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ABSTRACT
Authentication, authorization, and trust verification are central
parts of an access control system. The conditions for granting ac-
cess in such a system are collected in access policies. Since access
conditions are often complex, dedicated languages – policy lan-
guages – for defining policies are in use.

However, current policy languages are unable to express such
conditions having privacy of users inmind.With privacy-preserving
technologies, users are enabled to prove information to the access
system without revealing it.

In this work, we present a generic design for supporting privacy-
preserving technologies in policy languages. Our design prevents
unnecessary disclosure of sensitive information while still allowing
the formulation of expressive rules for access control. For that
we make use of zero-knowledge proofs (NIZKs). We demonstrate
our design by applying it to the TPL policy language, while using
SNARKs. Also, we evaluate the resulting ZK-TPL language and its
associated toolchain. Our evaluation shows that for regular-sized
credentials communication and verification overhead is negligible.

1 INTRODUCTION
Trust verification, authentication, and authorization are core con-
cepts of access management. Conditions out of all three concepts
specify whether access can be granted. They can involve the user,
resources, the requested operation, and facts from the environment.
The conditions together form a set of rules called policy. While a
policy may be simple and only define a single bit that grants access
to a resource, often its conditions are complex and require an elab-
orate implementation of multiple intertwined checks into access
control systems. Furthermore, with many clients and services inter-
acting, it can become quite tedious to implement different variants
of access logic.

Access policy languages [7, 16, 25, 36, 49, 51] enable the codi-
fication and re-use of access policies while decoupling them from
the deployed access control systems. Furthermore, policy languages
offer a higher level of abstraction that facilitates the design of poli-
cies without requiring concrete insights into the implementation
of the underlying access control system. An example identity man-
agement model is Self-Sovereign Identity (SSI) [6]. Since this model
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often involves complex access policies, previous research has al-
ready addressed the integration of policy languages into the SSI
model [4, 11], but neglects the topic of privacy.

To better highlight the privacy issues we aim to tackle, we first
summarize the policy-based and SSI-based access control model:
First, a policy is defined by a domain expert, codifying rules for
authentication, authorization, and trust verification. This policy
is then stored at a service provider (SP). As soon as a user wants
to access a resource or consume a service at this SP, they need
to show that they fulfill the access policy. For that the user relies
on self-sovereign identity attributes, which they receive from an
issuer or identity provider in the form of digital credentials. The
user then stores their credentials in a digital identity wallet [40]. To
authenticate, the user bundles the needed credentials to its service
request and sends it to the SP. After receiving the request, the SP
uses a policy interpreter to verify the incoming user request by
applying the access policy.

However, this approach suffers from privacy issues. Users are
often in possession of credentials that certify numerous attributes.
When showing a credential to an SP, users reveal all attributes
to the verifier, which is often neither desirable nor necessary to
fulfill an authentication request. By integrating privacy-preserving
technologies into the access control process, users are enabled to
only reveal a subset of the attributes or even prove a statement
without revealing any attribute at all. For example, by introduc-
ing Camenisch-Lysyanskaya (CL) signatures [21] into W3C’s ver-
ifiable presentations [44], support for privacy-preserving show-
ings is achieved. Those features are well-understood in the field of
attributed-based credentials [23, 24] and have been studied for SSI
systems [2, 3, 39].

The proliferation of privacy-preserving in combination with pol-
icy languages also enable new uses cases. For example, in data mar-
ketplaces [33, 38] they allow data owners to define access policies
based on the data sellers credential. Thereby, privacy beyond the
privacy of the shared data in such a marketplace may be achieved.

1.1 Challenges
While the above-mentioned research and standards are helpful, in-
tegrating privacy-preserving technologies into policy-based access
control systems is not straightforward. Several challenges need to
be addressed: How should sensitive attributes be marked hidden in
a policy language? Which statements on the hidden attributes need
to be revealed? How is the user informed on the statements they
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need to prove? How can a user-side wallet implementation sup-
port all the possible proof types different SPs may ask for? Which
privacy-preserving technologies can help to overcome these chal-
lenges while being flexible enough to preserve the expressiveness
of the policy languages?

1.2 Our contribution
In this work, we close the gap by extending policy language systems
with privacy features using zero-knowledge proofs. Our contribu-
tion is as follows:

Privacy-preserving Policy System: We introduce a general-
ized approach for extending existing policy language-based access
control systems relying on SSI. For convenience, we will refer to
the latter as policy systems. The policy’s author codifies which state-
ments the user should prove and which information needs to be
revealed to receive access. The author then uses our policy compiler
to derive a presentation request they provide to users. The presen-
tation request informs the user about the attributes they need to
reveal and statements they need to prove. That enables users to
only provide the required attributes and statements, and hide the
rest of the credential data. While we focus our implementation and
evaluation on the SSI model, the design itself is generic. It can be
applied to various policy systems and identity management models,
enriching them with privacy features.

Implementation: To show the feasibility of our design, we
provide a concrete instantiation of our policy system extension.
First, we adapt the TPL trust policy system [36] to enable privacy-
preserving access control. Second, we extend the syntax of TPL
policies to allow denoting whether attributes should be revealed,
as well as which statements should be proven without revealing
additional information. Third, we automatically compile the policies
into the corresponding circuits for SNARK-based zero-knowledge
proofs [15]. Users later execute these circuits to generate proofs of
attributes without revealing their value.

Evaluation: Finally, we evaluate our implementation and dis-
cuss the overhead introduced by the additional computations. We
perform the evaluation for different commitments (SHA256, Po-
seidon) and two elliptic curves (ALT-BN128, BLS12-381). We ob-
serve that the duration of the one-time setup and the computation
of a proof depend on the choice of both commitment and curve.
However, only the verification is time-sensitive, since it needs to
happen in real-time during the user’s request for access. We found
that the verification introduces a negligible performance overhead.
Since SNARKs are non-interactive, also the access verification is
non-interactive. Thus, a privacy-preserving showing requires no
additional communication rounds between the user and the SP.

1.3 Related Work
Decentralized services like IPFS1 store user data redundantly on
one or more nodes. However, if the data is sensitive, it should
not be accessible arbitrarily. Therefore, Prünster et al. [41] show
an approach on how to outsource data protected by an access
policy without needing to involve the data owner and thus ensure
decentralization. Roughly speaking, the sensitive data’s encryption
key is split into several parts stored on different, selected nodes.
1https://ipfs.io/, accessed on 2022-07-02

On access, these nodes evaluate the accessing party’s attributes
using a policy. If all agree on granting access, the encryption key
can be recovered from the key shares, and the data turns accessible.
All in all, their fully decentralized ABAC implementation focuses
on decentralized user data access (compared to service access) and
uses the eXtensible Access Control Markup Language (XACML2)
standard as policy language.

Belchior et al. [11] propose a Self-Sovereign Identity based access
control (SSIBAC) for service providers. It leverages conventional
attribute-based access control using the attributes in SSI credentials,
profiting from its decentralized nature. SSIBAC uses the XACML
standard3 for policy specification. Their implementation is based
on W3C Verifiable Credentials [44], Hyperledger Indy4 and Aries5
for communication and distributed storage. While they mention
the possibility of introducing privacy-enhancing technologies, they
do not discuss the integration into an access policy language.

The ABC4Trust project focused on privacy-enhancing attribute-
based credentials (ABC) and can be seen as preliminary work for
the W3C VC standard [44] and modern SSI [13, 14, 43]. In their ap-
proach, the verifier sends a so-called presentation policy to the user.
This policy states the conditions the user has to fulfill in order to
access the service. On the user-side, the ABC engine then matches
the needed attributes, and finally, a presentation token is created
consisting of cryptographic evidence that the user satisfies the pol-
icy. This proof can later be verified for access control purposes.
Since the whole policy must be proven through the presentation
token, it can not contain any conditions that are difficult or im-
possible to translate to a cryptographic proof (e.g., online lookup
for trust verification). Additionally, the project supports a limited
list of functions for use in predicates on private attributes.6 Thus,
policies in ABC4Trust enable some privacy features but are limited
in their flexibility.

2 BACKGROUND
2.1 Non-Interactive Zero-Knowledge Proof

Systems
Non-interactive zero-knowledge (NIZK) proof systems represent
powerful tools that enable a prover to convince a verifier of the
validity of a statement without revealing any other information. For
an NP-language 𝐿 ⊂ 𝑋 and a statement 𝑥 ∈ 𝑋 , a prover can present
a proof to the verifier that 𝑥 ∈ 𝐿, e.g., there exists a witness𝑤 such
that 𝑥 ∈ 𝐿. No other information about the witness𝑤 is leaked to
the verifier. Formally, let 𝑅 be the associated witness relation such
that 𝐿 = {𝑥 ∈ 𝑋 | ∃𝑤 : 𝑅(𝑥,𝑤) = 1}. A non-interactive proof system
Π consists of algorithms Setup(1^ ) producing a common reference
string crs, Proof (crs, 𝑥,𝑤) taking a statement 𝑥 ∈ 𝑋 and a witness
𝑤 , and outputting a proof 𝜋 , and Verify(crs, 𝑥, 𝜋) taking a statement
𝑥 and a proof 𝜋 , and outputting the verification status. We require
such a proof system to be complete (i.e., all proofs for statements
in the language verify), sound (i.e., a proof for a statement outside

2http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
3http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
4https://github.com/hyperledger/indy-sdk, accessed on 2022-07-03
5https://github.com/hyperledger/aries, accessed on 2022-07-03
6https://abc4trust.eu/download/Deliverable_D2.2.pdf, Section 4.4.3
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the language verifies only with negligible probability), and zero-
knowledge (i.e., a proof reveals no information on the witness).

Succinct Non-Interactive Arguments of Knowledge (SNARKs)
are one of such systems and of particular interest to us, as they
come with small proofs that are independent of the witness size
and allow for fast verification. With the seminal work of Groth [30],
SNARKs have been improved in various directions. To reduce the
trust assumptions necessary for the generation of the common
reference string (CRS) 𝑐𝑟𝑠 , subversion-resistant and updatable ver-
sions have been investigated [1, 31]. SNARKs have been extended
with stronger security notions such as strong simulation-sound
extractability. Toolsets including ZoKrates [26], arkworks7 or xJs-
nark [34] provide compilers to turn arbitrary programs into circuits
suitable for SNARKs or implement building blocks to help with the
design of suitable circuits.

In this paper, we build our system on ZoKrates. It offers a high-
level language syntax akin to Python with static typing. It allows
implementing functions and programs that represent statements to
be proven with a NIZK. Internally, the program will be represented
as rank-1 constraint systems to be consumed by bellman8 which
implements Groth’s SNARK [30].

2.2 TPL Policy System

2.) Credentials

User 1.) Policy Data Verifier (SP)

Credential
Wallet 

Policy 
Interpreter Policy

Figure 1: High-level architecture of an access process using
a policy system.

A policy language enables the SP to specify precise conditions
based on which access to a resource can be granted. We build upon
the TPL language introduced by Mödersheim et al. [36]. Together
with its toolchain, we call it a policy system. This system enables
an expressive definition of access policies. Subsequently, it allows
for automated decisions on whether incoming access requests can
be accepted. The expressiveness and the flexibility of the system
allow it to be used in different a variety of SPs. The system has its
origin in the LIGHTest project [19] It supports DNS-based trust
scheme verification [42] to derive trust relations and establish trust
in credentials. Later, Alber et al. [4] added SSI concepts as an addi-
tional trust anchor option. The authoring of policies can happen
natively in TPL, which has a syntax similar to Prolog. Additionally,
non-technical domain experts are provided with an authoring tool
with a graphical user interface [37, 47, 48].

A TPL policy (see Listing 1 for an example) is a set of several
rules in the form Horn clauses: 𝑝 (𝑡) : −𝑞1 (𝑢1), . . . , 𝑞𝑛 (𝑢𝑛). A rule
evaluates to true if all queries 𝑞𝑖 (𝑢𝑖 ) return true. A predicate 𝑝 can
be defined by multiple rules (of the same name) and evaluates to
true if any of the rules are satisfied. To check whether a specific
policy is met, the TPL interpreter evaluates a solution for query
𝑝 (𝑠). If it is fulfilled for the provided input data (e.g., identity data),
7https://arkworks.rs, accessed on 2022-07-07
8https://github.com/zkcrypto/bellman, accessed on 2022-07-01

the interpreter returns true. The interpreter evaluates the query
by searching for suitable rules for substitution. If a query 𝑝 (𝑠) and
predicate 𝑝 (𝑡) share an unifiable 𝑠 and 𝑡 , a unifier is calculated and
applied to the subqueries of the predicate’s rule. Subsequently, all
subqueries are evaluated in the same way. In case of a subquery
returning false, another rule needs to be found for substitution. If
all substitutable rules are exhausted, and no solution can be found,
false is returned.

Subqueries are evaluated recursively until a ground truth is
found. Such truth can be a relational operation or a built-in predi-
cate. The TPL backend system handles all the built-in predicates.
They help, for example, with server lookups for trust information
discovery in eIDAS [45] and SSI [4].

The entry point of a policy is the accept predicate. To check if an
incoming presentation is acceptable, the accept predicate is initially
called through a corresponding query. The presentation token itself
is the only input argument.

accept(Presentation) :-
set_format(Presentation, w3cVP),
extract(Presentation, verifiableCredential, Cred),
set_format(Cred, w3cVC),
extract(Cred, issuerDID, DIDissuer),
checkQualified(DIDissuer),
checkSig(Cred, DIDissuer),

extract(Cred, credentialSubject, Subject),
extract(Subject, date_of_birth, Birthdate),
calculateAge(Birthdate, Age), Age >= 18,

extract(Subject, username, Username),
print(Username).

Listing 1: Example TPL policy for W3C Verifiable Creden-
tials, with the trust-check omitted for clarity.

3 CONCEPT
In this section, we describe the design of our access policy system
with privacy-preserving features. In Section 4 we discuss a concrete
instantiation of this design.

Before describing the different components, actors and the pro-
cess, we will present the high-level idea of our concept.

3.1 High-Level Idea
Preliminary: Commit-sign-proof Credentials One common
approach (cf. [21, 28]) to design attribute credentials is to first
commit to the attributes. This commitment is then signed by the
issuer (i.e., identity provider).9 For privacy-preserving showings,
the user later proves consistency of any revealed attribute with re-
spect to the commitment. The latter proof is combined with a proof
of knowledge of a signature on the commitment, or by directly
providing the signature to the verifier.

Compiling Access Policies into NIZK Proofs As in other
systems with access control, rules that have to be satisfied must be
represented as program logic, forming a policy. Hence, we extend

9The signature and commitment may coincide, but for giving an intuition, we consider
them distinct.
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the concept of commit-sign-proof credentials with the possibility for
a policy designer to codify such access rules. For any committed-to
attribute, we enable the policy designer to decide whether the user
needs to reveal an attribute to the service provider or whether it is
sufficient to convince the verifier that an attribute satisfies a policy
rule without revealing it. Our system automatically informs the user
about the policy and compiles it into the corresponding NIZK proofs.
That is, the user proves the consistency of revealed attributes with
the public commitment. Similarly, for all rules involving hidden
attributes, the user also generates proofs of knowledge of these
attributes and that they satisfy the specified rules.

In our system, we allow the policy to express rules with respect
to any credential format: attributes that are encoded in some form
of data structure that has some public reference value. The latter
may consist of a signed commitment or a signature directly over
the attributes. The statement for the proof system is then built
accordingly.

3.2 Components
Our system consists of the following actors/components:

User (Prover): The actor that wants to access a resource or
consume a service at the SP, and needs to authenticate to do so.
Their identity attributes are stored in form of digital credentials
in a digital identity wallet [40]. Part of the wallet, the user’s
system is also a policy client, which prepares a presentation
token that satisfies a presentation request.

Service Provider (Verifier): The SP is the actor (or their sys-
tem) which provides access-protected services or resources to users.
To control who can access a resource and how users are authenti-
cated. The administrator of the SP creates a policy that encodes
access control and trust rules. The SP uses a policy compiler to
generate the presentation request, which they provide to the user.
After receiving a service request, the SP uses a (extended) policy
interpreter to verify the request.

3.3 Phases
We now discuss the entire process of our concept. We split the
process into the following phases: (1) The setup of the cryptographic
system, authoring of a policy, and publishing of the presentation
request, (2) computing of a presentation token, and finally (3) the
verification of the presentation token.

(1) Setup System and Policy: If the employed proof system
requires a specific setup, performing it is the first step. For example,
when using SNARKs, a trusted third party generates a CRS. The so-
obtained common material is published and retrieved by all system
participants.

During the setup phase, a policy is authored by the service
provider (SP). This policy encodes the rules a user of the SP needs
to fulfill to use the service or access a resource. Depending on the
nature of an SP, there can be different policies for different services
or resources.

Authors of this policy are either technical personnel or domain
experts of the SP. Although an author without technical knowledge
but with domain expertise can use a graphical policy authoring tool
to create the policy [47, 48], a policy is, in the end, always encoded
in machine-readable form. As part of the policy, the author specifies

which attributes a user has to provide and what credential types
the SP accepts. Additionally, the policy author defines two types of
rules the user attributes have to satisfy, which are differentiated by
whether they operate on private attributes or revealed attributes.
Our system later transforms the first set of rules into statements
for the NIZK proof system. Thus, the user can prove that their
credentials fulfill these rules without revealing the values of the
attributes. The second set of rules operates on attributes the user
must reveal to the SP. These rules are used when the SP requires the
attributes for further processing or trust management. Depending
on the NIZK proof system, the SP at this stage also compiles parts of
the policy into an intermediate representation for the policy client.

The encoded policy, together with metadata about the service,
forms the presentation request for a specific service. Before initiating
a service request, users need to know what data they are required
to provide. Therefore, the presentation request is published by the
SP.

(2) Authentication at SP: When user want to access a service
or consume a resource, they have to authenticate with the SP. To
do so, they first retrieve the corresponding presentation request
from the SP’s website or another form of a service catalog.

The user then extracts the policy from the presentation request
and executes it using the policy client. While doing so, the client
retrieves the respective credentials from the user’s identity wal-
let [22]. For the rules on public attributes, the client extracts the
attributes from the credential, thereby revealing their values. It
then computes a NIZK statement that proves that the value was
indeed extracted from the credential, i.e., to prove the consistency
of the values with the commitment. This statement proves that the
revealed attributes are linked to their credential. As a special case,
if all attributes of a credential are specified as revealed in a policy,
the client adds the full credential to the response instead of a proof.
For the policy rules on private attributes, the client computes a
NIZK statement which proves that the attributes fulfill the rules.
Again, the client adds a statement to the proof that the attributes
were indeed extracted from the credential.

For the computation of proofs, the client uses the common ma-
terial retrieved in the setup phase and the NIZK statements. The
client also appends the metadata (e.g., issuer information) of all
involved credentials to the response.

After executing the policy, the client encodes all proofs, revealed
credentials, and credential metadata into a presentation token.

Then, the user adds service-specific data and sends it alongside
the token to the SP.

(3) Verification of Presentation Tokens: On receiving a re-
quest, the SP loads the policy for the respective service. The SP’s
policy interpreter then uses a NIZK verifier and a policy verifier to
check the presentation token.

The SP extracts the NIZK proofs from the presentation token
and verifies them using the NIZK verifier. As inputs for the NIZK
verifier, the policy and its proof system-specific representation,
respectively, need to be provided. Additionally, all public reference
values, i.e., the commitments and all revealed attributes, need to
be known to the NIZK verifier. Hence, the SP extracts these values
from the presentation token and provides them to the NIZK verifier.
After this step, the verifier is convinced that the proven statements
match the requested statements.

4
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As next step, the SP initializes the policy verifier and executes the
remaining rules of the policy. All rules that work only on revealed
or public data are validated by the policy verifier.

Ensuring Trustworthiness of Tokens: Besides evaluating the
rules on the revealed attributes, this phase verifies the token’s trust-
worthiness. To do so, the policy verifier uses the trust rules encoded
in the policy to check the issuer of the commitments. That forms
a trust chain from the issuer along the signature to the commit-
ment, which is in turn linked with the proof and consequently the
attributes.

The trust rules specify which issuers are trustworthy for which
type of credentials. That can, for instance, be done by providing a
list of trusted issuers. A more flexible method is to define a trusted
trust scheme: One example of a possible trust scheme is Europe’s
eIDAS trust framework. Another example are SSI trust schemes
established using distributed ledgers. Depending on the defined
trust scheme, the policy verifier automatically retrieves trust status
information about the credential issuers from online registries. This
process ensures that public and private attributes can be trusted.
Therefore, all NIZK statements on these attributes are trustworthy.

After the NIZK verifier and the policy verifier conclude that the
presentation token is trustworthy and fulfills the user’s policy, the
SP grants the user access to the service.

4 IMPLEMENTATION
While our concept is described on a generic level, the concrete
choice of policy system and proof system is important to assess the
feasibility and to evaluate the performance and security. Thus, we
provide a concrete instantiation of our concept.

Our implementation builds on the policy system TPL (cf. Sec-
tion 2), which we extend with privacy features. Since TPL uses a
logic-based syntax, we need to compile the rules encoded in form
of TPL predicates to suitable statements for NIZK proofs. As NIZK
proof system we use SNARKs, since it enables small proofs. We
instantiate our SNARKs with the Groth16 proving scheme, which
we execute with the help of the Bellman library. Furthermore, we
integrate the ZoKrates zero-knowledge toolbox [26] as an interme-
diate layer in the transformation process. Thus, we compile TPL
policies into ZoKrates programs, which are then mapped to circuits
for bellman. An advantage of this intermediate step is that the SP
can already compile the policy into a ZoKrates program and di-
rectly share that with the user as part of the presentation request.
The user only needs to provide their credentials to the ZoKrates
prover and execute that program. Then, they send the resulting
proof alongside the selected revealed credentials to the SP as part
of the presentation token. Finally, the SP uses the ZoKrates verifier
to ensure the proof is valid. In the next step, they forward the NIZK
verification result and the rest of the presentation token to the TPL
verifier. In addition to executing the policy on the revealed creden-
tials, the TPL verifier also checks whether all data is trustworthy.
An overview of this process is shown in Figure 2.

In our implementation we enable the privacy-preserving show-
ing of attributes originating from credentials as well as private
statements on these attributes driven by TPL policies. In the follow-
ing sections, we discuss the integration of our concept (cf. Section 3)
into the TPL system in more detail. Specifically, Section 4.1 presents

the extensions of TPL to ZK-TPL from the point of view of the pol-
icy author. And Section 4.2 covers aspects of compiling ZK-TPL
into NIZK statements using ZoKrates. Finally, Section 4.3 presents
the evaluation of our implementation.

4.1 Extending TPL with Zero-Knowledge Rules
We now focus on the concrete changes to the TPL syntax to express
ZK rules. A policy author defines in a policy which attributes a
user needs to reveal. There are multiple options to denote this in a
TPL policy: We now discuss a set of different options to extend the
syntax TPL to do so.

Option 1: Naming Convention: In TPL, the type of terms such
as atoms and variables is defined by their name. Any term starting
with an uppercase letter followed by letters, numbers or underscores
represents a variable. Whereas terms starting with lowercase letters
refer to atoms (constants). Hence, in the same way we could refer to
attributes that are not revealed via a naming convention. However,
as adding new conventions to the TPL specification would lead
to ambiguities, we consider this approach to be error-prone and
unintuitive.

Option 2: Privacy Predicate:Another approach is to represent
the hidden and revealed nature of attributes explicitly via a special
predicate. As with other domain-specific predicates that are avail-
able for TPL, a new predicate can be defined that only evaluates to
true if the corresponding attribute is hidden. With this approach,
all predicates related to this attribute need then to cope with a
potentially hidden attribute value.

Option 3: zkaccept-Predicate: Finally, the third (and chosen)
option is to add a new zkaccept predicate in addition to the accept
entrypointy-predicate for TPL programs. A policy is satisfied if and
only if both accept and zkaccept evaluate to true. Consequently,
accept and zkaccept are the two main predicates that represent
a TPL rule set. With this approach, the meaning of the accept
predicate is untouched and interpreted as before. In the zkaccept
predicates, all statements are interpreted with respect to hidden
attributes and cause the creation and verification of the correspond-
ing NIZK proofs. Our approach is exemplified by the TPL policy in
Listing 2. It requires the owner of the credential to be of 18 years or
older, whereas neither the calculated age nor the date_of_birth
attribute are revealed to the verifier. The example policy also con-
tains a semester attribute, which is revealed to the verifier since
it is only used in the accept predicate, but not in the zkaccept
predicate.

We opted to implement the third approach since it provides
a clear differentiation between predicates applied to public and
hidden data points. As such, we consider it easier for the policy
designer to design and reason about the policy. From a technical
perspective, we expect all three approaches to be implementable
with reasonable effort.

ConsistencyChecks:When evaluating the policy on the prover
or verifier side, one needs to take care of multiple issues. First, an
attribute can only appear as either hidden or revealed attribute. If
a revealed attribute is also used in the zkaccept predicate, this is
likely a mistake of the policy designer. Thus, the compiler needs to
check if this invariant is satisfied and yield an alert if not. Secondly,
when two or more distinct attributes of the same data structure,
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 Prover
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CRS
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Figure 2: Architectural overview of our implementation including the actors and process flow.

zkaccept(Presentation) :-
set_format(Presentation, w3cVP),
extract(Presentation, verifiableCredential, Cred),
set_format(Cred, w3cVC_student_id),
extract(Cred, credentialSubject, Subject),

% range proof on private attribute
extract(Subject, date_of_birth, Birthdate),
calculateAge(Birthdate, Age), Age >= 18.

accept(Presentation) :-
set_format(Presentation, w3cVP),
extract(Presentation, verifiableCredential, Cred),
set_format(Cred, w3cVC_student_id),
extract(Cred, issuerDID, DIDissuer),
checkQualified(DIDissuer),
checkSig(Cred, DIDissuer),

extract(Cred, credentialSubject, Subject),
% revealed attribute
extract(Subject, semester, Semester),
print(Semester).

Listing 2: TPL policy from Listing 1 extended with privacy-
preserving features: from the full credential, only the state-
ment about age (derived from Birthdate and Semester at-
tribute) are revealed.

e.g., a credential, are used in accept and zkaccept, consistency
needs to be ensured. Hence, the zero-knowledge proof needs to
be extended with statements ensuring consistency of all publicly
revealed attributes.

4.2 Compiling TPL policies to NIZK circuits
ZK-TPL Compiler: As ZoKrates provides a domain-specific yet
high-level language that closely resembles the syntax of Python,
the TPL rules need to be compiled to this language. ZoKrates itself
then compiles the corresponding code to suitable circuits for the
underlying NIZK library, i.e., bellman. Hence, we provide the ZK-
TPL compiler to transform policies from TPL syntax into ZoKrates’
proof program syntax, as shown in Figure 2. The ZoKrates standard
library already provides several cryptographic primitives such as
the compression function of SHA256, and SHA256 for a fixed num-
ber of calls to the compression functions, i.e., SHA256 for fixed input
lengths, or Pedersen commitments. Therefore, parts of the function-
ality we require are covered by the standard library. Comparison
operators for primitive types are also provided by ZoKrates.

When compiling TPL policies to ZoKrates programs, we consider
the following challenges:

1.) Constant-lengthAttributes:When generating the ZoKrates
proof program, a challenge is to map attributes to either private
or public variables, and how to encode their lengths. As lengths
can already be sensitive information for various data points, they
are encoded as fixed-length string with 0 to pad to the maximal
length. Thus, there is a compromise between runtime costs for the
additional padding, security, and functionality. Length restrictions
may be problematic for field types with international variations
such as the use of first and last names.

2.) Arithmetic: While integer types are available in various
forms (8 bit to 64 bit), ZoKrates also provides a native field type
representing Z𝑝 where the prime 𝑝 depends on the choice of elliptic
curve used by ZoKrates. In general, 𝑝 will be large (≥ 256 bit) and all
the arithmetic of the smaller types is implemented as Z𝑝 -arithmetic.
Hence, when compiling arithmetic involving hidden attributes,
arithmetic is best represented using the field type unless specific
features of the fixed bit-width types are needed.

3.) Representing Strings as Numbers: Third, parsing arbi-
trary strings as integers is a complex and expensive task when
performed inside ZoKrates. Conversion of an array of u8s into a
field involves arithmetic and potentially additional checks of well-
formedness, e.g., that the individual bytes are ASCII digits, or that
the full string is valid UTF-8. Hence, we perform the parsing out-
side the ZK component as much as possible. To ensure the integrity
of the proof, this pre-processing step uses the same encoding of
attributes than the issuer of the credential. Thus, we require that
the hash of the parsed data matches the hash used in the credential
as commitment.

Note that our ZK-TPL compiler together with ZoKrates define the
encoding of data and its representation in the rank-1 constraint sys-
tem of the underlying SNARK. Therefore, any change our compiler
or in ZoKrates may render old proofs unverifiable. For short-lived
or interactive scenarios, we thus require compatible encodings for
both prover and verifier.

Example ZoKrates Program: Listing 3 presents an example
ZK program, generated by our ZK-TPL compiler. For the inputs to
the hash function, we opted to directly use u32 arrays as expected by
the provided implementation of SHA256.When using different hash
function designs with ZK-friendly permutations such as GMiMC [5]
or Poseidon [29], the inputs and outputs can be represented as
field elements. Thereby, we would be able to significantly improve
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import "hashes/sha256/sha256" as sha256

def compare(u32[8] h1, u32[8] h2) -> bool:
return h1[0] == h2[0] && h1[1] == h2[1] &&

h1[2] == h2[2] && h1[3] == h2[3] &&
h1[4] == h2[4] && h1[5] == h2[5] &&
h1[6] == h2[6] && h1[7] == h2[7]

def main(u32[8] pub_hash, u32 currentYear,
private u32 birthYear, u32 semester) -> bool:

// Encode full credential, append SHA256 padding:
u32[1][16] enc_cred = [[birthYear, semester,

2147483648, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 64]]

// Calculate age using private attribute:
u32 age = currentYear - birthYear
// Proof that attributes fulfill the age check
// and the consistency of data used for the proof:
return age >= 18

&& compare(pub_hash, sha256(enc_cred))

Listing 3: ZoKrates programgenerated by compiling the TPL
policy from Listing 2. Contains private birthYear attribute,
revealed semester attribute, and (simplified) age check. It
also proves the consistency of the attributes w.r.t. pub_hash
commitment of the credential. The magic-numbers for the
encoded credential are SHA256 padding-constants.

the performance of the ZK program. With the goal in mind to be as
widely usable as possible, we consider support for common hashes
such as SHA256 essential.

Figure 3: Overhead evaluation results of the example policy
in Listing 2 for different commitments and curves.

4.3 Evaluation
To evaluate our proof-of-concept implementation perform several
benchmarks and compare them with the evaluation of the TPL
system without any privacy features. Existing TPL benchmarks
focus on the verification phase, which takes one to ten seconds
for realistic policies and includes the retrieval of trust information
from online registries [38]. Standard TPL needs no setup phase, and
the authentication phase is a trivial process for the user.

Setup: To measure the impact of the privacy extension to the ex-
isting TPL toolchain in Java, we run benchmarks on a 2022 business

laptop. Our prover and verifier tools use ZoKrates, which we config-
ured to use the bellmann backend with Groth16 [30]. We evaluate
the performance on the ALT_BN128 [10] and BLS12_381 [17] curves;
while the former provides 100 bit of security, the latter is slower
but provides ≥ 117 bit of security [9, 50]. Additionally, we com-
pare the performance of SHA256 with ZK-friendly Poseidon [29]
(cf. Section 4.2).

Results:We divide our three phases (cf. Section 3) in two cate-
gories: (1) The setup phase (compilation of policy, CRS setup) is a
one-time phase and only performed once for each policy. (2) The
authentication phase (computation of witness, generation of proof)
and verification phase (verification of proof and execution of policy)
are repeated phases and executed for each authentication process.

Figure 3 visualizes the results of our evaluation. We observe that
the verification duration and the size of the proof transmitted to
the verifier are independent of the complexity of the policy. This is
because the size of SNARK proofs amounts to only 3 elliptic curve
points and is independent of the witness size. Also, the size of the
transmitted proof naturally depends on the size of the revealed
attributes. The performance of the setup and authentication phases
depend on the number of attributes that are part of the credential.
This is because all attributes are part of the credential’s signature
and thus need to be part of the commitment in the proof (cf. List-
ing 3). The performance of calculating the commitment in the proof
program is linear in the size of the attributes.

5 DISCUSSION
NIZK Setup: From a deployment point of view, policy-dependent
setup phases may hamper the adoption of such a system. As this
dependency is mainly influenced by the underlying proof system,
an efficient proof system with a universal CRS is of paramount
importance for more flexible applications. Also, the need for a
trusted third party for the CRS generation is not ideal in some use
cases. However, it has already been shown that the TTP can be
replaced using secure multi-party computation for the setup algo-
rithm [18]. Alternatively, it is also possible to employ transparent,
subversion-resistant, or updatable proof systems [1, 12, 20, 27, 31],
where knowledge of secret trapdoors no longer poses a threat.

Constant-length Attributes: During the implementation of
the ZK-TPL interpreter and the design of example ZK-TPL poli-
cies, we observe multiple restrictions inherent to the use of at-
tributes with arbitrary types. Specifically, when dealing with string
attributes, all the strings need to be encoded with a constant length.
Otherwise, the length of the strings could reduce the anonymity
set and the mere knowledge of the string lengths leaks sensitive
information. This also extends to primitives that consume these
strings, e.g., hash functions, as the number of compression function
evaluations depends on the size of the input.

FutureWork onNIZKToolchains:While NIZKs and SNARKs
are known for languages in all of NP (cf. [32] and others), for prac-
tical purposes the situation is significantly different. Yet, as im-
plementations of SNARKs gain better toolchains with support for
higher-level abstractions, SNARKs can be applied to solve more
interesting challenges. These toolchains need to abstract technical
details such as rank-1 constraint systems and other arithmetization
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techniques to be useful for a wider audience. With ongoing scien-
tific and engineering effort, these abstractions are rendered more
efficient, less costly, and more expressive.

Future Work on Policy Authoring Tools: Since the capabil-
ities of the policy language got extended, we need to update the
GUI-based authoring tools [37, 47] in future work. Attributes should
be hidden by default and only be revealed when indicated. Non-
technical policy authors should be able to use zero-knowledge fea-
tures in a graphical manner without being familiar any underlying
details.

Communicating Privacy Implications to Users: While we
extend the capabilities available to a policy designer, the conse-
quences of revealing certain attributes also need to be explained to
the user. Some works have developed interfaces that highlight the
revealed attributes and data flows to the user. Examples in various
directions include Angulo et al.’s approach [8], which provides vi-
sualizations of policies, and Mikkelsen et al. [35] presenting a user
interface to disclose attributes of a credential selectively. Alterna-
tively, privacy metrics [46] offer tools to attach scores based on
the processed data and the type of performed computations. Using
these techniques may help visualize a user’s potential privacy risks
based on the policy in question.
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