
SCRAMBLE-CFI: Mitigating Fault-Induced Control-Flow
Attacks on OpenTitan

Pascal Nasahl
Graz University of Technology

Graz, Austria
pascal.nasahl@iaik.tugraz.at

Stefan Mangard
Graz University of Technology

Graz, Austria
stefan.mangard@iaik.tugraz.at

ABSTRACT
Secure elements physically exposed to adversaries are frequently
targeted by fault attacks. These attacks can be utilized to hijack the
control-flow of software allowing the attacker to bypass security
measures, extract sensitive data, or gain full code execution.

In this paper, we systematically analyze the threat vector of fault-
induced control-flow manipulations on the open-source OpenTitan
secure element. Our thorough analysis reveals that current coun-
termeasures of this chip either induce large area overheads or still
cannot prevent the attacker from exploiting the identified threats.
In this context, we introduce SCRAMBLE-CFI, an encryption-based
control-flow integrity scheme utilizing existing hardware features
of OpenTitan. SCRAMBLE-CFI confines, with minimal hardware
overhead, the impact of fault-induced control-flow attacks by en-
crypting each function with a different encryption tweak at load-
time. At runtime, code only can be successfully decrypted when the
correct decryption tweak is active. We open-source our hardware
changes and release our LLVM toolchain automatically protecting
programs. Our analysis shows that SCRAMBLE-CFI complemen-
tarily enhances security guarantees of OpenTitan with a negligible
hardware overhead of less than 3.97 % and a runtime overhead of
7.02 % for the Embench-IoT benchmarks.

CCS CONCEPTS
• Security and privacy → Hardware attacks and countermea-
sures.

KEYWORDS
secure element, fault attacks, cryptographic control-flow integrity

1 INTRODUCTION
In a fault attack, the adversary injects one or multiple bit errors
into a chip by using non-invasive methods, such as voltage or clock
glitching, or semi-invasive techniques that include shooting with a
laser into the silicon of a decapsulated chip [1]. The effects of these
bit errors can be exploited and enable the attacker to manipulate
the control-flow of software executed on the system [6, 10, 16, 17].

Secure elements, such as OpenTitan [5], are used in smartphones
and computers as a secure root of trust. As these chips run security-
critical programs, such as a key storage and authentication services,
they are lucrative fault targets. In addition, these devices are easily
accessible for fault attackers as they are typically deployed in the
wild. Hence, secure elements need to provide dedicated hardware-
and software-based countermeasures protecting the execution of
software against faults.

Contribution
In this paper, we first identify threat vectors enabling the adver-
sary to hijack the control-flow of software by inducing faults into
OpenTitan. Subsequently, we thoroughly analyze existing counter-
measures aiming to mitigate these attacks.

Our analysis shows that existing countermeasures either induce
large area overheads or inadequately reduce the attack surface to
address control-flow manipulations. SCRAMBLE-CFI significantly
confines the effect of these attacks with a minimal hardware over-
head by introducing a cryptographically enforced control-flow in-
tegrity scheme. In SCRAMBLE-CFI, each function is encrypted with
a different encryption tweak before the execution of the program.
During runtime, the instrumented program automatically updates
the decryption tweak in a CPU register. Only when the current
execution context and the decryption tweak in the register match,
the code can be successfully decrypted and executed. On control-
flow redirections to functions outside of the call graph, the tweak
mismatches and garbled instructions are decoded, triggering an
alert. As SCRAMBLE-CFI utilizes the already existing scrambling
unit of OpenTitan for the encryption, our countermeasure only
requires minimal hardware changes, yielding an area overhead of
less than 3.97 %. Furthermore, our performance analysis shows a
small runtime overhead of 7.02 % for the Embench-IoT benchmarks.

In summary, our contributions are:
• Weprovide a systematic analysis of threat vectors on OpenTi-
tan allowing an adversary to perform fault-induced control-
flow manipulations.

• Wediscuss existing hardware- and software-based fault coun-
termeasures integrated into OpenTitan.

• We introduce and open-source1SCRAMBLE-CFI, an encryption-
based control-flow integrity scheme utilizing hardware fea-
tures of OpenTitan.

• Finally, we discuss how SCRAMBLE-CFI, complementarily to
existing countermeasures, enhances the resilience of Open-
Titan against faults with a small runtime and area overhead.

2 BACKGROUND
This section provides background on theOpenTitan chip and control-
flow integrity.

2.1 OpenTitan
OpenTitan is a secure element developed by Google and lowRISC
and the entire design, including silicon as well as the firmware, is
open-source. The goal of the project is to develop a chip that acts
as a secure root of trust in different computing systems. OpenTitan

1https://extgit.iaik.tugraz.at/sesys/otcfi

https://extgit.iaik.tugraz.at/sesys/otcfi


IF ID EX

Core

iC
ac
he

Ib
ex

TL
-B
U
S

Flash

SRAM

IP

Figure 1: High-level overview of the OpenTitan chip.

contains a rich set of hardware- and software IP, including a key
storage and an AES accelerator.

Figure 1 highlights the main architectural building blocks of
the OpenTitan secure element. The Ibex 32-bit RISC-V processor is
connected over the TileLink bus to the program memory (flash), the
data memory (SRAM), and several other IP blocks. To provide data
confidentiality, external data stored in flash or SRAM is encrypted
by the OpenTitan scrambling unit. This engine encrypts all data
using a round-reduced version of the PRINCE [2] cipher.

2.2 Control-Flow Integrity
Control-flow integrity schemes aim to detect fault-induced control-
flow deviations from the intended control-flow.Here, these schemes [11,
14, 15] assign certain points in the program a unique control-flow
signature during compile-time. At runtime, instrumented programs
automatically derive the control-flow signature and compare the
derived to the predefined signature. On a mismatch, a control-flow
manipulation is detected. However, as the signature comparison
induces performance overhead, the signature checks are only con-
ducted at a coarse granularity, e.g., at the function or program end.
Hence, an adversary might still be able to execute security-sensitive
code before the control-flow manipulation is detected by CFI.

3 THREAT MODEL
Our threat model comprises an attacker with physical access to the
OpenTitan chip performing fault attacks. This attacker is capable
of injecting single or multiple faults into the secure element by
using clock, voltage, or EM glitching techniques or by performing
laser fault injection [1]. We assume that these faults cause single or
multiple bit-flips [18] in the system. The goal of the attacker is to
redirect the control-flow of software executed on the chip.

4 ANALYSIS
In this section, we discuss potential attack vectors within the pre-
sumed threat model (cf. Section 3) and systematically analyze exist-
ing hardware- and software-based countermeasures of OpenTitan
aiming to address the identified threats.

4.1 Attack Vectors
The control-flow of software can be redirected at different control-
flow manipulation (CFM) granularities:
CFM1: The attacker redirects the control-flow to a function that
cannot be reached from the current execution context, i.e., escaping
the call graph of the program.
CFM2: The control-flow is redirected from one branch target to
the other when manipulating conditional branches.

CFM3: The attacker arbitrarily hijacks the control-flow within a
function, i.e., to any basic-block.

The attack surface (A) comprises all elements of OpenTitan (cf.
Figure 1). More specifically, a fault can be injected into CPU inter-
nal registers (AR), the instruction cache (AIC), the bus infrastruc-
ture (AB), or the memory (AM). Furthermore, the attacker can also
target the core (AC), i.e., the instruction fetch, decode, and execute
pipeline stages. For example, when targeting AC, the attacker can
change the behavior of executed instructions when inducing bit
flips into the instruction decoder or influence the comparison for a
conditional branch in the ALU.

To manipulate the control-flow, we define three potential data
targets (DT):
DT1: Control-flow related data comprises relative (DT1.1) and ab-
solute (DT1.2) addresses as well as the program counter (DT1.3).
To flip bits in relative addresses (DT1.1) used by unconditional and
conditional branches, the attacker can inject faults into the im-
mediate field of instructions stored in the program memory (AM)
or the instruction cache (AIC) or transferred by the instruction
bus (AB) [6]. Indirect calls can be manipulated by targeting abso-
lute addresses (DT1.2a) stored in registers (AR) or the data mem-
ory (AM) or transferred by the data bus (AR). Moreover, returns
can be redirected by flipping bits in return addresses (DT1.2b). Fi-
nally, the attacker also can directly inject faults into the program
counter (DT1.3)(AR). Targeting DT1 enables the adversary to arbi-
trarily manipulate the control-flow, i.e., CFM1, CFM2, and CFM3.
DT2: Non-control-flow related data, i.e., general purpose data, can
be faulted by targeting the SRAM (AM) or the data bus (AB). When
the faulted data is used by conditional branches [17], the attacker
can influence their execution (CFM2).
DT3: Instructions, stored in the flash (AM) or iCache (AIC), trans-
ferred by the instruction bus (AB), and processed by the core (AC),
can be manipulated by inducing bit flips into the opcode or the
operands [10, 16]. Here, one possible attack would be to skip an
instruction by flipping the opcode from a jump (jalr) to a nop.
Similarly, by manipulating the operand, e.g., flipping jalr 0(x5)
to jalr 0(x6), the control-flow can also be arbitrarily redirected.

4.2 OpenTitan Countermeasures
Hardware-based Countermeasures. OpenTitan protects security-

critical data throughout most of its life cycle using an error correc-
tion code (ECC). More specifically, the integrity of data is protected
in the data memory (AM), the data bus (AB), as well as in the
register file (AR) of Ibex. An integrity error allows OpenTitan to
detect bit-flips in DT2 and DT1.2a. Additionally, ECC is used in
the instruction cache (AIC), the program memory (AM), as well
as the instruction bus (AB) to detect fault-induced bit-flips, pro-
tecting DT3 and DT1.1. To prevent manipulations of the program
counter (DT1.3), Ibex recalculates the derived program counter and
triggers an error on a mismatch.

Finally, OpenTitan also provides the possibility of instantiating
the Ibex core twice in a lockstep mode. Here, the execution of
the second core is delayed by some cycles and the outputs of the
core, i.e., the data and instruction interface outputs, are compared.
Although this strategy provides strong protection against faults

2



FunctionA FunctionB FunctionC

Figure 2: Encrypted call graph.

induced into the pipeline (AC), it also more than doubles the area
of the CPU.

Software-based Countermeasures. In addition to the hardware-
based countermeasures, theOpenTitan project also provides software-
based fault protection mechanisms that are integrated into a modi-
fied LLVM toolchain. Programs compiled with this toolchain au-
tomatically store the return address into a shadow stack. In the
function epilogue, before the return, the current return address is
compared to the return address stored in the shadow stack, miti-
gating bit-flips in return addresses (DT1.2b). Furthermore, after
each indirect branch and return, the compiler inserts an illegal
instruction that triggers an exception. This strategy hinders the
adversary from redirecting the control-flow by skipping these in-
structions (DT1.3, DT3, and AC).

5 SCRAMBLE-CFI
As shown in the previous section, current OpenTitan countermea-
sures either induce large area overheads, i.e., the dual core lockstep
approach, or only provide limited protection against fault-induced
control-flow manipulations when targeting the core (AC). To that
end, in this section, we introduce SCRAMBLE-CFI, our control-
flow integrity scheme that enhances the resilience of OpenTitan
against these attacks with a minimal area and runtime overhead.
Afterwards, in Section 6, we then highlight security guarantees and
compare SCRAMBLE-CFI to existing countermeasures.

5.1 Overview
In SCRAMBLE-CFI, each function is assigned an encryption tweak
during program compilation. Before execution, when loading the
program into flash, the code blocks are encrypted with the cor-
responding tweak. At runtime, before each function call, the de-
cryption tweak for the call target is placed into a CPU register. As
the modified OpenTitan scramble engine incorporates the content
of this register into the decryption, the instructions only can be
decrypted when the active tweak matches the tweak determined
at compile-time. Figure 2 shows the SCRAMBLE-CFI’s encrypted
call graph, i.e., a graph comprising all valid transactions from one
function to another. When redirecting the control-flow from the
current execution context to another function encrypted with a
different tweak, garbled instructions are fetched and the decoding
fails with a high probability. More specifically, as SCRAMBLE-CFI
assigns each function, for programs without indirect branches, a
unique tweak, any cross-function control-flow manipulation fails.
For programs containing indirect branches, SCRAMBLE-CFI guar-
antees that the attacker cannot redirect the control-flow outside of

Function A Function C

setTweak TB
directCallB
setTweak TA

setTweak TBE
indirectCallB
setTweak TC

Function B

ret

ret

setTweak TB

setTweak TBE

Figure 3: Instrumentation of direct and indirect calls. The
different colors highlight code blocks encrypted with differ-
ent tweaks.

the call graph. Summarized, the processor only can execute code
blocks when the corresponding decryption tweak is active.

5.2 Program Instrumentation
In order to decrypt the code of a called function, the correspond-
ing decryption tweak needs to be loaded into the tweak register
before the control-flow edge, i.e., direct and indirect branches. This
program instrumentation is done fully automatically in SCRAMBLE-
CFI by a modified LLVM [7] RISC-V compiler.

Our custom compiler consists of an analysis and instrumenta-
tion pass operating in the backend of the toolchain. This pass first
performs a program analysis to construct the call graph of the pro-
gram to protect. Here, we scan each function for direct and indirect
calls and determine the call target. While LLVM already provides
this information for direct calls, indirect calls require a points-to
analysis [8] to reveal the set of potential called functions.

After the extraction of the call graph, we assign each function a
unique encryption tweak. Depending on the number of functions,
this tweak is either a 5 bit or 20 bit random number.

Figure 3 shows the instrumentation of direct and indirect calls
conducted by the SCRAMBLE-CFI compiler. For the direct call from
function A to B, we set the tweak to the tweak of function B, i.e.,
𝑇𝐵 . When returning from this function, the tweak is set back to the
tweak used by function A, i.e., 𝑇𝐴 . Similarly, for indirect branches,
e.g., from C to B, we also set and reset the tweak before and after
the call. However, instead of using the same tweak as for the direct
call, i.e.,𝑇𝐵 , we add an additional entry point to the function, which
is encrypted with a different tweak, i.e., 𝑇𝐵𝐸 . In this entry point,
we again update the tweak to the tweak for the function to 𝑇𝐵 .
Moreover, we add a second exit point which is taken when the
function was called by an indirect branch. In this exit point, we
set back the tweak to the tweak of the entry point, i.e., 𝑇𝐵𝐸 . The
compiler rewrites all addresses used by direct branches to point
to the instruction after the added entry point. Furthermore, in the
entry point, we set a flag indicating whether the function returns
with the default or the added exit point.

Adding entry points to the program is necessary because indirect
calls can have multiple call targets that need to be encrypted with
the same tweak. Without this additional entry point, also direct
calls would need to be encrypted with this tweak, allowing the
adversary to redirect a direct branch to another function which is
called by an indirect branch and is outside of the call graph.

3



Flash
Flash Utility

.vmem
for i=0...code_size: 
 Enc(Codei,Key,Tweaki)

Compiler

.elf

Pr
og

ra
m .c

Figure 4: Deployment of protected programs. Code blocks
in flash memory encrypted with different SCRAMBLE-CFI
tweaks are highlighted with different colors.

Listing 1: Tweak update instruction sequence.� �
#5 bi t tweak :
csrrwi x0 , csr_tweak , tweak5 bit

#20 bi t tweak :
lu i x28 , tweak20 bit
csrrw x0 , csr_tweak , x28� �
Listing 1 shows the instruction sequence used to set the 5 bit

or 20 bit tweak into the tweak control and status register (CSR).
For programs with 32 or fewer functions, a single csrrwi instruc-
tion loading the 5 bit tweak from the immediate field into the CSR
csr_tweak is sufficient.

5.2.1 Alignment to Encryption Granular. As indicated in Figure 3,
the next instruction after updating the tweak is already decrypted
with this tweak. Since the decryption granularity of the underlying
cipher, i.e., 64 bit for PRINCE, does not match the natural RISC-V
instruction alignment of 16 or 32 bit, we need to align the set tweak
instruction sequence to the decryption granularity. We conduct this
alignment by padding these instructions with nops to 64 bit.

5.2.2 Metadata Section. The tweak for each code block is stored in
a custom ELF section generated by our toolchain in the AsmPrinter
stage. Here, the compiler emits the start address of each function
and the corresponding number of basic-blocks. Moreover, the offset
of each basic-block and the corresponding decryption tweak is
emitted into the metadata section by the compiler. This section is
then processed during program deployment.

5.3 Program Deployment
Figure 4 shows the deployment of a programprotectedwith SCRAMBLE-
CFI on OpenTitan. Our toolchain first compiles the C source code of
the program to an instrumented ELF binary. Then, the flash utility
program converts this binary into a VMEM file, which is loaded into
flash memory.

As at the time of writing this paper, the OpenTitan project only
provides hardware support for flash scrambling but not the nec-
essary software support and, therefore, disables the scrambling,
we extended the flash utility program to encrypt code with the
PRINCE cipher. Here, we encrypt each 64 bitword with the PRINCE
cipher using the flash scramble key and the SCRAMBLE-CFI tweak.
Note that the flash scramble key is stored inside the one-time pro-
grammable (OTP) memory. To retrieve the SCRAMBLE-CFI tweak
for each code block, the flash utility tool parses the custommetadata
section emitted by our toolchain. Afterwards, the flash is initialized

with the encrypted VMEM file and OpenTitan starts the execution of
the encrypted code.

5.4 Hardware Changes
To realize SCRAMBLE-CFI on OpenTitan, minimal-intrusive hard-
ware changes are required: First (i), additional control and status
registers (CSRs) need to be added to the Ibex processor. We im-
plement these registers by using the shadow register primitives
provided by the OpenTitan project. As these shadow registers du-
plicate the registers and compare the stored values, the content
of these CSRs are protected from faults. By writing to the CSRs,
software, i.e., binaries compiled with our custom toolchain, can set
the current active decryption tweak as well as the lower and upper
address bound. The address range registers comprise the lowest
and highest address of program code, which needs to be protected
by SCRAMBLE-CFI. Enabling the tweak only for a certain address
range is required to access data, such as globals, also stored in the
flash memory. Second (ii), the tweak needs to be incorporated into
the encryption primitive. One possibility would be to extend the
PRINCE cipher to a tweakable block cipher with the TWEAKEY [4]
framework. However, the required TWEAKEY key schedule logic
would increase the complexity and area consumption of the cipher.
Moreover, as SCRAMBLE-CFI does not need cryptographic strength
for control-flow integrity, we inject the tweak into the key using
a XOR operation. This exclusive or is conducted when the address
sent to the flash controller is between the lower and upper address
stored in the added CSRs. Otherwise, the tweak is set to 0 and the
PRINCE cipher uses the default key provided by the OTP controller.
Third (iii), when the decryption tweak is changed by writing to the
CSR, we flush the instruction cache to avoid that scrambled cached
instructions are executed.

6 SECURITY ANALYSIS & COMPARISON
When the tweak register contains the tweak of the current function,
the execution of code fails when the control-flow is redirected to
any other function encrypted with a different encryption tweak.
Before a function call, SCRAMBLE-CFI updates the tweak register
with the tweak of the called function. Then, the control-flow can
only be redirected to this function or functions encrypted with the
same tweak. In SCRAMBLE-CFI, the entry points (cf. Section 5.2)
of functions that an indirect branch can call share the same en-
cryption tweak. This is inevitable as, at compile-time, the toolchain
cannot determine which function gets called by an indirect call at
runtime. However, indirect calls are rare in typical programs and
the attacker only can redirect the control-flow to functions that can
be reached with this indirect call, i.e., are within the call graph. For
programs without indirect calls, SCRAMBLE-CFI assigns all func-
tions a unique encryption tweak. Summarized, for any control-flow
redirection outside of the call graph (CFM1) the wrong decryption
tweak is deterministically used for programs that contain less than
220 functions. For programs that contain more functions than the
available tweak space, tweak collisions can occur.

When fetching instructions from programmemory with a wrong
decryption tweak, garbled instructions are retrieved. With a high
probability, the decoding of these instructions in the instruction
decoder pipeline stage fail and an exception is triggered. However,

4



it could be possible that a garbled instruction again forms a valid
instruction. Nevertheless, (i) the probability that the subsequent
instructions are also valid is low and (ii) usually, the attacker aims
to execute a certain instruction in the function and not any that
does not trigger an exception.

Note that SCRAMBLE-CFI cannot prevent an adversary from
manipulating conditional branches (CFM2) or from redirecting
the control-flow within a function from one basic-block to an-
other (CFM3). However, SCRAMBLE-CFI could be extended to
provide fine-granular protection for highly security-critical code
blocks by encrypting code blocks within a function with different
encryption keys.

In the current prototype of SCRAMBLE-CFI, we incorporate the
tweak into the encryption by XORing it to the encryption key. This
XOR creates a dependency of key and tweak, allowing an attacker to
potentially learn about the key when the tweak is known. However,
the binary (including the tweaks) is inaccessible to an adversary as
it is stored in the encrypted flash.

6.1 Security Comparison
Table 1 highlights protection guarantees of different hardware- and
software-based OpenTitan countermeasures and SCRAMBLE-CFI
against faults into different attack targets.

The ECC-based countermeasures provide full protectionwhen in-
ducing faults into their protection domain. For example, bit-flips in-
duced into instructions (DT3) stored in the instruction cache (AIC)
or the program memory (AM) can be detected reliably. As the pro-
gram counter (PC) protection recalculates and compares the PC to
the current PC, also faults into the core (AC) can be detected. The
software-based defense integrated into the custom LLVM toolchain
only provides partial protection, i.e., only control-flow manipula-
tions aiming to manipulate return addresses (DT1.2b) or skipping
certain instructions (DT3) can be detected. As shown in Table 1,
from the existing countermeasures, only the lockstep approach can
provide strong protection against faults induced into the core (AC).
However, this strategy also induces a high area overhead as the
Ibex core needs to be instantiated twice and an error detection
logic needs to be added. In comparison, SCRAMBLE-CFI provides
strong protection against control-flow manipulations for all at-
tack targets, even when targeting the core, with minimal hardware

Table 1: Protection guarantees of different countermeasure
when targeting different attack surfaces.

Attack Targets
Countermeasure AR AIC AB AM AC
Data memory ECC - - - ✔ -
Program memory ECC - - - ✔ -
Data bus ECC - - ✔ - -
Instruction bus ECC - - ✔ - -
Register file ECC ✔ - - - -
iCache ECC - ✔ - - -
PC protection ✔ - - - ✔

SW-based defense � - - - �
Dual core lockstep ✔ ✔ - - ✔

SCRAMBLE-CFI � � � � �

✔ Full � Partial - No Protection

overhead. Especially when combined with the other existing coun-
termeasures, SCRAMBLE-CFI significantly minimizes the attack
surface and allows OpenTitan to withstand most of the control-
flow attacks. Combined, OpenTitan is protected against arbitrary
control-flow manipulations (CFM1, CFM2, and CFM3) when tar-
geting all attack targets except the core (AC). When injecting faults
into AC, SCRAMBLE-CFI fills the protection gap of hindering an
adversary from redirecting the control-flow outside of the call
graph (CFM1). However, when also CFM2 and CFM3 need to
be mitigated, SCRAMBLE-CFI needs to be deployed on a finer gran-
ularity (cf. Section 6) or the lockstep approach needs to be installed.
Summarized, we argue that SCRAMBLE-CFI provides a good area-
security tradeoff allowing OpenTitan to withstand a multitude of
different fault attacks.

7 PERFORMANCE OVERHEAD
To evaluate the performance and code size overhead, we compiled
the Embench-IoT [13] benchmarks with our custom toolchain. We
excluded benchmarks requiring libraries, such as math and string,
currently not provided by the OpenTitan framework.

To measure the code size overhead, we compared the protected
binaries to the unprotected baseline with the GNU size utility. Our
analysis shows a code size overhead between 0.74 % and 8.88 % and
a geometric mean of 1.69 %. This overhead comprises the (i) inserted
tweak switch instructions, the (ii) alignment of these instructions
to the encryption granular, and the (iii) metadata binary section. As
this section only is needed by the flash utility program to encrypt
code blocks with different encryption tweaks (cf. Section 5.3), this
metadata is not stored in the flash memory.

In order to analyze the performance impact of binaries instru-
mented with SCRAMBLE-CFI, we measured the CPU cycles by
reading the mcycle CSR of Ibex. Here, we executed the protected
and unprotected binaries on a cycle-accurate Verilator model of
OpenTitan. As shown in Figure 5, we measured a runtime over-
head between 0.22 % and 143.35 % and a geometric mean of 7.02 %.
Benchmarks, such as crc32 or tarfind, frequently calling small
functions induce larger runtime overheads than benchmarks only
performing a small number of function calls.

8 AREA OVERHEAD
The public OpenTitan hardware design flow currently only allows
to synthesize the Ibex core with open-source synthesis tools. There-
fore, we synthesized the Ibex processor with the Yosys open syn-
thesis suite and the Nangate 45 nm standard cell library to analyze
the area overhead introduced by our hardware changes. Here, we
measured an area increase from 26.48 kGE to 27.53 kGE (3.97 %).
These hardware changes comprise the additional CSRs as well as
the address range comparison. Note that the XOR of the tweak
with the key is conducted in the flash controller and is currently
not reflected in the hardware overhead number. According to the
synthesis logs created with the proprietary design flow published
by the OpenTitan project [12], the Ibex occupies 3.4 % of the overall
chip area. Hence, the hardware overhead induced by SCRAMBLE-
CFI to the overall area is negligible.

5



aha-mont64 crc32 edn
huffbench

matmult md5
nettle-aes

nettle-sha256
nsichneu

picojpeg
primecount sglib tarfind

Geomean
0

25

50

75

100

125

150
Ru

nt
im

e 
Ov

er
he

ad
 [%

]

Figure 5: Runtime overhead for the Embench-IoT benchmarks.

9 RELATEDWORK
Currently, encryption-based control-flow integrity schemes, such
as SOFIA [3] or SCFP [19], require intrusive hardware changes in
the processor’s pipeline to realize their protection. Hence, when
integrating these changes into a chip, an extensive re-verification
of the entire processor is needed. Although EC-CFI [9] provides
cryptographic CFI on Intel hardware without hardware modifica-
tions, the measured runtime overheads are high. In comparison,
SCRAMBLE-CFI induces small runtime overheads with minimal
hardware changes that allow designers to re-verify their design
with minimal effort.

10 CONCLUSION
In this paper, we thoroughly analyzed fault threat vectors allowing
an adversary to manipulate the control-flow of software executed
on OpenTitan. We provided an overview of current OpenTitan
countermeasures and discussed their protection capabilities. Fur-
thermore, we introduced SCRAMBLE-CFI, which mitigates fault
attacks aiming to redirect the control-flow outside of the call graph.
We showcased that SCRAMBLE-CFI is a strong security addition
to existing countermeasures inducing minimal runtime and area
overheads.

11 ACKNOWLEDGMENTS
This project has received funding from the Austrian Research
Promotion Agency (FFG) via the AWARE project (grant number
891092).

REFERENCES
[1] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire

Whelan. 2006. The Sorcerer’s Apprentice Guide to Fault Attacks. Proc. IEEE 94
(2006), 370–382.

[2] Julia Borghoff, Anne Canteaut, TimGüneysu, Elif Bilge Kavun, Miroslav Knezevic,
Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian
Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin. 2012. PRINCE
- A Low-Latency Block Cipher for Pervasive Computing Applications - Extended
Abstract. In ASIACRYPT (LNCS, Vol. 7658). 208–225.

[3] Ruan de Clercq, Johannes Götzfried, David Übler, Pieter Maene, and Ingrid Ver-
bauwhede. 2017. SOFIA: Software and control flow integrity architecture. Comput.
Secur. 68 (2017), 16–35.

[4] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. 2014. Tweaks and Keys for Block
Ciphers: The TWEAKEY Framework. In ASIACRYPT (LNCS, Vol. 8874). 274–288.

[5] Scott Johnson, Dominic Rizzo, Parthasarathy Ranganathan, Jon McCune, and
Richard Ho. 2018. Titan: enabling a transparent silicon root of trust for cloud. In
Hot Chips: A Symposium on High Performance Chips, Vol. 194.

[6] Dusko Karaklajic, Jörn-Marc Schmidt, and Ingrid Verbauwhede. 2013. Hardware
Designer’s Guide to Fault Attacks. IEEE Trans. Very Large Scale Integr. Syst. 21
(2013), 2295–2306.

[7] Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In CGO. 75–88.

[8] Pascal Nasahl, Robert Schilling, and Stefan Mangard. 2021. Protecting Indirect
Branches Against Fault Attacks Using ARM Pointer Authentication. In HOST.
68–79.

[9] Pascal Nasahl, Salmin Sultana, Hans Liljestrand, Karanvir Grewal, Michael LeMay,
David M. Durham, David Schrammel, and Stefan Mangard. 2023. EC-CFI:
Control-Flow Integrity via Code Encryption Counteracting Fault Attacks. CoRR
abs/2301.13760 (2023).

[10] Pascal Nasahl and Niek Timmers. 2019. Attacking AUTOSAR using software
and hardware attacks. escar USA (2019).

[11] Nahmsuk Oh, Philip P. Shirvani, and Edward J. McCluskey. 2002. Control-flow
checking by software signatures. IEEE Trans. Reliab. 51 (2002), 111–122.

[12] OpenTitan. 2023. CHIP_EARLGREY_ASIC Synthesis Results. https://reports.
opentitan.org/hw/top_earlgrey/syn/2022.07.02_00.42.20/results.html.

[13] David Patterson, Jeremy Bennett, Palmer Dabbelt, Cesare Garlati, G. S. Mad-
husudan, and Trevor Mudge. 2023. Embench: Open Benchmarks for Embedded
Platforms. https://www.embench.org/.

[14] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and David I.
August. 2005. SWIFT: Software Implemented Fault Tolerance. In CGO. 243–254.

[15] Robert Schilling, Pascal Nasahl, and Stefan Mangard. 2022. FIPAC: Thwarting
Fault- and Software-Induced Control-Flow Attacks with ARM Pointer Authenti-
cation. In COSADE (LNCS, Vol. 13211). 100–124.

[16] Niek Timmers, Albert Spruyt, and Marc Witteman. 2016. Controlling PC on ARM
Using Fault Injection. In FDTC. 25–35.

[17] Aurélien Vasselle, Hugues Thiebeauld, Quentin Maouhoub, Adèle Morisset, and
Sébastien Ermeneux. 2020. Laser-Induced Fault Injection on Smartphone By-
passing the Secure Boot-Extended Version. IEEE Trans. Computers 69 (2020),
1449–1459.

[18] Ingrid Verbauwhede, Dusko Karaklajic, and Jörn-Marc Schmidt. 2011. The Fault
Attack Jungle - A Classification Model to Guide You. In FDTC. 3–8.

[19] Mario Werner, Thomas Unterluggauer, David Schaffenrath, and Stefan Mangard.
2018. Sponge-Based Control-Flow Protection for IoT Devices. In EURO S&P.
214–226.

6

https://reports.opentitan.org/hw/top_earlgrey/syn/2022.07.02_00.42.20/results.html
https://reports.opentitan.org/hw/top_earlgrey/syn/2022.07.02_00.42.20/results.html
https://www.embench.org/

	Abstract
	1 Introduction
	2 Background
	2.1 OpenTitan
	2.2 Control-Flow Integrity

	3 Threat Model
	4 Analysis
	4.1 Attack Vectors
	4.2 OpenTitan Countermeasures

	5 SCRAMBLE-CFI
	5.1 Overview
	5.2 Program Instrumentation
	5.3 Program Deployment
	5.4 Hardware Changes

	6 Security Analysis & Comparison
	6.1 Security Comparison

	7 Performance Overhead
	8 Area Overhead
	9 Related Work
	10 Conclusion
	11 Acknowledgments
	References

