating an error in the
data.

Figure 8 shows the diagnostic results of a
consistent series of SCE tests. Based on a
measurement database that consists of 116
measurements in steady-state operation and was
judged by experts to be error-free, abrupt
measurement errors were simulated for 27
measured variables (including various mass flows,
temperatures, pressures, speed, torque and
exhaust  composition) at  four  different
measurement error levels (5%, 10%, 50% and
100%) for each variable, resulting in a total of 108
fault scenarios. The threshold values for fault
detection were set with a certain safety margin so
that no faults were detected in the base case. The
diagnostic performance was evaluated using the
detection rate (number of correctly detected faults
divided by number of actual faults) and the isolation
rate (number of correctly isolated faults divided by
number of actual faults).
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Figure 8. Improvement of detection and isolation
rates with machine learning.

As illustrated, the use of ML methods to generate
data-driven models for residual generation
significantly improves both the detection rate and
the isolation rate and can thus help in substantially
reducing the time and cost required for
unnecessary test repetitions.

3.3 ML for condition monitoring of sliding
bearings in ICEs

Sliding bearings such as crankshaft main bearings
are key components of ICEs recently subject to
new challenges: Newly developed low viscosity oils
that have the potential to reduce overall friction as
well as advanced operating strategies that involve
frequent starts and stops of ICEs (e.g., to react
swiftly to power grid demands) are characterized by
an increase in metal-to-metal contacts between the
sliding bearing and the pin and therefore bearing
wear [43, 44]. To avoid engine failure caused by
excessive bearing wear or abrupt bearing failure,
CM of sliding bearings has thus become an
important element in monitoring ICEs in series
applications.

Several informative parameters or methods may
help to detect the condition of a sliding bearing, for
example vibration or acoustic emissions, oil
contaminates, oil film thickness and metal-to-metal
contacts [43]. These methods differ not only in the
effort in applying related measuring instruments
and the complexity involved in extracting relevant
information from raw measurement data but also
whether information can be obtained about an
individual bearing or just the entire bearing and
lubrication system. Another bearing condition
detection method that is fairly simple to apply, does
not require any basic data processing routines and
provides bearing-individual information is bearing
temperature measurement. By following the LEC
data-driven methodology, it was demonstrated that
bearing temperature measurements are well-suited
to bearing CM and helpful in obtaining detailed
knowledge (domain knowledge gain) about the
influence of engine operating parameters and
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lubricant oil parameters on bearing temperature
[15, 43].

First, experimental investigations employing an
MAN D2676 LF51 in-line six-cylinder diesel engine
with a displacement of approximately 12.4 dm?3
were carried out at the LEC in order to create a
meaningful database [43]. The temperature of the
crankshaft main bearings was measured using type
K thermocouples fitted into bores in each individual
bearing support. Different engine operating
parameters (e.g., speed, torque, oil temperature
and pressure at the engine inlet) and lubricant
viscosities were investigated in steady-state
operation to generate a database consisting of 105
engine operating points.

!
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Figure 9. Machine learning for model-based

condition comparison of crankshaft main bearings
in ICEs.

Based on this database, LEC was able to develop
a ML-based approach for bearing CM using
bearing temperature measurements [15]. As
illustrated in Figure 9, the approach employs a
data-driven model of bearing temperature that is
derived from readily available engine operating
parameters from the electronic control unit (ECU).
The parameters considered include engine speed
and torque, oil temperature and pressure, intake air
temperature and pressure and excess air ratio. To
derive a reliable bearing temperature model,
several ML methods for supervised regression
tasks were evaluated (linear regression with and
without lasso regularization, gradient boosting
regression and support vector regression). A
repeated nested k-fold cross-validation was applied
to avoid overfitting and enable model comparison.
The best model was a support vector regression
with a radial basis kernel. Tested again on unseen
data, this model was able to predict the bearing
temperature with a mean absolute error of less than
0.3°C. Considering the temperature range from
approximately 76°C to 112°C, the results appear to
be highly accurate. Therefore, the bearing
temperature model is found to be suitable as a
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reference during condition comparison since even
small discrepancies between the model result and
the measured values can provide valuable
information about anomalies in bearing condition.
Further investigations are currently being carried
out at the LEC to expand the presented approach
to CM of crankshaft main bearings during transient
engine operation.

3.4 ML-based combustion parameter
prediction using intelligent diesel fuel
injection valves

In large engines that rely on conventional diesel
and diesel-ignited dual fuel combustion concepts,
diesel fuel injection valves play a key role in engine
performance. Through advanced instrumentation
of such valves, there is the potential to obtain
detailed information about the injection process for
purposes such as closed-loop control of the
injection process (e.g., to overcome manufacturing
tolerances and wear phenomena), CM of the
injection valve as well as recording of relevant
parameters over time as a basis for CBM
approaches [45]. Beyond these aims, which mostly
focus on the injection valve itself, there is great
potential for using such valves in combination with
other digital systems in ICEs [45]. A specific topic
jointly investigated by OMT SpA and the LEC is the
potential for predicting combustion parameters that
are usually obtained with costly and delicate
cylinder pressure indication systems. In series
engine applications, this could provide an
alternative way to generate the data required for
combustion control purposes or serve as the basis
for backup capability and mutual CM of the fuel
injection valves and the indication system [45].

To generate cycle-resolved value-added data
(VAD) about the injection process, OMT SpA has
developed an ‘“intelligent” common rail diesel fuel
injection valve which includes a piezoelectric
pressure transducer in the orifice plate between the
control valve and control volume. Its signal is
processed in real time along with other
measurements using a neural network-based
framework [6]. The VAD includes informative
parameters such as start of injection, end of
injection and ballistic/non-ballistic  operation.
Experimental investigations employing this injector
were carried out at the LEC using a medium-speed
four-stroke SCE with a displacement of
approximately 15.7 dm3 to study how accurately
key combustion parameters such as indicated
mean effective pressure (IMEP), maximum cylinder
pressure (pwax) and 50% fuel mass fraction burned
point (MFB50) can be predicted from standard
engine parameters and injector VAD (Figure 10).
The former included readily available parameters
from a production engine ECU such as engine
speed and charge air and exhaust gas
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temperatures and pressures. To assess the
information gain from the injector VAD, two
scenarios were considered: models with and
models without injector VAD as features [45]. 715
time-averaged measurements (from 247 different
engine operating points with up to three repetitions
each) were considered for modeling using several
ML methods (linear regression with and without
lasso regularization, kernel ridge regression, and
gradient boosting regression). A repeated nested k-
fold cross-validation was applied for proper model
tuning and comparison. In both scenarios and for
all targets, either kernel ridge regression or
gradient boosting regression yielded the best
results. Based on an evaluation with unseen test
data that was not used for model training and
comparison, it was possible to evaluate the overall
predictive performance of the ML approach as well
as compare both scenarios.
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