

Finding Collisions for Round-Reduced Romulus-H

Marcel Nageler, Felix Pallua, Maria Eichlseder

FSE 2023 – Kobe

The Romulus Family

- Authenticated Encryption + Hash function by Guo et al. [GIK+18]
- Hash function Romulus-H designed for NIST LWC
 - 10 Finalists including Romulus

Skinny Specification [GIK+18]

- Romulus uses Skinny-128-384 with 40 rounds (instead of 56)
 - 128-bit blocks
 - 384-bit tweakey

Romulus-H Mode [GIK+18]

Merkle-Damgård with Permutation [HPY07]

Romulus-H Compression Function [GIK+18]

- Hirose Double-Block-Length Construction [Hir06]
 - Two nearly equal block cipher calls
- Free-start collisions for 23 rounds by Dong et al. [DHS+21]
 - 2¹²⁴ time, 2¹²⁴ memory

Attack Goals

- Find good differential characteristics
- Find semi-free-start collisions
 - Collision on compression function with constant h
- Find hash collisions
 - Connect semi-free-start collision with prefix M_{pre}

Our Results

Bounds on the number of active S-boxes based on different models.

Rounds	6	7	8	9	10	11	12	13	14	15	16
Semi-coll.	✓	✓	✓	✓	1	1	1	_	1	_	_
Collision	✓	✓	✓	✓	1	_	_	_	_	_	_
#S-boxes (plain 2 ×)	16	22	34	44	54	60	66	78	86	86	106
#S-boxes (equal =)	11	16	25	33	42	50	59	67	76	77	96
#S-boxes (joint %)	11	16	25	33	41	46	54	59	69	73	74

Joint Differential Characteristics: Different Settings

- 2× plain: 2 SKINNY calls considered independent
- \S joint: add connecting difference au
 - $au \in \{0, \times, ?\}$

- equal: keep track of where 2 SKINNY calls are equal
 - $au \in \{0, ?\}$

Attack Setup

Cellwise Characteristic for 10 Rounds (Joint Setting %, 41 active S-Boxes)

Finding Bitwise Characteristics

- Model CNF of DDT > w
- What to do when $\delta = \tau = X$
 - a) define DDT4 $(\delta_i, \delta_o, \tau_i, \tau_o)$
 - # of solutions to simultaneous transition $\delta_i \to \delta_o, \tau_i \to \tau_o$
 - model CNF of DDT4 $\geq w$
 - \rightarrow very expensive
 - b) Switch to equality setting (=)
 - ightarrow cheaper model as au
 eq X.

Bitwise Characteristic for 10 Rounds (Equality Setting =, $p = 2^{-234}$)

Finding Assignment for Characteristic

- Encode linear layer using Xor constraints of Z3
 SMT solver
- Encode S-box as minified CNF of solution set
- Solve for M and h
 - → Get semi-free-start collision
- Optimized model to reduce number of variables

Semi-Free-Start Collision Results

- Most characteristics are actually impossible
 - → Generate many and verify
- For 14 rounds
 - lacksquare Generating characteristic takes \sim 1 second
 - Verifying characteristic takes \sim 30 seconds
 - After 32 hours on 1 CPU, we find a valid characteristic with $p = 2^{-420}$
 - Satisfiable using 512 degrees of freedom (256-bit message, 256-bit chaining value)

Finding Hash Collision

- Randomly choose an initial block
- Verify the characteristic in the first 2 rounds is satisfiable (in C++)
 - only then run SMT solver
 - $p \approx 2^{-11}$ that a given h_L is compatible

- \blacksquare active, dep. on tk_2
- \square inactive, dep. on tk_5
- \blacksquare active, dep. on other tk_i

10-Round Collision

- Collision can be found in about 1 hour on 88 cores.
 - Based on characteristic with $p = 2^{-234}$ (256 degrees of freedom)

$$\begin{split} \textit{M}_{\text{pre}} &= 55554654434b5555\,59495a41504a4c41\,4c41545247414452\,4a4447515247594c,\\ \textit{M}_{1} &= b63a14a596b5216e\,97e6d7cc7b0b014d\,1d533b4f882a2075\,04dd06463e1f98ed,\\ \textit{M}_{2} &= b63aa4a596b52116\,97e620cc50202a4d\,1d534a4f882a20fc\,04dd2d46dffe79ed,\\ \textit{M}_{1} \oplus \textit{M}_{2} &= 0000b000000000078\,0000f7002b2b2b00\,00007100000000089\,00002b00e1e1e100. \end{split}$$

$$H_{10}(M_{\text{pre}}||M_1) = H_{10}(M_{\text{pre}}||M_2)$$

Conclusion

- Differential model for Romulus-H
- \P Joint differential characteristics (δ, τ)
- Collisions for 10 rounds of Romulus-H
- Semi-free-start-collisions for 14 rounds
- github.com/IAIK/romulush_collisions

Bibliography I

- [DHS+21] Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, and Lei Hu. Meet-in-the-Middle Attacks Revisited: Key-Recovery, Collision, and Preimage Attacks. CRYPTO 2021. Vol. 12827. LNCS. Springer, 2021, pp. 278–308. DOI: 10.1007/978-3-030-84252-9_10.
- [GIK+18] Chun Guo, Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thmoas Peyrin. Romulus. Submission to NIST Lightweight Cryptography. https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/romulus-spec-final.pdf. Aug. 2018.
- [Hir06] Shoichi Hirose. Some Plausible Constructions of Double-Block-Length Hash Functions. FSE 2006. Vol. 4047. LNCS. Springer, 2006, pp. 210–225. DOI: 10.1007/11799313_14.

Bibliography II

[HPY07] Shoichi Hirose, Je Hong Park, and Aaram Yun. A Simple Variant of the Merkle-Damgård Scheme with a Permutation. ASIACRYPT 2007. Vol. 4833. Lecture Notes in Computer Science. Springer, 2007, pp. 113–129. DOI: 10.1007/978-3-540-76900-2_7.