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Abstract—In this work, we present a linear uncertainty (LU)
propagation treatment of measurement and model uncertainties
in multiline thru-reflect-line (TRL) calibration. The proposed
method is in accordance with the ISO Guide to the Expression of
Uncertainty in Measurement (GUM). We demonstrate that our
proposed LU method delivers identical uncertainty compared to
numerical simulation based on the Monte Carlo (MC) method,
but in a more efficient way.
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I. INTRODUCTION

Many vector network analyzer (VNA) self-calibration methods,
e.g. (multiline) TRL, allow for partially defined calibration
standards. Due to the lack of a direct relationship between the
calibration equations and the standards, it becomes challenging
to directly assess uncertainties using the conventional LU
propagation techniques [1]. Uncertainty propagation methods
were proposed for the classical TRL calibration [2], [3].
However, for the multiline TRL calibration, there is less
literature available. Currently, the usual approach for uncertainty
evaluation in multiline TRL is to use the MC method [4],
which can be time-consuming and inefficient. The difficulty
in applying the LU method in multiline TRL calibration stems
from the mathematical limitation of the original algorithm [5].
The multiline TRL calibration was formulated by perturbing the
solutions of TRL pairs, where a common line is selected as a
reference among all line pairs. Furthermore, the implementation
of multiline TRL in [5] requires the numerical computation of
an inverse covariance matrix, which can lead to unstable results.

In a recent publication [6], we presented a new mathematical
formulation of the multiline TRL calibration problem. We
formulated the calibration problem into solving a single 4 x 4
eigenvalue problem, regardless of how many line standards were
used. We showed that our method is more reliable than [5].
Moreover, our technique’s mathematical simplicity allows us to
propagate different types of uncertainties using the LU method. In
the following sections, we discuss how to treat different types of
uncertainties and demonstrate that our method delivers identical
results as the MC method, but in a much more efficient way.

Software implementation available online with additional examples:
https://github.com/ZiadHatab/uncertainty- multiline- trl- calibration

II. MULTILINE TRL EQUATIONS

This section summarizes the basic equations used to solve the
multiline TRL problem, as discussed in [6]. In contrast to many
authors, we write the 7-term error box model for the measured
scattering transfer (T-) parameters of the ¢th line standard based
on the Kronecker product formulation that we presented in [6]:

vec (M) = k (BT ® A) vec (L), (1)
——
b'e
where A and B are the left and right error boxes holding the
first six error terms, while k is the 7th error term. We showed
in [6] that the calibration matrix X can be determined by
solving the following weighted eigenvalue problem:

A 00 0
AT o 0 00 0|,
MWD 'M'PQ=X | o o o|X )
0 0 0 A

Without going into detail, the most relevant aspect of (2) is
that the left-hand side consists purely of the measurement of the
line standards, which are optimally weighted by the matrix W.
The right-hand side of (2) describes the combined model, which
is an eigenvalue problem in X. A detailed discussion of the
matrices in (2) is given in [6]. After solving for X from (2), we
must denormalize the solution uniquely. This denormalization is
achieved by measuring the reflect and the thru standards while
simultaneously solving for the 7th error term k.

III. UNCERTAINTY TREATMENT

To assess uncertainties in our multiline TRL implementation,
we categorize the uncertainties into three types.

A. Measurement uncertainty

These are uncertainties that arise from the measurement
equipment itself. For example, this could be additive noise
or phase noise. The corresponding covariance matrix of the
measured S-parameters can be determined from the wave
quantities through transformation using the appropriate Jacobian
matrix. Then, knowing the covariance matrix, we can use the
LU method to propagate the uncertainties directly.


https://github.com/ZiadHatab/uncertainty-multiline-trl-calibration

B. Forward model uncertainty

Certain parameters, such as the length of the line standards,
are related directly to the solution of the calibration coefficients.
We can propagate the uncertainty of such parameters directly
using the LU method. Even for the unknown, symmetric reflect
standard, we can still propagate its uncertainty by keeping it
as an independent variable and only substituting its estimated
value in the corresponding Jacobian matrix.

C. Inverse model uncertainty

Every other type of uncertainty that is implicit in the solution
model should be addressed by inverse uncertainty quantification.
For example, to construct the eigenvalue problem in (2), we
require the assumption that all line standards share an identical
characteristic impedance. However, because of random variations,
such assumptions are prone to uncertainty. Therefore, a direct LU
propagation for impedance mismatch is not possible. The solution
is to inversely update the covariance matrix of the measurement
of each line standard. Generally, the covariance matrix of the
model-based measurement is given by the superposition of the
covariance of the measurement and the model [7]:

Y= 2meas + 2model (3)

Since multiline TRL is an averaging algorithm, we can
first determine the calibration coefficients without uncertainty
treatment and then use the values obtained to derive X,,04el-
After that, we update the covariance matrix of each measurement
and perform the LU propagation as usual.

I'V. NUMERICAL VALIDATION

We performed an MC simulation to validate that our LU
method can handle the various types of uncertainty simultane-
ously. For this purpose, we used numerically generated multiline
TRL data [8]. In this way, we have complete control of each
aspect of the standards. To emulate an actual measurement
scenario, we simulated a set of coplaner waveguide (CPW) lines
connected to coaxial cables. We performed 1000 MC trials,
where we introduced randomness in the embedded standards
(i.e., additive noise), the length of the standards, and the non-
embedded reflect standard. A mismatch among the line standards
is also simulated by introducing randomness in the permittivity of
the dielectric substrate. We simulated a lossless, symmetrical, and
equal reflection and transmission network as a device under test
(DUT) to verify the calibration. For our convenience, we used the
Metas.UncLib package [9] for dynamic computation of all needed
derivatives. However, it is also possible to use other methods,
such as eigenvector perturbation techniques or pre-computing
all derivative expressions and storing them in a lookup table.

The result of the numerical simulation is presented in Figs. 1
and 2. We can distinctively see that our LU method and the MC
approach delivered identical uncertainties. The time it took to
run 1000 MC trials was around 18 min, whereas our LU method
(with Metas.UncLib) took less than one minute to finish.
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Fig. 1. Effective permittivity and loss per-unit-length of the simulated CPW lines.
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Fig. 2. Magnitude of S1; and Sa1 of the calibrated DUT.

V. CONCLUSION

We demonstrated how to treat different types of uncertainties,
including non-trivial cases, and how to propagate them through
multiline TRL calibration using the LU propagation method
according to GUM. Furthermore, we showed that our LU
method delivered identical uncertainty bounds compared to the
MC simulations. In contrast to the MC method, the LU method
required a significantly shorter computation time.
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