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Abstract—Digital identities play a vital role in an increasingly
digital world. These identities often rely on central authorities to
issue and manage them. Central authorities have the drawback
of being a central trusted party, representing a bottleneck and
single point of failure with exclusive control of identity-related
data. Self-sovereign identity (SSI) tackles those problems by
utilizing distributed ledger technology and making users the
sovereign owners of their identity data. Nevertheless, SSI, as
recent technology, still lacks qualified identity data. This is
especially a problem since sensitive services like eGovernment
or banking services require identity data issued by a qualified
identity provider; thus, SSI-based identities cannot be used for
these services.

In this paper, we propose a concept for deriving identity data
from an existing identity system into an SSI in a fully privacy-
preserving way by additionally supporting offline verification.
This way, we enable a chain of trust from the existing identity
system to the SSI system by introducing a novel trust model.
Our concept utilizes novel cryptographic primitives to support
efficient and privacy-preserving identity showing as well as revo-
cation. To underline the feasibility of our concept, we implement
a proof system and benchmark the related use cases.

Index Terms—self-sovereign identity, eID derivation, offline
revocation, zero-knowledge proofs

I. INTRODUCTION

When users want to access a resource at a service provider
(SP), they first need to prove their identity. Those SPs com-
monly use digital identities issued by government identity
providers (IdPs) or commercial solutions provided by online
services to identify and authenticate their users. A drawback
of such centralized systems is the increased risk of data
exposure and leakage [9], [35], [10]. Additionally, since IdPs
hold a large set of sensitive personal data, their systems are
an attractive target for attacks and cyberwar [19]. In recent
years, decentralized identity models gained traction, resulting
in models such as self-sovereign identities (SSIs) [2], [30].
Systems following the SSI model do not store sensitive identity
data in centralized data silos but instead put the identity data
in the hands of the users. To authenticate credentials and
distribute identities, SSI uses distributed ledgers (DLs).

When SPs offer access to sensitive data or services, they
require a strong proof of the user’s real identity and therefore
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have additional requirements for the digital identities they
accept. Providing such identities is one of the main ideas
of qualified IdPs, which issue identities that provide strong
assurance about the identity attributes. In contrast, in the SSI
model anyone can issue statements in the form of credentials
about everyone. While this is a strength of SSI and increases
its flexibility, it means that SSIs are not qualified identities,
which represents a disadvantage for the use cases requiring
strong identity proofs.

A solution to enrich SSIs with qualified attributes is to
derive SSIs from existing qualified identities – an obvious
candidate is the eID issued by governments. This derivation
process involves the transformation of an eID data schema into
an SSI data schema while maintaining the trustworthiness of
the attributes. Existing solutions [5] propose a decentralized
derivation system which uses the DL’s nodes to ensure that
the transformation was performed correctly. While in some
solutions the nodes of the DL need to access the plaintext of
the sensitive identity attributes, more recent concepts [3] use
privacy-preserving mechanisms to not reveal any sensitive at-
tributes to the derivation system and enable selectively sharing
of some attributes without revealing the others. At the same
time, revocation of credentials needs to be supported which
is often an issue when building privacy-preserving systems.
While previous work [4] introduces concepts to revoke SSIs
and present them to verifiers in an offline environment, the
revocation is not fully privacy-preserving.

In this paper, we introduce a novel approach to derive an
SSI credential from an existing identity in a privacy-preserving
way. Using our approach, users can selectively disclose at-
tributes and prove the validity status of their credentials to
an offline verifier. Additionally, users can revoke credentials
without revealing their identity.

Contribution 1: Privacy-Preserving Derivation and Cre-
dential Showing. Our system enables users to derive an SSI
credential from an existing eID, and DL nodes to attest that
this SSI credential was indeed derived from that eID. In
contrast to the existing techniques, the attestation step does not
reveal any of the attributes to the DL nodes. We achieve this
by employing non-interactive-zero-knowledge (NIZK) proof
systems, and in particular succinct non-interactive arguments
of knowledge (SNARKs), to prove the authenticity of the
original credential and that both credentials contain the same
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attributes. This proof is verified by the DL nodes, which
together sign an attestation statement and send it back to the
user. Since the proof is constructed using the IdP’s identity
assertion, the attestation process can be used with existing
IdPs and does not require any modifications to the IdP, which
increases the adaptability of our approach. We also enable
users to reveal only parts of their SSI credential to a verifier.
This is again achieved by constructing another proof, this time
of the derived SSI credential and the attestation statement.
When combining these two steps, our system facilitates the
use of attributes originating from a qualified source in the SSI
world while retaining the users’ privacy.

Contribution 2: Privacy-Preserving Revocation of Cre-
dentials. Additionally, we enable revocation of credentials in
a privacy-preserving way with a revocation registry stored on
the DL. By using cryptographic accumulators users can revoke
their credentials in this registry without revealing any personal
information. During the showing of a credential, the user
provides a (non-)revocation witness to the verifier. By doing so
we additionally enable verifiers to verify the validity status of
a credential while being offline. To enable privacy-preserving
revocation, we do not send the revocation accumulator witness
directly but instead extend the statements in the proofs for the
credentials with the revocation status statement.

Contribution 3: Implementation and Evaluation. To
show the feasibility of our approach, we provide a proof-
of-concept implementation based on Groth’s SNARK [22]
and demonstrate its practicability by providing a performance
evaluation. We make no assumption on the signature schemes
employed by the IdPs. We have the flexibility of choosing
schemes for showings, which results in significantly faster
circuits for showings. While these circuits become larger
and slower to evaluate as the number of credentials in the
system increases, we apply techniques from privacy-preserving
retrieval of witnesses in Certificate Transparency [25] to keep
the overheads in check.

II. PRELIMINARIES

This sections recalls background information regarding the
used building blocks.

Self-Sovereign Identity. Self-sovereign identity (SSI) is a
recent identity model, which arose with emergence of the
blockchain and distributed ledger technology (DLT). SSI was
described as further evolvement of the user-centric identity
model [37] identified in [2]. In contrast to the user-centric
model, SSI aims to address the central trusted party by
utilizing a distributed ledger (DL) and to give the users full
control over their identity data. Figure 1 illustrates a high-level
overview of the basic components of an SSI system including
main flows between the actors. The user in the SSI system
wants to use their digital identity, stored in the user’s domain
e.g., the mobile phone, to authenticate themself towards the
verifier. The user receives beforehand their identity data from
a so-called issuer. The DL consists of nodes hosting a copy
of the ledger and utilizes a certain consensus mechanism to
determine what is appended to the ledger. Commonly, SSI

systems utilize consortium or permissioned DL in which semi-
trusted organizations like universities or companies participate
as nodes. Additionally, the DL serves as decentralized public
key infrastructure (DPKI) addressing the central trusted party.
Importantly, no sensitive user information are stored on the
DL but rather off-ledger.

Figure 1. High-level architecture of an SSI system including basic compo-
nents and process flows

Decentralized Identifier. Decentralized Identifier
(DID) [36] defines one of the main building blocks of SSI.
DIDs were specified with the main objective to enable and
support SSIs. The main advantage of these type of identifier
is that they can be created without relying on a central trusted
party. DIDs, e.g., did:method:1234567890ABCDEFG,
consists of three parts: did describes the type of identifier,
which is DID in this case. method describes the ledger
on which the DID is registered and to which it resolves to.
The last part, 1234567890ABCDEFG in our case, defines
a unique identifier within method. This unique identifier
can be a random number or a public key or parts of it. This
DID resolves to the so-called DID document on the related
DL. The DID document contains public information like
endpoints or public keys.

Verifiable Credential. Besides DIDs, the verifiable creden-
tial (VC) [34] forms a data format in the SSI processes. VCs
preferably utilize JSON, which represents a light-weight and
machine-readable data format to represent and transport data.
VCs can include various attributes related to a user starting
with basic information like name and date of birth up to
complex use cases such as a passport or driver license.

Byzantine Fault Tolerance Consensus. DL-based systems
utilize consensus protocols to agree upon what data are written
to the ledger. These consensus mechanisms depend on the use-
case and on the used DL (public or consortium/permissioned).
In the SSI case, mainly consortium or permissioned ledgers are
used, thus, no expensive proof-of-work, or similar is necessary.
Instead, non-public DLs take advantage of protocols like the
Byzantine-fault-tolerance (BFT) protocol [15] based on the
eponymous problem [29]. Such a BFT protocol is used to
detect faulty or malicious nodes in a network with nodes of
the same permissions. Generally, BFT protocols can handle
f = ⌊(N − 1)/3⌋ misbehaving nodes out of N nodes.

Accumulator-based Revocation. Accumulators were first
introduced by Benaloh and de Mare [8] and allow one to accu-
mulate a finite set X into a succinct value. For every element in
this set, membership witnesses can be computed efficiently yet
it should be computationally infeasible to find a membership



witness for non-accumulated values. Accumulators facilitate
privacy-preserving revocation mechanisms, which is especially
relevant for privacy-friendly authentication mechanisms like
group signatures [13] and credential sytems [14] such as
Sovrin [28] and Hyperledger Indy.1 Following ideas of [20],
the credentials contain a unique revocation attribute, iR. Each
user obtains a membership witness proving that their iR is
contained in an accumulator. On revocation, the corresponding
iR gets removed from the accumulator and hence verification
of the revocation attribute no longer succeeds.

Proof Systems. Non-interactive zero-knowledge proof sys-
tems (NIZKs) allow a prover to convince the verifier of truth-
fulness of some statement without revealing secret witnesses.
Since the seminal work of Groth [22], efficient and succinct
NIZKs in the form of SNARKs and STARKs gained popularity
both in academia and practice. Frameworks such as Bellman2

provide convenient methods to transform arbitrary circuits into
rank-1 constraint systems and then proofs of the underlying
system. We refer to Appendix A for formal definitions.

III. RELATED WORK

This section introduces the related work in the field of
identity data derivation.

The National Institute of Standards and Technology (NIST)
published already in 2014 a guideline for derived personal
identity verification (PIV) credentials [32]. This publication
specifies the derivation process in which the user, which is in
possession of a PIV card, can derive a PIV credential onto her
mobile phone. A similar way to derive identity data was intro-
duced by the H2020 project Aries3. In contrast, Aries focuses
more on using biometric authentication means to strengthen
the binding of user to the related identity data. The LIGHTest
project4 has its main focus on a cross-domain trust infras-
tructure that combines different trust domains and provides
verification of electronic transactions across national borders.
This project also proposes an eID-derivation schema [27], [26]
where digital identities are being created based on national ids
like passports. Nevertheless, these concepts introduce a central
trusted party that is responsible for the derivation process.

This work tackles this problem by proposing an identity-
derivation concept without relying on a central trusted party.

Addressing the central trusted party was already the focus
of [2]. In this work, Abraham et al. introduced a way how to
derive identity data into a different identity system and without
relying on a central trusted party by utilizing a distributed
ledger (DL). The nodes in this network are semi-trusted and
performing the derivation process. They also counter check
their derivation result to ensure correctness. The trust is
distributed to the nodes in the network. Even though this work
solved fundamental trust issues, privacy concerns arose since
all nodes had access to the identity data in plain.

1https://hyperledger-indy.readthedocs.io/projects/hipe/en/latest/text/
0011-cred-revocation/README.html, accessed on 2021-04-15

2https://github.com/zkcrypto/bellman, accessed on 2021-04-15
3https://www.aries-project.eu/, accessed on 2021-04-15.
4https://www.lightest.eu, accessed on 2021-04-15

This privacy problem was addressed by [3]. The proposed
concept in this paper tackled the privacy concerns of the
previous work of the identity derivation process also with-
out relying on a central trusted party. The privacy concerns
were addressed by utilizing a non-interactive-zero-knowledge
(NIZK) proof system. This work solved the trust issues raised
by the previous work but other problems occurred. Revocation
is a critical part in a privacy-preserving setting and was fully
addressed. Furthermore, the utilized proof system was not
efficient enough w.r.t computation time.

In contrast, this work tackles these issues by utilizing a
novel proof system, based on succinct non-interactive argu-
ments of knowledge (SNARKs), that offers efficient proving
and verification algorithms as well as constant-size proofs.
Additionally, we also add a privacy-preserving revocation
mechanism based on accumulators.

The offline revocation was mentioned in [4] and achieved by
introducing an attestation that proves when the last revocation
check was performed. Based on this attestation, a verifier could
decide if the identity data with the related attestation is fresh
enough to accept it.

In contrast, this work improves on the privacy aspect of
the offline revocation since the approach in [4] could leak
metadata.

IV. CONCEPT

In this section, we discuss the general idea of our concept.
We start by introducing the involved actors who interact
with each other. Next, we give an overview of the stages of
importing identity attributes into the SSI system, requesting
an attestation at the ledger, and how a prover uses their
imported data to prove some attributes about their identity.
We also illustrate the process in which a prover can revoke
their identity credential and attestation in a privacy-preserving
way.

A. Actors

The actors involved in our proposed concept are introduced
below and illustrated in Figure 2 considering both the source
IdM system as well as the target SSI system.

Prover. A prover represents a user that wants to use their
existing eID in an SSI system to authenticate towards service
providers (SPs). Additionally, the prover is able to revoke their
identity data if the device where the data are stored is lost or
stolen or when the data are invalid or not used anymore.

Identity Wallet. The identity wallet describes hardware and
software in the prover’s domain used to store and manage
identity data and key material of the prover. Additionally, the
wallet is also responsible for creating the proofs.

Identity Provider. At the existing IdM system, an IdP
provides the identity data of a related prover used to be
imported into the SSI system by utilizing our concept.

SSI System. The SSI system consists of semi-trusted nodes
hosting a consortium ledger and using a consensus protocol
to decide what is written to the ledger. The SSI system serves
as decentralized public key infrastructure (DPKI) as well as
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attesting network. Additionally, the SSI system also stores the
revocation list.

Verifier. A verifier represents either an SP where the prover
requests access to a resource or service, or a person like a
police officer during a police check where the prover proves
their identity. The verifier can verify the provided identity
data even while being offline (without internet connection)
by verifying an attestation provided by the SSI network. The
offline verification is achieved by utilizing a so-called trust
store that contains all public keys of the SSI network and is
stored on the verifier side. This trust store is being updated
whenever a new node is joining the network.

B. Stages

This subsection details the four main stages of our concept
such as (1) the import of the identity data, (2) obtaining
the attestation, (3) performing revocation, and finally (4) the
showing of selected identity attributes.

Import Identity Data. In the first stage of our concept,
import identity data, the prover, which is in possession of
an eID, imports their identity data into their identity wal-
let. To start this process, the prover actively selects import
identity data from existing eID within the identity wallet. An
authentication request is sent to the IdP. Next, the prover has
to perform identification and authentication towards the IdP.
After success, the IdP issues an identity assertion to the prover
which contains related identity attributes. This assertion was
imported into the identity wallet.

Obtain Attestation. In order to use the imported identity
data in other IdM systems, like an SSI system, the prover
obtains an attestation from the SSI network. This process
starts automatically after the import of identity data was
successfully finished. First, a proof is created stating the
knowledge of secret attributes signed by the IdP and that
there is a commitment to these attributes and also that there
is a valid signature on the attributes. Next, the attestation is
requested at the SSI network by providing the proof as well
as the commitment. The SSI network, which runs an adapted
version of the BFT protocol, receives the request including the
proof and distributes it to the network. Furthermore, the nodes
in the SSI network verify the proof and sign the commitment.
If the verification was successful, the nodes add the revocation
ID to the revocation accumulator. In the next step, the nodes
exchange their signed result, verify it again and create a
multi-signature by aggregating all signatures. The resulting
attestation is issued to the prover and stored in the wallet.

Revocation. In case that the imported identity data are not
any longer valid due to a change of name etc., or in case that
the device used for storing the identity data is broken, lost,
or was stolen, the prover can revoke their identity data. Since
only the prover has knowledge about the revocation ID from
the revocation accumulator, no adversary would be able to
maliciously revoke the prover’s identity data. The revocation
process itself is performed by removing the revocation ID from
the revocation accumulator.

Showing. In the showing stage, the prover uses their identity
data towards a prover in order to perform identification and
authentication. First, the prover selects the identity attributes
that should be revealed. Next, a proof is created stating that
the revealed attributes are part of the secret attributes that were
imported from the IdP. The prover authenticates towards the
verifier by performing a challenge-response protocol and by
providing the revealed attributes, together with the showing
proof and the signed commitment. The signatures are verified
by either gathering the public keys from the SSI network
(online case) or by utilizing the public keys from the key-
store (offline case). Additionally, the verifier checks the proofs
as well as the validity of the identity data by verifying the
revocation witness.

C. Construction

For the following discussions, we consider credentials as
an abstract set of attributes, i.e, a credential cred consists of
set of attributes A = {a1, . . . , an}. In practice, they will be
encoded in a certain way, which however is not of interest
for the description of our concept. Similar to the approach
taken by Abraham et al. [4], we denote by an+1 a special
attribute for revocation which is appended to A and signed
by the IdP together with all other attributes. Thereby, we link
the randomly sampled an+1 to the credential. The idea for
privacy-preserving revocation is to follow the accumulator-
based approached discussed in [28]: the SSI network keeps
a compact accumulator with all valid an+1 and a list of all
revoked an+1.

Now, for attestation, credential owners interact with the
SSI nodes in the following way: they convince the nodes
that their credential is valid by producing a proof that attests
that they know the attributes to a credential and that the
signature obtained from the IdP is valid for that credential.
They also present the revocation attribute an+1 in plain so that
nodes can check their list of revoked credentials. Additionally,
to avoid the need to always link back the attributes to the
original signatures, the prover sends a Pedersen commitment
C = Com(A) and proves the relation between the signature
and the commitment. Once the SSI nodes are satisfied with the
proofs, they update the accumulator Λ with an+1 and produce
a membership witness wit. This witness is signed using a
multi-signature scheme and the aggregated signature together
with the witness is sent to the credential owner.

The purpose of the proofs is to prove knowledge of the
attributes signed by the IdP and that the commitment matches
these attributes. One a high level, we want to ensure that for
the IdP’s signature σ and the prover’s commitment C

Σ.Verify(pkIss, A, σ) = 1 ∧ Com(A) = C

with A = {a1, . . . , an+1} holds true whereas the attributes
{a1, . . . , an} are not revealed to the SSI nodes.

Showings follow a similar strategy, but works relative to
the commitment only. Additionally, the service provider needs
to ensure that the credential was not revoked, and hence the
prover presents the membership witness. In this case, we allow



Figure 2. Architectural overview of the proposed concept including the actors and main process flows within the four defined stages

that a subset of the attributes is revealed, but want to keep
an+1 hidden. Hence, the verifier needs to be convinced that
the following statement holds true:

Com(A) = C ∧ Λ.Verify(pkIss,Λ,witan+1
, an+1) = 1.

The prover reveals some attributes Ar as part of this process,
but keeps Ap = A \ Ar secret. In addition, the holder sends
the commitment C and the aggregated signature σA in plain
to the verifier.

V. IMPLEMENTATION

While our concept is described on a generic level, the
concrete choice of cryptographic primitives is important for
both practical purposes and the security properties that can be
obtained. On the side of the IdP, we have to be conservative
with our choice to support existing IdPs. Hence, we may only
assume that Σ is instantiated with an RSA-based signature
scheme or ECDSA (cf. also the available signature schemes
in the current SAML specification [33]). This is however
problematic as we would be required to prove statements with
respect to a random oracle for attestation (cf. for a discussion
on that topic in a different context [1]). Fortunately for us,
XML signatures actually sign the hash value of a canonicalized
version of the XML document, i.e., they are signatures on a
binding commitment. Therefore, it is enough for us to prove
that the credential holder knows A such that H(A) = h and
h as well as the signature on h can be shared with the SSI
nodes for verification.

For all other actors of the system, we are not required
to be as conservative but use well-aligned primitives instead.
BLS [12] is the natural choice for the multi-signature scheme
ΣM (cf. [3]). It features both small public keys and signatures
that are very simple to aggregate.

The choice of the commitment scheme and the accumulator
need to be aligned with the proof system to be efficient. When
using a SNARK with BLS-381 [7] as pairing-friendly curve,
schemes that work on elliptic curves over the induced prime
order field perform particularly efficient. Hence, proofs with

respect to a Pedersen commitment defined over the Jubjub
curve5 work well. The accumulator is more tricky to instantiate
efficiently with respect to the NIZK.

First of, one could use Merkle tree as an accumulator. In this
case, a SNARK-optimized hash function such as Poseidon [21]
helps to reduce the number of constraints. This approach
however requires the users to repeat the attestation process to
obtain updated witnesses whenever the accumulator changes.
With a Merkle-tree approach as proposed by Kales et al. in the
context of certificate transparency [25], this problem can be
alleviated to some extend. There the Merkle tree is split into
individual smaller trees Their root is then accumulated into the
bigger tree but the small trees stay constant once accumulated,
i.e., a fixed amount of revocation IDs is accumulated into a
sub-accumulator Λi which are than accumulated into Λ. Once
Λi is full, witnesses relative to Λi stay constant as long as only
revocation IDs added. Only if a revocation ID is removed and
hence revoked, witnesses of the users within the same sub-
accumulator need to be updated. For the proofs, only a proof
with respect to a sub-accumulator would need to be provided.
The witness for the inclusion of Λi in Λ could be transported
in plain without the need to hide it.6

Alternatively, the pairing-based accumulator [31] offers
constant-size witnesses and proofs as well as efficient accumu-
lator updates. More importantly, with this type of accumulator
it is possible to publish witness-independent witness updates,
meaning that on a change users do not need to perform a new
attestation. With the recent work on threshold accumulators
by Helminger et al. [23], the trust put into the accumulators
can be further reduced by distributing trust to the SSI nodes.
Nevertheless, as these accumulators require pairing-friendly
curves, they are hard to instantiate with a curve that works effi-
ciently with the prime fields induced by the order of BLS-381.

5https://z.cash/technology/jubjub/, accessed on 2021-04-15
6The only information that would leak here is the time of the attestation

but this bit of information could also be derived from observing the SSI
blockchain.
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Alternatively, BLS-381 could be replaced by another pairing-
friendly curve that is suitable for proof compositions [24].

A. Evaluation

Finally, we present the evaluation of our proof-of-concept
implementation based on Bellman written in Rust.7 We
used Bellman’s community edition8 and configured it to use
BLS-381 as pairing-friendly curve. We also used Bellman-
BigNat9 for a unified interface to hash functions and bellman-
playground10 for a Merkle-tree implementation. The primitives
we used are SHA-256 and Pedersen commitments for the
attestation and the same commitment scheme, and a Merkle
tree implemented using Poseidon [21] for the showing. To
show the difference to a hash function that is not optimized
for SNARKs, we also illustrate the performance of a showing
using a SHA-256-based Merkle tree. The benchmarks were
performed on an Intel(R) Core(TM) i7-8650U with 16 GB
RAM running on Ubuntu 20.04.

In terms of user attributes, we performed the benchmarking
using the minimal data set of eID assertions [18] consisting
of the family (3-16 bytes) and given name (3-16 bytes), the
date of birth (10 bytes), and a personal identifier (31 bytes).
In addition to these four attributes, each user also has a
revocation ID (31 bytes). Thus, all in all, each user has 5
attributes in their credential. Note though, that the length of
these attributes was to fit into one field element. With our
choice of parameters, a field element can represent up to 31
bytes. When requiring attributes that are larger than 31 bytes,
additional field elements are required to represent them, and
hence additional constraints are required as well. While this
involves some cost, it will only make a larger difference when
passing the block size of the hash function. This will result in
hundreds to thousands of constraints that need to be considered
in the circuit.

For attestation, benchmarks show that proof creation takes
15.88± 0.4 seconds which is caused by the large size of the
hash function input (> 6 KB) as well as the hash function
itself. The verification is fast and only takes 20.25± 1.6 ms.

The results for the proof generation in the showing phase
are depicted in Figure 3 for both SHA-256 and Poseidon as
hash functions for the Merkle tree. While we performed the
benchmarks with showings of 0 to 4 attributes, this choice
does not influence the number of constraints significantly, and
hence the timings are (up to some noise) the same. When
using Poseidon, we observe that each level in the Merkle tree
adds approximately 20 ms for the prover, which is consistent
with the constant increase in the number of constraints. Even
with Merkle trees containing over a million revocation IDs,
proving only takes 582 ms. For SHA-256 on the other hand,
the picture is different. We also see a constant increase in
the number of constraints, but the observed runtime quickly

7The code is available on Github: https://github.com/sebastinas/
ppeid-bench.

8https://github.com/matter-labs/bellman, accessed on 2021-04-15
9https://github.com/alex-ozdemir/bellman-bignat, accessed on 2021-04-15
10https://github.com/kilic/bellman-playground, accessed on 2021-04-15

increases, starting at around 2.29 seconds for a Merkle tree
with only 32 elements, and increases to over 8.1 seconds for
2048 elements. Hence, using SHA-256 as hash function for
the Merkle tree is impractical even for small sizes. Combining
these results with the sub-accumulator approach shows that we
can easily lift good performance from millions to billions of
users in the system.

The time for proof verification, on the other side, stays
constant and averages at ≈ 3.7 ms regardless of the concrete
parameters as expected from a SNARK. Note also, that the
verification in this case is faster than for attestation, since the
public inputs for attestation, e.g. the overhead due to the XML
encoding, are significantly larger.
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Figure 3. Benchmarks for proof generation during showings for various
depths of the Merkle tree. The time is displayed as mean and standard
deviation over 100 runs.

In all cases, the proofs are the size of three group elements.
With our choice of curve the proof takes 192 bytes if the
elements are stored in compressed form.

B. Security Evaluation

For the security of the system, we discuss the three main
security properties informally. The first two are the same as
in [3]: First, users must not be able to present an assertion
to the validator nodes that was not signed by the IdP or
where they do not know any of the attributes. Assuming that
an adversary would be able to convince the validator nodes
otherwise, the adversary is either able to produce a forgery
of the signature scheme or produce a proof without knowing
any witness. Similarly, when users authenticate to an SP, a
user must not be able to authenticate itself if the attributes are
not known or the assertion was not checked by the validator
network. In both cases, an adversary would break soundness
of the proof system or the unforgeability of the signature
schemes.

Second, neither SPs nor the validator nodes should be able
to learn any of the hidden attributes. Assume that an adversary
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would be able to reveal one of the attributes that were not
revealed by the users itself. Given that an adversary only gets
to see a hiding commitment and the corresponding proof, an
adversary would break the commitment scheme or the zero-
knowledge property of the proof system. We want to note, that
with respect to the validators we cannot achieve this notion due
to use of XML signatures, though. Even if the commitment on
the XML document was made hiding by including additional
randomness, security would only hold in the random oracle
model. Then we would again unable to provide proofs.

Third, a user must not be able to convince SPs that their
credential was not revoked if it was. Assuming an adversary
would be able to do so, again, the soundness of the proof
system would be broken, or it would be possible to produce
membership witnesses for non-members of the accumulator.
The latter would break the security guarantees of the accumu-
lator.

C. Discussion

Limitations. In our proposed concept, only the prover
can revoke their derived identity data. In order that the IdP
would also be able to revoke, it would have to add a random
identifier to the identity assertion. Even though this is just
a small change at the IdP, we still consider it as limitation.
Furthermore, the maximal length of the attributes needs to
be fixed a priori as it influences the circuits. Note also, that
varying the circuits to accommodate various lengths may leak
bits of information that could lead to unintended disclosure of
otherwise hidden attributes.

The use of Merkle trees in this scenario comes with some
drawbacks. First, it requires the use of techniques such as
sub-accumulators to reduce the costs when updating member-
ship witnesses. Second, the size of accumulators influences
the overall performance of showings. Large trees require a
SNARK-optimized hash function such as Poseidon or Vi-
sion [6] to be practical.

To obtain anonymity against validator nodes, a hiding
commitment scheme or a signature scheme whose security
can be proven without random oracles is required. However,
for XML signatures, we are currently limited by the allowed
schemes in the standard.

Future Work. Replacing the Merkle tree with a dynamic
public-key accumulator offering witness-independent updates
will help to reduce the work involved in updating user’s mem-
bership witnesses. Therefore, we believe this road is worth
investigating in future work. More importantly, this change
will also make the circuits used for showings independent of
the size of the accumulated sets.

VI. CONCLUSION

Bringing traditional IdM systems together with the recent
SSI systems is still an open issue. This work tackles this
issue by introducing a novel trust model in which identity
data are being derived into an SSI system in a fully-privacy-
preserving way, but by still maintaining trust in the derived
data. Moreover, our concept also enables offline revocation in a

privacy-preserving manner by utilizing a ZK proof system. To
show the feasibility, we implemented a prototype, evaluated,
and benchmarked it.
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APPENDIX

NIZKs. Let L ⊆ X be an NP-language with associated
witness relation R so that L = {x | ∃w : R(x,w) = 1}. A non-
interactive proof system Π consists of algorithms Setup(1κ)
producing a common reference string crs, Proof(crs, x, w)
taking the crs, a statement x and a witness w, and outputting
a proof π, and Verify(crs, x, π) taking the crs, a statement x,
and a proof π, and outputting the verification status.

We require such a proof system to be complete (all proofs
for statements in the language verify), sound (a proof for a
statement outside the language verifies only with negligible
probability) and zero-knowledge (a proof reveals no informa-
tion on the witness). In addition, when we talk about SNARKs,
we also require the proofs to be succinct (independent of the
witness size) and knowledge sound (there exists an extractor
that using some trapdoor is able to extract the witness from
the prover).

Commitments. A commitment scheme consists of algo-
rithms (Gen(1κ) outputting public parameters, Com(m) taking
a message m and producing a commitment C and an opening
D, and Open(C,D taking a commitment C and opening
C and output, and outputting the verification status. Secure
commitments must satisfy correctness, hiding (commitments
are indistinguishable), and binding (a commitment cannot be
opened to a different message).

Accumulators. We recall the formalization of accumulators
from [16].

Definition 1. A static accumulator is a tuple of efficient
algorithms (Gen,Eval,WitCreate,Verify), which are defined
as follows:
Gen(1κ, t) : This algorithm takes a security parameter κ and

an upper bound t on the number of elements to be
accumulated. It returns a key pair (skΛ, pkΛ), where
skΛ = ∅ if no trapdoor exists.

Eval((skΛ, pkΛ),X ) : This algorithm takes a key pair (skΛ,
pkΛ) and a set X to be accumulated and returns an
accumulator ΛX together with auxiliary information aux.

WitCreate((skΛ, pkΛ),ΛX , aux, xi) : This algorithm takes a
key pair (skΛ, pkΛ), an accumulator ΛX , auxiliary infor-
mation aux and a value xi. It returns ⊥, if xi /∈ X , and
a witness witxi

for xi otherwise.
Verify(pkΛ,ΛX ,witxi

, xi) : This algorithm takes a public key
pkΛ, an accumulator ΛX , a witness witxi and a value xi.
It returns a bit indicating whether witxi is a witness for
xi ∈ X .

A dynamic accumulator is a static accumulator with an addi-
tional tuple of efficient algorithms (Add,Remove,WitUpdate)
which makes it possible to add and remove elements from the
accumulator, as well as update existing membership witnesses
accordingly, respectively.

For accumulators we require it to be intractable to present
witnesses for non-members. Examples of dynamic accumula-
tors include Merkle trees and pairing-based accumulators [31].
For the latter, witness updates can be performed using witness-
independent update tokens, whereas for Merkle trees witness
updates require a recomputation in the worst case.

Signatures. We recall the standard notion of digital signa-
tures.

Definition 2. A signature scheme Σ is a triple (KeyGen,
Sign,Verify) of PPT algorithms, which are defined as follows:
KeyGen(1κ) : This algorithm takes a security parameter κ as

input and outputs a secret key sk and a public key pk.
Sign(sk,m) : This algorithm takes a secret key sk and a

message m as input and outputs a signature σ.
Verify(pk,m, σ) : This algorithm takes a public key pk, a

message m, and a signature σ as input and outputs a
bit b ∈ {0, 1}.

We require a signature scheme to be correct and to provide
existential unforgeability under adaptively chosen message
attacks (EUF-CMA). Furthermore, we are interested in an ex-
tension of signature schemes to multi-signature schemes [17].
In this case, signatures on the same message w.r.t. some public
keys, can be aggregated into one compact signature which is
valid w.r.t. an aggregated public key. It extends a signature
scheme with algorithms (APKs,ASigs,AVerify) which aggre-
gate public keys as well as signatures and verify aggregated
signatures, respectively. The BLS signature scheme [12] is a
prominent example of a signature scheme that can be extended
to a multi-signature [11].
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