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Abstract. The present paper introduces a modified version of cyclic-monotone independence which
originally arose in the context of random matrices, and also introduces its natural analogy called cyclic-
Boolean independence. We investigate formulas for convolutions, limit theorems for sums of independent
random variables, and also classify infinitely divisible distributions with respect to cyclic-Boolean con-
volution. Finally, we provide applications to the eigenvalues of the adjacency matrices of iterated star
products of graphs and also iterated comb products of graphs.

1. Introduction

The present paper takes its origin in the concept of cyclic-monotone independence which appeared in
the study of random matrices [5, 20] and which deserves separate treatment; see [2] for further work. The
term “cyclic-monotone independence” was coined in [5] because of its apparent similarity with monotone
independence except that it involves two linear functionals: a state and a tracial linear functional. It
abstracts an asymptotic formula for the mixed moments, with respect to the non-normalized trace, of
a random rotation of two sets AN and BN consisting of N × N deterministic matrices such that all
mixed moments of AN have finite limits with respect to the non-normalized trace as N tends to infinity,
and all mixed moments of BN have finite limits with respect to the normalized trace. More precisely,
suppose that {ANi : 1 ≤ i ≤ k} and {BN

i : 1 ≤ i ≤ k}, N = 1, 2, 3, ... are families of N ×N deterministic
matrices that satisfy the following conditions: for any ∗-polynomial P (x1, x2, . . . , xk) in non-commuting
variables x1, x2, . . . , xk over the field C without a constant term (e.g. P (x1, x2) = x2

1x2x
∗
1), the limits

lim
N→∞

TrN [P (AN1 , A
N
2 , . . . , A

N
k )] and lim

N→∞

1

N
TrN [P (BN

1 , B
N
2 , . . . , B

N
k )]

exist in C. According to [5, Theorem 4.3], for an N × N Haar unitary matrix UN , N = 1, 2, 3, . . . , we
have the almost sure convergence

lim
N→∞

TrN [AN1 (UN)∗BN
1 U

NAN2 (UN)∗BN
2 U

N · · ·ANk (UN)∗BN
k U

N ]

= lim
N→∞

TrN [AN1 A
N
2 · · ·ANk ]

k∏
j=1

[
lim
N→∞

1

N
TrN [BN

j ]

]
.

(1.1)

The formula (1.1) shows some similarity with monotone independence, but they are not the same because
the formula involves both normalized trace and non-normalized trace.

The present paper offers a simple operator model for cyclic-monotone independence realized on the
tensor product of Hilbert spaces. This construction also uncovers the associativity of cyclic-monotone
independence with respect to a state and a trace. In order to ensure associativity, we modify the defi-
nition of cyclic-monotone independence. The new definition consists of two conditions: one is basically
the condition in [5, Definition 3.2] referring to both the state and the tracial linear functional, and the
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other is monotone independence with respect to the state (see Definition 7.2). The modified definition of
cyclic-monotone independence shares the same spirit with c-monotone independence [10] (and c-freeness
[3]) because they are all associative notions of independence referring to two linear functionals.

However, the relationship between the random matrix model and the operator model is not perfectly
understood. Curiously monotone independence does not appear in the random matrix model above,
although it appears very naturally in the operator model. This is related to the fact that the random
matrix model above is limited to two families of random matrices AN and BN and hence the question
of associativity is not relevant.

Our operator realization of (modified) cyclic-monotone independence also indicates that a similar
construction works for Boolean independence, which therefore leads to a notion of cyclic-Boolean inde-
pendence. We develop a general theory of these two independences: computing generating functions for
the sum of independent random variables, limit theorems, cyclic-Boolean cumulants which are governed
by cyclic-interval partitions and infinitely divisible distributions with respect to cyclic-Boolean convo-
lution. We do not know how to define cyclic-monotone cumulants and therefore this question is not
addressed in the present paper.

Moreover, the operator models for cyclic-Boolean and cyclic-monotone independences are directly
connected to the star product of (rooted) graphs (see Section 2.6) and the comb product of (rooted)
graphs (see Section 2.7). Specifically, the eigenvalues of their adjacency matrices can be analyzed by
means of cyclic-Boolean independence and cyclic-monotone independence, respectively.

The techniques are motivated by the relations between the adjacency matrix, the spectrum, the
characteristic polynomial and walk generating functions of a graph. These form the core subject of
algebraic graph theory, which deals with various matrices, polynomials and generating functions and
other invariants carrying information about graphs.

It was shown by Schwenk [19] (later generalized by Godsil and McKay [9]) that the characteristic
polynomial of the star product (or coalescence) and the comb product (or rooted product) of graphs
only depends on the characteristic polynomials of the factors and the walk generating function at the
roots of the factors and he gave an explicit formula. Similar simple formulas for the generating function
of closed walks starting at the root hold. While Schwenk’s proofs are combinatorial, we will give algebraic
proofs based on the Schur complement which can be generalized to arbitrary matrices and operators.
Accardi, Ben Ghorbal and Obata [1] and Obata [15] initiated the application of monotone independence
and Boolean independence to the asymptotic spectral analysis of adjacency matrices of iterated comb
products and star products, respectively. The operator models for cyclic-monotone and cyclic-Boolean
independences extend their work in the sense that the new framework also enables one to analyze
refined properties of eigenvalues of the adjacency matrices. These generalizations are the subject of
the present paper and illustrate the emergence of new notions of noncommutative independence, i.e.,
cyclic-monotone and cyclic-Boolean ones.

To summarize, the main contributions of the present paper are:

(1) the new notion of cyclic-Boolean independence (Sections 3) and a modification of the definition
of cyclic-monotone independence given in [5] (Section 7);

(2) operator models for cyclic-Boolean independence (Sections 3) and for cyclic-monotone indepen-
dence (Section 7);

(3) convolution formulas for the sum of independent random variables (Sections 4, 7) and their
relationships to algebraic graph theory (Section 2);

(4) limit theorems for sums of independent random variables (Sections 3, 7);
(5) cyclic-Boolean cumulants and the relevant partition structure with cyclic-interval partitions (Sec-

tion 5);
(6) classification of infinitely divisible distributions for cyclic-Boolean convolution (Section 6);
(7) analysis of the asymptotics of the eigenvalues of the adjacency matrices of iterated star product

of graphs and iterated comb product of graphs (Sections 4, 7).
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Recently Collins, Leid and Sakuma found a different matrix model for monotone independence and
cyclic monotone independence [6]. So far a connection between their model and ours is not clear.

2. Preliminaries

2.1. Adjacency matrix. Let Γ = (V,E) be a graph on a vertex set V = {v1, v2, . . . , vd} with edge set
E. We always consider finite undirected graphs without loops or multiple edges. An edge between two
vertices u and v is denoted by uv. The adjacency matrix of Γ is the matrix A = {aij}di,j=1 with entries

aij =

{
1, vivj ∈ E,
0, otherwise.

The spectrum of the graph Γ is the spectrum of its adjacency matrix. It consists of the eigenvalues λi
of A which are the roots of the characteristic polynomial

φΓ(x) = det(xI − A) =
d∏
i=1

(x− λi).

Alternatively, the eigenvalues of A are the poles of the (tracial) Cauchy transform

(2.1) gΓ(z) = Tr((zI − A)−1).

The Cauchy transform and the characteristic polynomial are mutually related by the logarithmic deriv-
ative

(2.2) gΓ(z) =
d∑
i=1

1

z − λi
=

d

dz
log φΓ(z) =

φ′Γ(z)

φΓ(z)
.

For the generalization of this identity to trace class operators it will be convenient to remove the moment
of order zero and work with the “renormalized” Cauchy transform

(2.3) g̃Γ(z) = gΓ(z)− d

z
= Tr((zI − A)−1 − z−1I)

instead.

2.2. Walk generating functions. Let (Γ, o) be a finite rooted graph, i.e., a graph on vertices v1, v2, . . . , vd
where we single out the vertex o = v1 as the root of the graph. The number mn of closed walks of length
n starting at the root o is equal to 〈Ane1, e1〉 where A is the adjacency matrix of Γ and e1 is the vector
(1, 0, 0, . . . , 0) ∈ Cd. Denote by

(2.4) MΓ(z) =
∞∑
n=0

mnz
n = 〈(I − zA)−1e1, e1〉

the walk generating function. One caution is in place here. To keep notation simple here and below we
do not explicitly write the root in subscripts, although the generating functions depend on the choice of
the root.

It will be more convenient to rather work with the resolvent of A and with the Green function
(evaluated at the root)

(2.5) GΓ(z) = 〈(zI − A)−1e1, e1〉 =
1

z
MΓ

(
1

z

)
and its reciprocal

(2.6) FΓ(z) =
1

GΓ(z)
.

We can obtain a relation between the Green function (2.5) and the Cauchy transform (2.1) from the
Schur complement.
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2.3. Schur complement. Let

M =

[
A B
C D

]
be a block matrix and assume D is invertible. Then the Schur complement [24] is defined as

(2.7) M/D = A−BD−1C.

It appears in Aitken’s factorization

(2.8) M =

[
I BD−1

0 I

] [
A−BD−1C 0

0 D

] [
I 0

D−1C I

]
.

which is obtained by Gaussian elimination on the original Matrix M . From this factorization we infer
the following assertions:

(1) M is invertible if and only if M/D is invertible. If this is the case, then the Banachiewicz
inversion formula

(2.9) M−1 =

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
.

holds.
(2) The determinant factorizes and Jacobi’s identity

(2.10) detM = det(M/D) detD

holds.

2.4. Relation between the Green function and the characteristic polynomial. Let (Γ, o) be a
rooted graph on vertices v1, v2, . . . , vd. If we decompose its adjacency matrix

A =

[
0 b∗

b D

]
into block form with D = AΓ\o, then the Green function (2.5) is the upper left entry of the inverse of
the matrix

M = zI − A =

[
z −b∗
−b zI −D

]
and coincides with the inverse of its Schur complement, which results in

GΓ(z) = 〈(zI − A)−1e1, e1〉 = (z − b∗(zI −D)−1b)−1.

Consequently the Schur complement (2.7) equalsGΓ(z)−1 = FΓ(z), cf. (2.9). Being a matrix of dimension
1 it equals its determinant and identity (2.10) yields

(2.11) φΓ(x) = FΓ(x)φΓ\o(x), x ∈ C \ R.

2.5. Relation between the Green function and the Cauchy transform of a general matrix.
Let A be a d× d matrix. We want to understand the relation between the functions

GA(z) = 〈(z − A)−1e1, e1〉 and gA(z) = Tr((z − A)−1).

To this end we partition the matrix into blocks of dimension 1 and d− 1

(2.12) A =

[
α a∗1
a2 Å

]
.

Now the corresponding Schur complement (2.7) of z − A is a scalar

S = z − α− a∗1(z − Å)−1a2

and we conclude from the Banachiewicz inversion formula (2.9) that

(2.13) GA(z) = S−1 =
1

z − α− a∗1(z − Å)−1a2
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Figure 1. Star product of rooted graphs

and

gA(z) = Tr

[
S−1 ∗
∗ (z − Å)−1 + (z − Å)−1a2S

−1a∗1(z − Å)−1

]
= GA(z) + gÅ(z) +GA(z)Tr((z − Å)−1a2a

∗
1(z − Å)−1)

= GA(z)(1 + Tr(a∗1(z − Å)−2a2)) + gÅ(z)

=
F ′A(z)

FA(z)
+ gÅ(z).

After subtracting the unit matrix according to (2.3) we obtain the identity

(2.14) g̃Å(z) = g̃A(z) +
d

dz
log(zGA(z)) = g̃A(z) +

1

z
+
G′A(z)

GA(z)
,

which can be extended to trace class operators.

2.6. The star product and its adjacency matrix. Let (Γ1, o1) = (V1, E1, o1) and (Γ2, o2) =
(V2, E2, o2) be rooted graphs. The star product, denoted by (Γ1, o1) ~ (Γ2, o2), is defined by cong-
lutinating the graphs (Γ1, o1), (Γ2, o2) at their roots; see Fig. 1. Formally the vertex set of Γ can be
realized as a subset of V1 × V2,

V = {(x1, o2) : x1 ∈ V1} ∪ {(o1, x2) : x2 ∈ V2}.

Two vertices (x1, x2) and (y1, y2) of V are connected by an edge if either x1y1 ∈ E1 and x2 = y2 = o2,
or x1 = y1 = o1 and x2y2 ∈ E2. The cartesian product of the vertices corresponds to the tensor product
of the vector spaces and the adjacency matrix has entries

a(x1,x2),(y1,y2) = a(1)
x1,y1

δx2,o2δy2,o2 + δx1,o1δy1,o1a
(2)
x2,y2

i.e.,

A = A1 ⊗ P2 + P1 ⊗ A2

where Pi is the orthogonal projection of `2(Vi) onto the one-dimensional subspace spanned by the delta
function δoi ; see [12, Proposition 8.50].

The star product is associative and hence one may define by iteration the star product (Γ, o) =
(V,E, o) of rooted graphs (Γi, oi) = (Vi, Ei, oi), i = 1, 2, . . . , N . Suppose further that those graphs are
finite and simple. Then the vertex set V of Γ can be regarded as a subset of V1×· · ·×VN and hence the
adjacency matrix AΓ can be regarded as an operator on `2(V1)⊗ · · · ⊗ `2(VN). Under this identification
one has

(2.15) AΓ =
N∑
i=1

P1 ⊗ P2 ⊗ · · · ⊗ Pi−1 ⊗ AΓi
⊗ Pi+1 ⊗ · · · ⊗ PN ,

Let ϕ be the vacuum state on B(`2(V )): ϕ(X) = 〈Xδo, δo〉`2(V ).
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Figure 2. Comb product of rooted graphs

2.7. The comb product and its adjacency matrix. Given a graph Γ1 = (V1, E1) and a rooted
graph (Γ2, o2) = (V2, E2, o2), a new graph Γ = Γ1 B (Γ2, o2) is defined by gluing a copy of Γ2 to every
vertex of Γ1 at the root o2: The vertex set V of Γ is V1 × V2 and two vertices (x1, x2) and (y1, y2) are
connected by an edge if and only if either x1y1 ∈ E1 and x2 = y2 = o2, or x1 = y1 and x2y2 ∈ E2.
If we further specify a root of Γ1, then the natural root for the comb product is (o1, o2), which makes
the comb product associative (but non-commutative) in the category of rooted graphs; see Fig. 2. The
adjacency matrix now can be written as

A1 ⊗ P2 + I1 ⊗ A2

and by iteration one may define the comb product (Γ, o) of a sequence of rooted graphs (Γi, oi) =
(Vi, Ei, oi), i = 1, 2, . . . , N . The adjacency matrix AΓ can then be regarded as an operator on `2(V1)⊗
· · · ⊗ `2(VN) and it has the form

(2.16) AΓ =
N∑
i=1

I1 ⊗ I2 ⊗ · · · ⊗ Ii−1 ⊗ AΓi
⊗ Pi+1 ⊗ · · · ⊗ PN ;

see [12, Proposition 8.38].
For comb products of identical rooted graphs, Accardi, Ben Ghorbal and Obata used monotone

independence satisfied by the summands in (2.16) in order to study the asymptotics of the Green
function of Γ as N → ∞; see the original article [1, Theorem 5.1] or the book [12, Theorem 8.40]. On
the other hand, for the star product, the summands in (2.15) are Boolean independent, which provides
another type of asymptotics of Green function; see the original article of Obata [15, Theorem 3.7] or the
book [12, Theorem 8.53].

In the present paper we study the asymptotic behavior of eigenvalues or empirical eigenvalue
distributions of AΓ for large N using the asymptotics of the characteristic polynomial φΓ(z) or the
Cauchy transform gΓ(z).

2.8. Identities for the star product. For the sake of notational convenience we denote by Γ1 ~ Γ2

the star product of two rooted graphs (Γ1, o1) and (Γ2, o2). The Green function of the star product
satisfies the following relation, which follows from the decomposition (2.15) of the adjacency matrix into
Boolean independent operators and the linearization formula for Boolean convolution in [23, Section 2];
see also [17] for another proof of the latter.

Proposition 2.1. For rooted graphs (Γ1, o1) and (Γ2, o2) the following formula holds.

FΓ1~Γ2(z) = FΓ1(z) + FΓ2(z)− z.(2.17)

The Cauchy transform of the star product is computed by the formula below.

Proposition 2.2. For rooted graphs (Γ1, o1) and (Γ2, o2) the following formula holds.

gΓ1~Γ2
(z) +

G′Γ1~Γ2
(z)

GΓ1~Γ2(z)
= gΓ1

(z) + gΓ2
(z) +

G′Γ1
(z)

GΓ1(z)
+
G′Γ2

(z)

GΓ2(z)
.(2.18)

Remark 2.3. Later we will give two alternative proofs in a more general setting; see Theorem 4.2.

Proof. The key is the simple identity

(2.19) φ(Γ1~Γ2)\o(x) = φΓ1\o1(x)φΓ2\o2(x),
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for the star product, which follows from the fact that the removal of the root splits the graph into two
disjoint connected components

(Γ1 ~ Γ2) \ o = (Γ1 \ o1) ∪ (Γ2 \ o2).

Using the Schur identity (2.11) we can rewrite (2.19) as

(2.20) φΓ1~Γ2(z)GΓ1~Γ2(z) = φΓ1(z)GΓ1(z)φΓ2(z)GΓ2(z)

and taking the logarithmic derivative of (2.20) together with (2.2) yields (2.18). �

Finally, the characteristic polynomial of the star product satisfies the following identity proved by
Schwenk, for which we give an alternative proof.

Theorem 2.4 ([19, Corollary 2b], [8, Lemma 9.1]). For rooted graphs (Γ1, o1) and (Γ2, o2) the following
formula holds.

(2.21) φΓ1~Γ2(x) = φΓ1(x)φΓ2\o2(x) + φΓ1\o1(x)φΓ2(x)− xφΓ1\o1(x)φΓ2\o2(x).

Proof. Equations (2.20) and (2.17) give rise to

φΓ1~Γ2(x) = φΓ1(x)φΓ2(x)GΓ1(x)GΓ2(x)(FΓ1(x) + FΓ2(x)− x)

= φΓ1(x)φΓ2(x)(GΓ1(x) +GΓ2(x)− xGΓ1(x)GΓ2(x)).

Substituting the formula (2.11), GΓi
(x) = φΓi\o(x)/φΓi

(x), into the above yields the desired formula. �

2.9. Identities for the comb product. In this section, the comb product is denoted simply by Γ1BΓ2,
the root being omitted for simplicity, for a graph Γ1 and a rooted graph (Γ2, o2). The relation between the
Green functions is simple and follows from the decomposition (2.16) of the adjacency matrix together
with Muraki’s formula [14, Theorem 3.1]; see also [16, Theorem 3.2] for another proof of Muraki’s
formula.

Proposition 2.5. For rooted graphs (Γ1, o1) and (Γ2, o2) the following formula holds:

(2.22) FΓ1BΓ2(z) = FΓ1(FΓ2(z)).

For the characteristic polynomial Schwenk proved the following relation by combinatorial arguments;
we give an algebraic proof based on the simpler relation (2.22).

Theorem 2.6 ([19, Theorem 5]). Let Γ be a graph on d vertices and (H, o) be a rooted graph. Then

(2.23) φΓBH(x) = φH\o(x)dφΓ(φH(x)/φH\o(x)) = φH\o(x)dφΓ(FH(x)).

Proof. We proceed by induction. Fix an arbitrary vertex o′ of Γ as a root. Then removing the root o′′

from ΓBH splits off an extra copy of H \ o (cf. Fig. 2)

(ΓBH) \ o′′ = ((Γ \ o′)BH) ∪ (H \ o)
and therefore

φ(ΓBH)\o′′(x) = φ(Γ\o′)BH(x)φH\o(x).

We proceed with identities (2.11) and (2.22) to conclude by induction

φΓBH(x) = φ(ΓBH)\o′(x)FΓBH(x)

= φ(Γ\o′)BH(x)φH\o(x)FΓBH(x)

= φH\o(x)d−1 φΓ\o′(FH(x))φH\o(x)FΓ(FH(x))

= φH\o(x)d φΓ(FH(x)).

�

Finally, formula (2.23) gives rise to an equivalent formula for the renormalized Cauchy transform.
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Proposition 2.7. In the setting of Theorem 2.6, one has

g̃ΓBH(z) = d g̃Γ(z) + F ′H(z) g̃Γ(FH(z)).

Remark 2.8. Later we will give two more proofs in a more general setting; see Theorem 7.6.

Proof. Combining (2.2), (2.23) and (2.11) yields

gΓBH(z) = d
d

dz
log

φH(z)

FH(z)
+ F ′H(z) gΓ(FH(z))

= d

(
gH(z)− F ′H(z)

FH(z)

)
+ F ′H(z) gΓ(FH(z)),

which can be rewritten as

g̃ΓBH(z) +
dd′

z
= d

(
g̃H(z) +

d′

z
− F ′H(z)

FH(z)

)
+ F ′H(z)

(
g̃Γ(FH(z)) +

d

FH(z)

)
,

where d′ is the number of vertices of H. �

3. Cyclic-Boolean independence

In order to study the eigenvalues of the adjacency matrix of star product graphs, we will compute
traces of powers of the adjacency matrix. These computations can be abstracted and formulated as a
new notion of independence, which we call cyclic-Boolean independence.

3.1. Definition and example. The definition of cyclic-Boolean independence is motivated by the star
product from Section 2.6, which can be extended to the general setting of Hilbert spaces as follows.

Example 3.1. Let Hi, i ∈ N, be Hilbert spaces with distinguished unit vectors ξi ∈ Hi, Pi : Hi → Hi

the orthogonal projection onto Cξi, T (Hi) the ∗-algebra of trace-class operators on Hi and ϕi the vector
state on B(Hi) defined by ϕi(A) = 〈Aξi, ξi〉.

Let H = H1 ⊗ · · · ⊗ HN , ξ = ξ1 ⊗ · · · ⊗ ξN and ϕ the vacuum state on B(H) defined by ξ. Let
πi : B(Hi)→ B(H) be the ∗-homomorphism defined by

(3.1) πi(A) = P1 ⊗ · · · ⊗ Pi−1 ⊗ A⊗ Pi+1 ⊗ · · · ⊗ PN .
The family of ∗-subalgebras {πi(B(Hi))}Ni=1 is Boolean independent in (B(H), ϕ); e.g. see [12, Theorem
8.8]. Furthermore, we compute the mixed moments with respect to the trace. A key formula is

(3.2) PiAPi = ϕi(A)Pi, A ∈ B(Hi).

For any cyclically alternating tuple (k1, . . . , kn) ∈ Nn, namely those satisfying k1 6= k2 6= · · · 6= kn 6= k1,
and for any Ai ∈ T (Hki) a direct computation using formula (3.2) yields

TrH(πk1(A1) · · · πkn(An)) =

{
TrHk1

(A1), n = 1,

ϕk1(A1)ϕk2(A2) · · ·ϕkn(An), n ≥ 2.

Let us raise this identity to an abstract concept.

Definition 3.2. Let A be a ∗-algebra over C, ϕ a positive linear functional on A and ω a positive
tracial linear functional on A. The triplet (A, ϕ, ω) is called a cyclic non-commutative probability space
(cncps). The distribution of a self-adjoint element a ∈ A is the data {(ϕ(an), ω(an)) : n ≥ 1}.

Definition 3.3. Let (A, ϕ, ω) be a cncps. A family of ∗-subalgebras {Ak}k∈K is said to be cyclic-Boolean
independent if

(i) it is Boolean independent with respect to ϕ, that is, for any n ≥ 2, alternating tuple (k1, . . . , kn) ∈
Kn (namely, with k1 6= k2 6= · · · 6= kn) and ai ∈ Aki , i = 1, 2, . . . , n, one has the factorization

ϕ(a1 · · · an) = ϕ(a1)ϕ(a2) · · ·ϕ(an);
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(ii) for any n ≥ 1, any cyclically alternating tuple (k1, . . . , kn) ∈ Kn and any choice of ai ∈ Aki , i =
1, 2, . . . , n, one has

ω(a1a2 · · · an) =

{
ω(a1), n = 1,

ϕ(a1)ϕ(a2) · · ·ϕ(an), n ≥ 2.

A family of elements {ak}k∈K ofA is said to be cyclic-Boolean independent if this is the case for {Ak}k∈K ,
where Ak is the ∗-subalgebra generated by ak without unit.

Example 3.4. Suppose that {a, b, c} is cyclic-Boolean independent in (A, ϕ, ω). Then

ϕ(ba2bc2b) = ϕ(b)ϕ(a2)ϕ(b)ϕ(c2)ϕ(b)

and

ω(ba2bc2b) = ϕ(b2)ϕ(a2)ϕ(b)ϕ(c2).

Another operator model occurs on star products of Hilbert spaces.

Example 3.5. Let Hi be separable Hilbert spaces with distinguished unit vectors ξi as above and
H̊i = (Cξi)⊥. The star product of the Hilbert spaces Hi is the direct sum

H = Cξ ⊕
⊕
i

H̊i.

Then each Hi can be identified with the subspace Cξ ⊕ H̊i ⊆ H and there is a canonical representation
of B(Hi) on H which acts by simply annihilating the complement of Hi. More precisely we decompose

H as a direct sum H ' Hi ⊕H⊥i where H⊥i =
⊕

j 6=i H̊j and define the representation πi(X) = X ⊕ 0.

Then the algebras Ai = πi(B(Hi)) are Boolean independent with respect to the vacuum expectation
ϕ = 〈. ξ, ξ〉 and moreover, the algebras Ai are cyclic-Boolean independent with respect to the trace.

Indeed, let P0 ∈ B(H) be the projection onto Cξ and Pi the projections onto H̊i; then P0, P1, P2, . . .
form a partition of unity and by definition we have X = (P0 + Pi)X(P0 + Pi) for all X ∈ Ai. Let
X1X2 . . . Xn be a cyclically alternating product of trace class operators with Xk ∈ Aik , then

Tr(X1X2 · · ·Xn) = Tr((P0 + Pi1)X1(P0 + Pi1)(P0 + Pi2)X2(P0 + Pi2) · · · (P0 + Pin)Xn(P0 + Pin))

= Tr(P0X1P0X2P0 · · ·P0XnP0)

= ϕ(X1)ϕ(X2) · · ·ϕ(Xn).

Next we show that any Boolean independent family can be represented on a star product space.

3.2. Construction of a cyclic-Boolean trace. Let (A, ϕ) be a noncommutative probability space,
where A is a ∗-algebra and Ai are Boolean independent subalgebras. In the following assume that
A is faithfully represented on a Hilbert space H and that the state ϕ is realized as a vector state
ϕ(X) = 〈Xξ, ξ〉. One way to achieve this under certain conditions is the GNS-construction.

Recall that the GNS-representation consists of the Hilbert space Hϕ obtained by completing the
quotient space A/Nϕ, where Nϕ = {x ∈ A | ϕ(x∗x) = 0}, with respect to the scalar product

〈[x]ϕ, [y]ϕ〉 = ϕ(y∗x).

The action of the GNS representation is πϕ(x)[y]ϕ = [xy]ϕ.

Lemma 3.6. The GNS representation is faithful if and only if the state ϕ is nondegenerate in the sense
that if ϕ(axb) = 0 for all a, b ∈ A, then x = 0.

Proof. Let x ∈ A, then πϕ(x) = 0 ⇐⇒ πϕ(x)[y]ϕ = 0 for all y ∈ A ⇐⇒ 〈[xy]ϕ, [z]ϕ〉ϕ = 0 for all
y, z ∈ A ⇐⇒ ϕ(z∗xy) = 0 for all y, z ∈ A. �
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If A is unital, then the state vector ξ = [1]ϕ comes for free, otherwise the state must satisfy the
Cauchy-Schwarz condition

|ϕ(x)|2 ≤ Cϕ(x∗x)

for some fixed constant C in order to allow a positive extension to the unitization of A, see [18, Theo-
rem 4.5.11].

Assuming that A and the state ϕ are faithfully represented on some Hilbert space H we identify A
with a subalgebra of B(H) and we are now going to reconstruct the star product space from this data.
Let H0 = [ξ] = Cξ be the subspace spanned by ξ and P0 the orthogonal projection onto it. Adjoining
this projection to the algebra A and to each subalgebra Ai, Boolean independence is preserved and
wlog we may assume that P0 ∈ Ai for every i. Let now Åi = kerϕ ∩ Ai, then we can construct the
components of the star product space as follows.

Lemma 3.7. Let H0 = [ξ] and H̊i = [Åiξ] the closed invariant subspace generated by ξ. Then

(i) H0 ⊥ Hi for all i.
(ii) Hi ⊥ Hj for all i 6= j.

Proof. It suffices to verify orthogonality on the dense subspaces Åiξ.
(i) Let X ∈ Åi, then

〈Xξ, ξ〉 = ϕ(X) = 0.

(ii) Let X ∈ Åi and Y ∈ Åj with i 6= j, then

〈Xξ, Y ξ〉 = ϕ(Y ∗X) = ϕ(Y ∗)ϕ(X) = 0.

�

We now construct the decomposition. Under the assumption that P0 ∈ Ai we have Hi := H0 ⊕ H̊i =
[Aiξ]. Denote by Pi the projection onto H̊i, by Â the subalgebra of A generated by (Ai)i∈I and let

Ĥ = [Âξ] ⊆ H the closed invariant subspace generated by ξ. Let further P̂ and P̂⊥ be the respective

projections onto the space Ĥ and its orthogonal complement Ĥ⊥.

Proposition 3.8.
(i) For each i the space Hi is invariant under Ai, i.e., for X ∈ Ai

(3.3) X(P0 + Pi) = (P0 + Pi)X(P0 + Pi).

(ii) For i 6= j the subspace H̊j is annihilated by Ai, i.e., for X ∈ Ai
(3.4) XPj = PjX = 0.

(iii) The space Ĥ is the closed linear span of the subspaces Aiξ, i.e.,

(3.5) Ĥ = H0 ⊕
⊕
i

H̊i.

Proof.
(i) This is an immediate consequence of the definition.

(ii) It suffices to show that XPj = 0, i.e., X vanishes on H̊j. We verify this on the dense subspace

Åjξ. Indeed, let Y ∈ Åj, then

‖XY ξ‖2 = 〈XY ξ,XY ξ〉 = ϕ(Y ∗X∗XY ) = ϕ(Y ∗)ϕ(X∗X)ϕ(Y ) = 0;

finally PjX = (X∗Pj)
∗ = 0 because Ai is a ∗-algebra.

(iii) The space Ĥ is the closure of the span of the alternating words X1X2 . . . Xnξ with Xj ∈ Aij and
ij 6= jj+1. We claim that such a word satisfies X1X2 · · ·Xnξ ∈ Hi1 . We proceed by induction. The
claim is obviously true for n = 1. Let now η = X1X2 · · ·Xnξ be a given word. Then η = X1η

′ with
η′ = X2 · · ·Xnξ and by induction hypothesis η′ ∈ Hi2 , say η′ = αξ + η′′ with η′′ ∈ H̊i2 . But then
from item (ii) we infer that X1η

′ = αX1ξ + 0 ∈ Hi1 .
�
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Corollary 3.9. Every X ∈ Â has block decomposition

(3.6) X = P̂XP̂ + P̂⊥XP̂⊥

and more precisely every X ∈ Ai has the block decomposition

(3.7) X = (P0 + Pi)X(P0 + Pi) + P̂⊥XP̂⊥.

Theorem 3.10. The functional ω(X) = Tr(P̂XP̂ ) is a semifinite trace on the algebra Â and the
subalgebras Ai ∩ T (H) are cyclic-Boolean independent with respect to ω.

Proof. ω is a trace on Â because P̂ is in the commutant of Â. Now let X1X2 · · ·Xn be a cyclically
alternating product with Xj ∈ Aij for j = 1, 2, . . . , n, then we have

ω(X1X2 · · ·Xn) = Tr
(
P̂ ((P0 + Pi1)X1(P0 + Pi1) + P̂⊥X1P̂

⊥)((P0 + Pi2)X2(P0 + Pi2) + P̂⊥X2P̂
⊥)

· · · ((P0 + Pin)Xn(P0 + Pin) + P̂⊥XnP̂
⊥)P̂

)
= Tr

(
(P0 + Pi1)X1(P0 + Pi1)((P0 + Pi2)X2(P0 + Pi2) · · · ((P0 + Pin)Xn(P0 + Pin)

)
= Tr

(
(P0 + Pi1)X1P0X2P0 · · ·P0Xn(P0 + Pin)

)
= Tr(P0X1P0X2P0 · · ·P0XnP0)

and it follows that X1X2 · · ·Xn ∈ L1(ω). �

Remark 3.11. Conversely, assume that subalgebras A′ and A′′ are cyclic-Boolean independent in a
cnps (A, ϕ, ω). Assume further that A is generated by A′ and A′′ and that there is a projection p ∈ A′
such that pap = ϕ(a)p for a ∈ A′ and ω(p) = ϕ(p) = 1. Then ϕ(x) = ω(px) for all x ∈ A.

4. Convolution and central limit theorem

4.1. Cyclic-Boolean convolution. Let (A, ϕ, ω) be a cncps. For a ∈ A the renormalized (tracial)
Cauchy transform is the formal Laurent series

g̃a(z) =
∞∑
n=1

ω(an)

zn+1
.

By slight abuse of terminology, we call Ga the Green function (evaluated at the state ϕ) of a. It has
formal Laurent expansion

Ga(z) =
1

z
+
∞∑
n=1

ϕ(an)

zn+1
,

and we denote the reciprocal Green function by Fa(z) = 1/Ga(z).
If a is a trace class operator on a Hilbert space and ω is the trace then |Tr(an)| ≤ ‖|a|n−1‖Tr(|a|) ≤
‖a‖n−1Tr(|a|), and hence g̃a(z) is absolutely convergent in {z ∈ C : |z| > ‖a‖}. Moreover, if a is
selfadjoint then g̃a has analytic extension to C \ spec(a) by Lidskii’s theorem

(4.1) g̃a(z) = Tr((z − a)−1 − z−1) =
∞∑
i=1

λi
z(z − λi)

,

where {λi}i≥1 is the multiset of eigenvalues of a. In particular, the non-zero eigenvalues of a can be
detected from g̃a as poles. If the Hilbert space is finite-dimensional, then we also have the formula

(4.2) g̃a(z) =

dim(H)∑
i=1

1

z − λi
− dim(H)

z
,

and hence

lim
z→0

z g̃a(z) = the multiplicity of the eigenvalue zero− dim(H).
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Remark 4.1. By [5, Corollary 2.2], the tracial moments Tr(an) for all but finitely many natural numbers
n determine the eigenvalues of a. So, for any p ∈ N, we can generalize the above setting to the Schatten
class Sp by using the truncated generating function

g̃p(z) =
∞∑
n=p

ω(an)

zn+1
.

Let a and b be cyclic-Boolean independent in (A, ϕ, ω). It is known [23] (and will be shown in
Remark 4.4 below) that the Green function of a+ b can be computed via the formula

(4.3)
1

Ga(z)
+

1

Gb(z)
− z =

1

Ga+b(z)
;

i.e.,
Ba+b(z) = Ba(z) +Bb(z),

where

(4.4) Ba(z) =
z

Ga(1/z)
− 1

is the Boolean cumulant transform. The next theorem generalizes this identity to an analogous formula
for the generating function g̃a+b(z) which gives information on the eigenvalues of a+ b.

Theorem 4.2. Let a and b be cyclic-Boolean independent elements. Then the renormalized Cauchy
transform of their sum is

g̃a+b(z) = g̃a(z) + g̃b(z) +
G′a(z)

Ga(z)
+
G′b(z)

Gb(z)
−
G′a+b(z)

Ga+b(z)
+

1

z
;

i.e., if we define (cf. (2.14))

ha(z) = g̃a(z) +
d

dz
log zGa(z)

then

(4.5) ha+b(z) = ha(z) + hb(z).

Remark 4.3. While h linearizes independent sums and is useful for analyzing convolutions, we will
later introduce a modification which deserves to be called the cyclic-Boolean cumulant transform; see
Section 5.

Algebraic proof. We expand the power (a + b)n and regroup the resulting monomials into those ending
in a and those ending in b:

(a+ b)n = an +
∑
k≥1

p0≥0, p1,q1,...,pk,qk≥1
p0+p1+q1+···+pk+qk=n

ap0bq1ap1 · · · bqkapk + bn +
∑
k≥1

q0≥0, p1,q1,...,pk,qk≥1
q0+q1+p1+···+pk+qk=n

bq0ap1bq1 · · · apkbqk ,

and applying ω yields

ω((a+ b)n) = ω(an) + ω(bn) +
∑
k≥1

p0≥0, p1,q1,...,pk,qk≥1
p0+p1+q1+···+pk+qk=n

ω(ap0+pkbq1ap1 · · · bqk) +
∑
k≥1

q0≥0, p1,q1,...,pk,qk≥1
q0+p1+q1+···+pk+qk=n

ω(bq0+qkap1bq1 · · · apk)

= ω(an) + ω(bn) +
∑
k≥1

p0≥0, p1,q1,...,pk,qk≥1
p0+p1+q1+···+pk+qk=n

ϕ(ap0+pk)ϕ(bq1)ϕ(ap1) · · ·ϕ(bqk)

+
∑
k≥1

q0≥0, p1,q1,...,pk,qk≥1
q0+p1+q1+···+pk+qk=n

ϕ(bq0+qk)ϕ(ap1)ϕ(bq1) · · ·ϕ(apk).



CYCLIC INDEPENDENCE: BOOLEAN AND MONOTONE 13

Multiplying the above identity by z−n−1 and taking the summation over n yields

g̃a+b(z) =
∑
n≥0

ω((a+ b)n)

zn+1

=
∑
n≥1

ω(an)

zn+1
+
∑
n≥1

ω(bn)

zn+1
+
∑
k≥1

p0≥0, p1,q1,...,pk,qk≥1

ϕ(ap0+pk)

zp0+pk+1

ϕ(bq1)

zq1
ϕ(ap1)

zp1
· · · ϕ(bqk)

zqk

+
∑
k≥1

q0≥0, p1,q1,...,pk,qk≥1

ϕ(bq0+qk)

zq0+qk+1

ϕ(ap1)

zp1
ϕ(bq1)

zq1
· · · ϕ(apk)

zpk
.

Now ∑
p0≥0
p≥1

ϕ(ap0+p1)

zp0+p+1
=
∑
m≥1

∑
p0≥0
p≥1

p0+p=m

ϕ(am)

zm+1
=
∑
m≥1

m
ϕ(am)

zm+1
= −(zGa(z))′

and thus

g̃a+b(z) = g̃a(z) + g̃b(z)−
∑
k≥1

(zGa(z))′(zGa(z)− 1)k−1(zGb(z)− 1)k

−
∑
k≥1

(zGb(z))′(zGa(z)− 1)k(zGb(z)− 1)k−1

= g̃a(z) + g̃b(z)− (zGa(z))′(zGb(z)− 1) + (zGa(z)− 1)(zGb(z))′

1− (zGa(z)− 1)(zGb(z)− 1)

= g̃a(z) + g̃b(z)− (zGa(z))′

Ga(z)

z − Fb(z)

Fa(z)Fb(z)− (z − Fa(z))(z − Fb(z))

− (zGb(z))′

Gb(z)

z − Fa(z)

Fa(z)Fb(z)− (z − Fa(z))(z − Fb(z))

= g̃a(z) + g̃b(z)−
(

1

z
+
G′a
Ga

)
z − Fb

Fa + Fb − z
−
(

1

z
+
G′b
Gb

)
z − Fa

Fa + Fb − z

= g̃a(z) + g̃b(z) +

(
F ′a
Fa

(z − Fb) +
F ′b
Fb

(z − Fa)− 1

)
1

Fa + Fb − z
+

1

z

= g̃a(z) + g̃b(z) +

(
F ′a
Fa

(z − Fa − Fb) +
F ′b
Fb

(z − Fa − Fb)− 1 + F ′a + F ′b

)
1

Fa + Fb − z
+

1

z

= g̃a(z) + g̃b(z)− F ′a
Fa
− F ′b
Fb

+
F ′a+b

Fa+b

+
1

z

= g̃a(z) + g̃b(z) +
G′a
Ga

+
G′b
Gb

−
G′a+b

Ga+b

+
1

z
.

�

Analytic proof in the setting of Example 3.5. Under the assumption that our ∗-algebras are represented
as trace class operators on the star product Hilbert space

H = Cξ ⊕ H̊1 ⊕ H̊2
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equipped with a vacuum state ϕ = 〈.ξ, ξ〉 and the trace ω = Tr we can use this decomposition and
represent the involved operators as block operator matrices

(4.6) A =

α a′ 0

a Å 0
0 0 0

 , B =

β 0 b′

0 0 0

b 0 B̊

 , A+B =

α + β a′ b′

a Å 0

b 0 B̊

 .
In other words, (A+B)̊ = Å⊕ B̊ is a direct sum and therefore

g̃(A+B)̊(z) = g̃Å(z) + g̃B̊(z)

and we conclude with the identity (2.14). �

Remark 4.4. The idea of the above algebraic/analytic proofs can also be used to verify the known
formula (4.3). For example, the Banachiewicz formula (2.9) applied to the decomposition (4.6) yields
the Green function in the form

1

GA+B(z)
= z − (α + β)− a′(z − Å)−1a− b′(z − B̊)−1b.

Combining this with the formulas

1

GA(z)
= z − α− a′(z − Å)−1a and

1

GB(z)
= z − β − b′(z − B̊)−1b

we obtain (4.3).

4.2. Examples from star product graphs. For a rooted graph (Γ, o), its N -fold star product
(ΓN , oN) = (Γ, o) ~ (Γ, o) ~ · · · ~ (Γ, o) has the adjacency matrix that is the sum of cyclic-Boolean
independent copies of the adjacency matrix of Γ; see (2.15). Therefore, Theorem 4.2 and (2.17) imply
that

(4.7) g̃ΓN
(z) = N g̃a(z) +N

G′Γ(z)

GΓ(z)
−
G′ΓN

(z)

GΓN
(z)

+
N − 1

z

where

(4.8)
1

GΓN
(z)

=
N

GΓ(z)
− (N − 1)z.

Example 4.5 (Star graph). The star graph (SN , oN) on N+1 vertices {0, 1, . . . , N} has edges {0, i}, i =
1, 2, . . . , N . It is the N -fold star product of the complete graph (K2, o) (Figure 3). The eigenvalues of
the adjacency matrix of K2 are ±1, and hence

g̃K2
(z) =

1

z − 1
+

1

z + 1
− 2

z
and GK2(z) =

1

2

(
1

z − 1
+

1

z − 1

)
,

where the latter formula can be computed via (2.11). Using (4.8) entails

GSN
(z) =

1

2

(
1

z −
√
N
− 1

z +
√
N

)
and

G′SN
(z)

GSN
(z)

=
1

z
− 1

z −
√
N
− 1

z +
√
N
.

The renormalized Cauchy transform of (SN , oN) may be calculated from (4.7) as follows:

g̃SN
(z) = N

(
1

z − 1
+

1

z + 1
− 2

z

)
+N

(
1

z
− 1

z − 1
− 1

z + 1

)
+

(
1

z −
√
N

+
1

z +
√
N
− 1

z

)
+
N − 1

z

=
1

z −
√
N

+
1

z +
√
N
− 2

z
.
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S5 S6 S7 S11

Figure 3. Star graphs

F1 F2 F3 F4 F5

Figure 4. Friendship graphs

The Cauchy transform is given by

gSN
(z) =

1

z −
√
N

+
1

z +
√
N

+
N − 1

z
.

This recovers the fact that the multiset of eigenvalues of the adjacency matrix of SN is given by
{[
√
N ]1, [−

√
N ]1, [0]N−1}.

Example 4.6 (Friendship graph). The friendship graph FN is the graph with 2N+1 vertices {0, . . . , 2N}
in which 0 is connected to every other vertex and the only other edges are {2i − 1, 2i} for 1 ≤ i ≤ N .
The friendship graph is the N -fold star product of the complete graph (K3, o) with itself; see Figure 4.

In this case

g̃K3
(z) =

2

z + 1
+

1

z − 2
− 3

z
and GK3(z) =

1

3

(
2

z + 1
+

1

z − 2

)
,

from which
G′K3

(z)

GK3(z)
=
−z2 + 2z − 3

z3 − 2z2 − z + 2
=

1

z − 1
− 1

z + 1
− 1

z − 2
.

On the other hand
1

GFN
(z)

=
N

GK3(z)
− (N − 1)z =

z(z − 1)− 2N

z − 1
,

and then

G′FN
(z)

GFN
(z)

=
1

z − 1
+

1− 2z

z2 − z − 2N
=

1

z − 1
− 1

z − (1 +
√

1 + 8N)/2
− 1

z − (1−
√

1 + 8N)/2
.

Thus the renormalized Cauchy transform may be calculated as follows.

g̃FN
(z)

= N

(
2

z + 1
+

1

z − 2
− 3

z

)
+N

(
1

z − 1
− 1

z + 1
+

1

2− z

)
−
(

1

z − 1
− 1

z − (1 +
√

1 + 8N)/2
− 1

z − (1−
√

1 + 8N)/2

)
+
N − 1

z

=
N − 1

z − 1
+

N

z + 1
+

1

z − (1 +
√

1 + 8N)/2
+

1

z − (1−
√

1 + 8N)/2
− 2N + 1

z
.



16 OCTAVIO ARIZMENDI, TAKAHIRO HASEBE, AND FRANZ LEHNER

Then

gFN
(z) = g̃FN

(z) +
2N + 1

z

=
N − 1

z − 1
+

N

z + 1
+

1

z − (1 +
√

1 + 8N)/2
+

1

z − (1−
√

1 + 8N)/2
.

This recovers the fact that the multiset of eigenvalues of the adjacency matrix of FN is given by{[
1

2
− 1

2

√
1 + 8N

]1

, [−1]N , [1]N−1,

[
1

2
+

1

2

√
1 + 8N

]1
}
.

4.3. Cyclic-Boolean central limit theorem. Since we have an appropriate linearization (4.5) for
cyclic-Boolean convolution, we are able to determine the central limit law.

Theorem 4.7. For each N ∈ N, let {a(N)
i }Ni=1 be self-adjoint cyclic-Boolean independent random vari-

ables in a cncps (AN , ϕN , ωN). Assume that, for each fixed k ∈ N, the moments ϕN((a
(N)
i )k) and

ωN((a
(N)
i )k) do not depend on i or N , and also ωN(a

(N)
i ) = ϕN(a

(N)
i ) = 0, ϕN((a

(N)
i )2) = 1 for all i and

N . Then, for the normalized sum

sN =
a

(N)
1 + a

(N)
2 + · · ·+ a

(N)
N√

N
,

it holds that

lim
N→∞

ϕN(skN) =

{
1, k ∈ 2N,
0, k ∈ 2N− 1,

and lim
N→∞

ωN(skN) =

{
2, k ∈ 2N + 2,

0, k ∈ 2N + 1.

Proof. The Boolean central limit theorem [23] asserts that GsN (z)→ z/(z2 − 1). Let α = ωN((a
(N)
i )2),

then Theorem 4.2 yields

hsN (z) = N3/2 h
a
(N)
1

(
√
Nz) = N3/2

(
α− 2

(
√
Nz)3

+O(N−2)

)
→ α− 2

z3
.

Therefore

g̃sN (z)→ 2z

z2 − 1
− 2

z
+
α− 2

z3
=
∑
n≥1

g̃n
zn+1

,

where

g̃n =


0, n is odd,

2, n is even and n ≥ 4,

α, n = 2.

�

The limit law exhibits a large spectral gap:

Corollary 4.8. In addition to the setting of Theorem 4.7, suppose that AN = T (HN) for some Hilbert
space HN and ωN = TrHN

. Let λN and µN be the largest and smallest eigenvalues of sN , respectively.
The following assertions hold:

(i) the multiplicities of λN and µN are both one for sufficiently large N ;
(ii) λN converges to 1 and µN converges to −1 as N →∞;

(iii) the remaining eigenvalues accumulate around 0:

lim
N→∞

dist(spec(sN) \ {λN , µN}, 0) = 0

Proof. Let s be a self-adjoint operator of rank two on a Hilbert space K having eigenvalues −1, 1, 0. Then
TrK(sn) = 2 for even n ≥ 2 and TrK(sn) = 0 for odd n ≥ 1. The convergence of TrH(skN) in Theorem
4.7 and [5, Proposition 2.8] imply that sN → s in eigenvalues and this concludes the argument. �
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Remark 4.9. As shown in the proof of Theorem 4.7, TrHN
(s2
N) converges (actually is equal) to α which

might not equal 2 = TrK(s2). This difference of Hilbert-Schmidt norms is due to a large number of
small eigenvalues of sN and does not contradict the convergence of eigenvalues; see [5, Proposition 2.8,
Proposition 2.10 and Remark 2.11].

Now we come back to the original model, the adjacency matrix of the star product of rooted graphs.

Corollary 4.10. Suppose that (Γ, o) is a rooted graph with deg(o) ≥ 1. Let AN be the adjacency matrix
of the N-fold star product graph (Γ, o)~ (Γ, o)~ . . .~ (Γ, o). Let λN and µN be the largest and smallest

eigenvalues of (deg(o)N)−
1
2AN , respectively. The following assertions hold:

(i) the multiplicities of λN and µN are both one for sufficiently large N ;
(ii) λN converges to 1 and µN converges to −1 as N →∞;

(iii) lim
N→∞

dist(spec((deg(o)N)−
1
2AN) \ {λN , µN}, 0) = 0

Proof. This is a combination of Corollary 4.8, formula (2.15) and Example 3.1. The factor (deg(o)N)−
1
2

appears because of the variance 〈A2
Γδo, δo〉`2(V ) = deg(o), where V is the vertex set of Γ. �

Remark 4.11. In the setting of Corollary 4.10 it is already known that, according to the Boolean
central limit theorem, the distribution of (deg(o)N)−

1
2AN regarding the vector state ϕN = 〈·δo, δo〉

converges weakly to 1
2
(δ−1 + δ1). This fact entails an intuitive consequence of Corollary 4.10: the

vector δo in the tensor product Hilbert space `2(V )⊗N is almost orthogonal to the subspace spanned
by eigenvectors corresponding to small eigenvalues, or equivalently, δo is almost contained in the two-
dimensional subspace spanned by the eigenvectors corresponding to the eigenvalues near ±1.

Example 4.12. Corollary 4.10 can be directly confirmed in the following examples.

(i) For the star graph on N + 1 vertices, its adjacency matrix divided by
√
N has eigenvalues

{[1]1, [−1]1, [0]N−1}; see Example 4.5. Eigenvectors corresponding to the eigenvalues 1 and −1

are f1 = (
√
N, 1, 1, . . . , 1) and f2 = (−

√
N, 1, 1, . . . , 1), respectively, and hence, the function δo,

which corresponds to the vector (1, 0, 0, . . . , 0), is exactly contained in the subspace spanned by f1

and f2.
(ii) For the friendship graph on 2N + 1 vertices, its adjacency matrix divided by

√
2N has eigenvalues

[
−
√

1 +
1

8N
− 1

2
√

2N

]1

,

[
− 1√

2N

]N
,

[
1√
2N

]N−1

,

[√
1 +

1

8N
+

1

2
√

2N

]1
 ;

see Example 4.6.

5. Cyclic-Boolean cumulants

5.1. Univariate cumulants. Let (A, ϕ, ω) be a cncps and a ∈ A. The generating function ha defined
in (4.5) has the series expansion

ha(z) =
∞∑
n=1

hn(a)

zn+1
,

where the first two coefficients are h1(a) = ω(a)−ϕ(a) and h2(a) = ω(a2) +ϕ(a)2− 2ϕ(a2). In general,
hn(a) is of the form ω(an)− nϕ(an) + (polynomial on ϕ(a), . . . , ϕ(an−1)).

We can modify ha(z) by adding the Boolean cumulants to delete −nϕ(an) from hn(a). We switch
from g̃a and Ga to the moment generating functions

ma(z) =
1

z
g̃a

(
1

z

)
=
∑
n≥1

ω(an)zn, Ma(z) =
1

z

(
Ga

(
1

z

)
− z
)

=
∑
n≥1

ϕ(an)zn.



18 OCTAVIO ARIZMENDI, TAKAHIRO HASEBE, AND FRANZ LEHNER

The Boolean cumulant transform (4.4) is then expressed by

Ba(z) =
Ma(z)

1 +Ma(z)
=
∑
n≥1

bn(a)zn.

We introduce the new generating function

ca(z) =
1

z
ha

(
1

z

)
+ zB′a(z) = ma(z)− zMa(z)M ′

a(z)

(1 +Ma(z))2

= ma(z)− zMa(z)B′a(z),(5.1)

which linearizes the convolution
ca+b(z) = ca(z) + cb(z).

The function ca will be called the cyclic-Boolean cumulant transform of a and the coefficients cn(a)
appearing as

(5.2) ca(z) =
∑
n≥1

cn(a)zn

are called the (univariate) cyclic-boolean cumulants of a. The first two cumulants are

c1(a) = ω(a) and c2(a) = ω(a2)− ϕ(a)2.

For general n ≥ 2, there exists a universal polynomial Pn(x1, . . . , xn−1) depending only on n such that

cn(a) = ω(an) + Pn(ϕ(a), . . . , ϕ(an−1)).

5.2. Cyclic-interval partitions. Cyclic-Boolean independence gives rise to an exchangeability system
and we can define and compute the (multivariate) cyclic-Boolean cumulants using the methods of [13, 11].
The relevant partition structure turns out to be cyclic-interval partitions, which were already discussed
in [7] in their search for notions of independence, similar to Boolean and monotone ones, but such that
the algebra of scalars, C, is independent from any other algebra.

Before embarking on we recall some basic concepts on set partitions.

Definition 5.1. Let k ∈ N. We often use the notation [k] = {1, 2, . . . , k}.
(i) A set partition of [k] is a set π = {B1, B2, . . . , Bp} of nonempty and disjoint subsets B1, . . . , Bp

of [k], called blocks, such that their union is [k]. The length |π| of a partition π is the number of
blocks. The set of the partitions of the set [k] is denoted by P(k). Set partitions are in one-to-one
correspondence with equivalence relations: Any set partition π ∈ P(k) determines an equivalence
relation i ∼π j on [k] by requiring that i, j belong to the same block of π; conversely, for an
equivalence relation ∼ on [k] its equivalence classes determine disjoint subsets of [k] and hence a
set partition.

(ii) A subset of [k] of form {i, i + 1, . . . , j} is called an interval and a set partition of [k] is called an
interval partition if all its blocks are intervals. The set of the interval partitions is denoted by I(k).

(iii) For set partitions σ, π ∈ P(k) we write σ ≤ π if every block of σ is a subset of a block of π. This
makes P(k) a poset. The trivial set partition {[k]} is the maximum of P(k), which is denoted by
1̂k.

(iv) A tuple (i1, . . . , ik) ∈ Nk induces a unique equivalence relation ∼ on [k] by the requirement that
p ∼ q holds if and only if ip = iq. The corresponding set partition is called the kernel set partition,
denoted by κ(i1, . . . , ik).

Example 5.2. Some kernel set partitions are

κ(6, 3, 2, 3, 6) = {{3}, {2, 4}, {1, 5}},
κ(2, 7, 4, 7, 4, 2, 4) = {{1, 6}, {3, 5, 7}, {2, 4}}.

We will see that cyclic-Boolean cumulants cπ (defined in the next section) vanish identically unless π
is a cyclic-interval partition.
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Figure 5. The cyclic interval partition {1, 2, 15/3, 4, 5, 6, 7/8/9/10/11/12/13/14} has
separating set {2′, 7′, 10′, 11′, 14′}

Definition 5.3. A partition π ∈ P(n) is called a cyclic-interval partition if every block is an interval
or the complement of an interval. In other words, there is a cyclic permutation σ ∈ Sn such that σ · π
is an interval partition. We denote by CI(n) the set of the cyclic-interval partitions of [n].

As already noticed in [7, Corollary 1], it is not difficult to see that the number of cyclic-interval
partitions is |CI(n)| = 2n − n. To see this, the most convenient picture of cyclic-interval partitions is
obtained by actually drawing them on a circle as show in Fig. 5. Then it is clear that a cyclic-interval
partition is uniquely determined by the set of separators of the blocks. For the maximal partition 1̂n
this set is empty, while for all other cyclic-interval partitions there must be at least two separators.

5.3. Multivariate cumulants. In order to avoid the discussion of positivity (see Remark 5.4 below)
we notice that one can easily extend the definition of independence to a purely algebraic setting without
positivity. Thus in this section we will focus on an algebraic cyclic probability space (A, ϕ, ω) without
positivity structure, that is, A is an algebra over C, ϕ is a linear functional and ω is a tracial linear
functional.

Take copies Ak of A and define the nonunital algebraic free product

U = ∗
k∈N
Ak =

⊕
n∈N

⊕
(k1,...,kn)∈Nn

k1 6=···6=kn

Ak1 ⊗ · · · ⊗ Akn .

Let π(i) : a 7→ a(i) denote the embedding of A into U as the i-th copy Ai. By the universality of tensor
products we can define (ϕ̃, ω̃) on U as follows: for n ≥ 1, an alternating tuple (k1, . . . , kn) ∈ Nn and
ai ∈ Aki , i = 1, 2, . . . , n, set

ϕ̃(a1a2 · · · an) := ϕ(a1)ϕ(a2) · · ·ϕ(an),

ω̃(a1a2 · · · an) :=


ω(a1), n = 1,

ϕ(a1)ϕ(a2) · · ·ϕ(an), n ≥ 2, k1 6= kn,

ϕ(ana1)ϕ(a2) · · ·ϕ(an−1), n ≥ 2, k1 = kn.
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One can check that ω̃ is a trace on U , ϕ = ϕ̃◦π(i), ω = ω̃◦π(i) and the family of subalgebras {π(i)(A)}∞i=1

is cyclic-Boolean independent in (U , ϕ̃, ω̃).

Remark 5.4 (Positivity). It is not clear under what conditions the product trace ω̃ preserves positivity.
First observe that the trivial example ω = 0 shows that some conditions are necessary. Indeed, if ω = 0
and a, b ∈ A are self-adjoint then ω̃((a(1) + b(2))2) = 2ϕ(a)ϕ(b), which can be negative, although both ϕ
and ω are positive.

This example suggests that in order to expect positivity of ω̃ one should at least require ω(x∗x) ≥
|ϕ(x)|2 or ω(x∗x) ≥ ϕ(x∗x). Both conditions however are not promoted to the cyclic free product.
Although the proof of [3, Theorem 2.2] adapts well to show ω̃(x∗x) ≥ |ϕ̃(x)|2 for x ∈ U11 or x ∈ U22,
where

U11 =
⊕
n≥3

⊕
(k1,...,kn)∈Nn

k1 6=···6=kn
k1=kn=1

Ak1 ⊗ · · · ⊗ Akn

etc., the following example shows that positivity fails on elements mixing these subspaces. Choose
x, y, z ∈ A1 and w ∈ U22 and put a = x+ ywz. Note that ywz is alternating and we compute

ω̃(a∗a) = ω(x∗x) + ω̃(x∗ywz) + ω̃(z∗w∗y∗x) + ω̃(z∗w∗y∗ywz)

= ω(x∗x) + ϕ(zx∗y)ϕ(w) + ϕ(w∗)ϕ(y∗xz∗) + ϕ(zz∗)ϕ(w∗)ϕ(y∗y)ϕ(w)

and

ϕ̃(a∗a) = ϕ(x∗x) + ϕ̃(x∗ywz) + ϕ̃(z∗w∗y∗x) + ϕ̃(z∗w∗y∗ywz)

= ϕ(x∗x) + ϕ(x∗y)ϕ(w)ϕ(z) + ϕ(z∗)ϕ(w∗)ϕ(y∗x) + ϕ(z∗)ϕ(w∗)ϕ(y∗y)ϕ(w)ϕ(z)

Now choose x, y, z, w such that

ω(x∗x) = ϕ(x∗x), ϕ(z) = 0, ϕ(zx∗y), ϕ(w) ∈ R \ {0}.

Such a choice is possible, e.g., when ω = ϕ is a tracial state: first choose a unitary u such that ϕ(u) = 0
and set z = u, y = u∗, then for selfadjoint w and x we obtain

ω̃(a∗a)− ϕ̃(a∗a) = 2ϕ(x)ϕ(w) + |ϕ(w)|2

which can be made negative by an appropriate rescaling of x.
The positivity condition ω(x∗x) ≥ |ϕ(x)|2 proves to be inappropriate as well. In the last specification,

we further choose x so that |ϕ(x)|2 < ϕ(x2) < 2|ϕ(x)|2. Then

ω̃(a∗a)− |ϕ̃(a)|2 = ϕ(x2)− |ϕ(x)|2 + 2ϕ(x)ϕ(w) + |ϕ(w)|2 .

Replacing x with λx, λ ∈ R, will change this value into[
ϕ(x2)− |ϕ(x)|2

] [
λ+

ϕ(x)ϕ(w)

ϕ(x2)− |ϕ(x)|2

]2

+
|ϕ(w)|2[ϕ(x2)− 2|ϕ(x)|2]

ϕ(x2)− |ϕ(x)|2
.

Taking λ = − ϕ(x)ϕ(w)
ϕ(x2)−|ϕ(x)|2 will make this value negative.

Both pairs (U , ϕ̃) and (U , ω̃) are exchangeability systems in the sense of [13, Definition 1.8] except
that we are not assuming unitality, which however is not essential for the theory of cumulants. For the
first pair we will get Boolean cumulants Bπ which are well known; therefore we will focus on (U , ω̃) from
now on. The exchangeability of (U , ω̃) means that, for any n ∈ N and a1, . . . , an ∈ A, the value of the
function

Nn 3 (i1, . . . , in) 7→ ω̃(a
(i1)
1 a

(i2)
2 · · · a(in)

n ) ∈ C
is determined by the kernel set partition π = κ(i1, . . . , in). This value is denoted by ωπ(a1, . . . , an), which
then gives an n-linear functional ωπ : An → C. For each π ∈ P(n) a partitioned cumulant cπ : An → C
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is then defined by

cπ(a1, a2, . . . , an) =
∑
ρ∈P(n)
ρ≤π

ωρ(a1, a2, . . . , an)µ(ρ, π),(5.3)

where µ is the Möbius function for the poset P(n). By [11, Lemma 4.18 (ii)] or imitating the proof of
[13, Proposition 4.11] we can prove that cπ = 0 if π ∈ P(n) \ CI(n). This vanishing property and the
Möbius inversion of (5.3) imply that

(5.4) ω(a1a2 · · · an) =
∑

π∈CI(n)

cπ(a1, a2, . . . , an).

To compute the non-vanishing cumulants we distinguish three cases.

(i) Let π ∈ CI(n) and first assume that π ∈ I(n). Now if π < 1̂n then 1 6∼π n and moreover 1 6∼ρ n
for any ρ satisfying ρ ≤ π. This allows us to replace ω̃ by ϕ̃ to obtain

cπ(a1, a2, . . . , an) =
∑
ρ≤π

ϕρ(a1, a2, . . . , an)µ(ρ, π) = Bπ(a1, a2, . . . , an);

see [13, Proposition 4.11] for the last equality.
(ii) Let us assume next that π ∈ CI(n) \ I(n). This means that π < 1̂n and that 1 ∼π n. In this

case we cannot immediately replace ω by ϕ, but first must use the traciality of ω and rotate the
partition π into an element of I(n). Indeed fix a cyclic permutation σ ∈ Sn such that σ ·π ∈ I(n).
Then 1 6∼π n and also 1 6∼ρ n for any ρ ≤ π and we have

cπ(a1, a2, . . . , an) = cσ·π(aσ−1(1), aσ−1(2), . . . , aσ−1(n))

= Bσ·π(aσ−1(1), aσ−1(2), . . . , aσ−1(n));

notice that the rotation cannot be reversed now because the Boolean cumulants are nontracial.
(iii) Finally if π = 1̂n there is no direct formula but we infer from the moment-cumulant formula (5.4)

that

cn(a1, a2, . . . , an) = ω(a1, a2, . . . , an)−
∑

π∈CI(n),π<1̂n

Bσ·π(aσ−1(1), aσ−1(2), . . . , aσ−1(n)),

where for each π an appropriate cyclic permutation σ is chosen.

Remark 5.5. Note that for univariate cumulants the rotation does not change the value of the cumulant
and we can write

(5.5) ω(an) = cn(a) +
∑

π∈CI(n),π<1̂n

bπ(a),

where bπ(a) = Bπ(a, a, . . . , a) and cn(a) = c1̂n
(a, a, . . . , a).

We can see that the definition of cn(a) in Remark 5.5 coincides with that in (5.2). This can be
confirmed from the definition and uniqueness of cumulants, but here we directly prove the formula
(5.1) for cn(a) = c1̂n

(a, a, . . . , a) using the recurrence relation (5.5). Decomposing CI(n) into I(n) and
CI(n) \ I(n) we obtain∑

π∈CI(n),π 6=1̂n

bπ(a) =
∑

π∈I(n),π 6=1̂n

bπ(a) +
∑
k,`≥1

k+`≤n−1

bk+`(a)
∑

σ∈I(n−k−`)

bσ(a)

= ϕ(an)− bn(a) +
∑
k,`≥1

k+`≤n−1

bk+`(a)ϕ(an−k−`).
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Multiplying the above by zn and taking the sum over n in (5.5) yields

ma(z) = ca(z) +Ma(z)−Ba(z) +
∑
k,`≥1

bk+`(a)zk+`
∑

n≥k+`+1

ϕ(an−k−`)zn−k−`

= ca(z) +Ma(z)−Ba(z) + (zB′a(z)−Ba(z))Ma(z) = ca(z) + zMa(z)B′a(z).

6. Cyclic-Boolean infinite divisibility

This section is devoted to the definition and classification of infinite divisibility. Due to the lack of
a precise notion of positivity (see Remark 5.4), we are not able to treat general ∗-algebras with a state
and a tracial linear functional. Hence, we give the definition of infinitely divisible distributions in the
special setting of operators on Hilbert spaces where the linear functional ω is chosen to be the trace.

Definition 6.1. Let H be a Hilbert space and ϕ a state on B(H). An element a ∈ T (H)sa is said to
be cyclic-Boolean infinitely divisible if for any n ∈ N there exist a Hilbert space Hn and a state ϕn on
B(Hn) and cyclic-Boolean i.i.d. elements a1, . . . , an ∈ T (Hn)sa such that a with respect to (ϕ,TrH) has
the same distribution as a1 + · · ·+ an with respect to (ϕn,TrHn).

Suppose that a is a trace class selfadjoint operator and cyclic-Boolean ID. For each n ≥ 2, a equals
the sum of certain cyclic-Boolean iid random variables an,1, . . . , an,n in distribution, and let t = 1/n and
denote g̃t = g̃an,i

and Gt = Gan,i
. Let {λi}i∈I be the set of mutually distinct eigenvalues of a and mi be

the multiplicity of λi. Setting I0 = {i ∈ I : λi 6= 0} we have

g̃a(z) =
∑
i∈I0

miλi
z(z − λi)

.

Moreover, let Ea be the spectral decomposition of a and pi = ϕ(Ea({λi})) ≥ 0; then we have

Ga(z) =
∑
i∈I′

pi
z − λi

, I ′ = {i ∈ I : pi > 0}.

For later use we also set

I ′0 = I ′ ∩ I0.

By calculus, we see that Ga has a unique zero in each interval between neighboring poles and has no
other zeros off the real line. Hence the set {µj}j∈J of zeros of Ga is contained in R and is interlacing
with {λi}i∈I′ .

Lemma 6.2. The factorization

Ga(z) =
1

z

∏
j∈J

(
1− µj

z

)∏
i∈I′

(
1− λi

z

)−1

holds for every z ∈ C \ ({0} ∪ {λi}i∈I′).

Proof. When the set I ′ is finite, the conclusion is easily proved since Ga is a rational function. We may
then assume that I ′ and hence I ′0 is an infinite set. We decompose the set {λi}i∈I′0 into the positive part

{λ+
k }

n+

k=1 and the negative part {λ−k }
n−
k=1 arranged in the way

λ−1 < λ−2 < · · · < 0 < · · · < λ+
2 < λ+

1 ,

where n± ∈ N ∪ {0,∞}. By our assumption, n− or n+ is infinity. We rewrite the function Ga into the
form

Ga(z) =
p

z
+

n+∑
k=1

p+
k

z − λ+
k

+

n−∑
k=1

p−k
z − λ−k

, p =
∑

i∈I′:λi=0

pi ∈ [0, 1],
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where p±k is weight of λ±k with respect to ϕ. Now introduce n±(ε) = max{k ≥ 1 : |λ±k | > ε} < ∞ and
then the truncated function

Gε
a(z) =

p(ε)

z
+

n+(ε)∑
k=1

p+
k

z − λ+
k

+

n−(ε)∑
k=1

p−k
z − λ−k

, p(ε) = p+
∑

k:|λ+k |≤ε

p+
k +

∑
k:|λ−k |≤ε

p−k .

The fact that n− or n+ is infinity implies that p(ε) > 0 for every ε > 0. Since Gε
a is a rational function,

we have

(6.1) Gε
a(z) =

1

z

n−(ε)∏
k=1

(
z − µ−k (ε)

z − λ−k

) n+(ε)∏
k=1

(
z − µ+

k (ε)

z − λ+
k

)
,

where µ±k (ε) is the unique zero of Gε
a on the interval between λ±k and λ±k+1 for k = 1, 2, . . . , n±(ε) − 1

and µ±n±(ε)(ε) is the unique zero of Ga on the interval between 0 and λ±n±(ε).

In order to pass to the limit in (6.1), first note that n±(ε)→ n± as ε→ 0. Since Gε
a converges locally

uniformly to Ga on C \ {0, λ+
k , λ

−
k : k ≥ 1}, we conclude that µ±k (ε) converges to µ±k as ε → 0 for each

k. From (the product version of) Weierstrass’ M-test (recall that |µ±k (ε)| ≤ |λ±k |) we obtain

Ga(z) =
1

z

n−∏
k=1

(
z − µ−k
z − λ−k

) n+∏
k=1

(
z − µ+

k

z − λ+
k

)
,

the desired formula. �

Now we are able to characterize infinitely divisible measures with respect to cyclic independence.
First, notice that taking the logarithmic derivative in Lemma 6.2 yields that

G′a(z)

Ga(z)
= −1

z
−
∑
i∈I′0

λi
z(z − λi)

+
∑
j∈J

µj
z(z − µj)

.

As before, let t = 1/n and denote g̃t = g̃an,i
and Gt = Gan,i

. Let {λi(t)}i∈I′0(t) be the set of (mutually

distinct) non-zero poles of Gt. Since

Gt(z) =
Ga(z)

(1− t)zGa(z) + t
,

the set {λi(t)}i∈I′0(t) is exactly the set of the zeros of (1 − t)zGa(z) + t. On the other hand, the set of
zeros of Gt is exactly the set of the zeros of Ga, and hence

G′t(z)

Gt(z)
= −1

z
−
∑
i∈I′0(t)

λi(t)

z(z − λi(t))
+
∑
j∈J

µj
z(z − µj)

.

By Theorem 4.2 we have

g̃a +
G′a
Ga

+
1

z
= n

(
g̃t +

G′t
Gt

+
1

z

)
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and hence

g̃t = t g̃a +t
G′a
Ga

− G′t
Gt

+
t− 1

z

= t
∑
i∈I0

miλi
z(z − λi)

+ t

−1

z
−
∑
i∈I′0

λi
z(z − λi)

+
∑
j∈J

µj
z(z − µj)


−

−1

z
−
∑
i∈I′0(t)

λi(t)

z(z − λi(t))
+
∑
j∈J

µj
z(z − µj)

+
t− 1

z

= t
∑
i∈I′0

(mi − 1)λi
z(z − λi)

+ t
∑

i∈I0\I′0

miλi
z(z − λi)

− (1− t)
∑
j∈J

µj
z(z − µj)

+
∑
i∈I′0(t)

λi(t)

z(z − λi(t))
.

Now, for each non-zero real α the number limz→α(z− α) g̃t(z) is non-negative, as it is a positive integer
if α is a non-zero eigenvalue of an,1 and zero otherwise.

Therefore, to cancel the negative coefficient −(1− t) above, the only possibility is that each non-zero
µj must be a member of {λi}i∈I0 ∪ {λi(t)}i∈I′0(t) and because of interlacing of the zeros and poles of Ga,
one sees that µj can not be included in {λi}i∈I′0 ∪ {λi(t)}i∈I′0(t) as it is a zero of Ga.

It is possible that µj = λi for some i ∈ I0 \ I ′0. In this case, however, for t > 0 sufficiently small
(namely, n sufficiently large) the coefficient tmi− (1− t) is negative; therefore, we conclude that µj = 0
for all j ∈ J or J = ∅, and hence #J = 0 or 1. This happens only if #I ′ = 0, 1 or 2.

On the other hand, for i ∈ I ′0 we have limz→λi(z−λi) g̃t(z) = t(mi− 1) which must be a non-negative
integer for any t = 1/n. Therefore, we conclude that mi = 1 for all i ∈ I ′0. For i ∈ I0 \ I ′0 we have
limz→λi(z − λi) g̃t(z) = tmi, which cannot be an integer for sufficiently small t, and hence I ′0 = I0.

Now it remains to study the possible cases for I ′0 = I0 = 0, 1 or 2.
Case 1: #I ′0 = #I0 = 0 or 1. Then Ga(z) = 1/(z − α) for some α ∈ R and J = ∅. The function

g̃a(z) = α
z(z−α)

and g̃t(z) = tα/(z − tα).

Case 2: #I ′0 = #I0 = 2. Note that Ga cannot have a pole at 0 because it would create a non-
zero µj. Hence Ga(z) = p/(z − α) + (1 − p)/(z − β) for some α, β 6= 0, α < β, 0 < p < 1, and
Ga(0) = −p/α − (1 − p)/β = 0. The last condition yields the restriction that α < 0 < β and
Ga(z) = z/[(z − α)(z − β)]. Solving the equation (1− t)zGa(z) + t = 0 we obtain two solutions

λ±(t) =
t(α + β)±

√
t2(α + β)2 − 4tαβ

2
.

The eigenvalues can be retrieved from the formula

g̃t(z) =
λ+(t)

z(z − λ+(t))
+

λ−(t)

z(z − λ−(t))
.

It is easy to see that the above cases are actually cyclic Boolean ID. Thus we arrive to the following.

Theorem 6.3. Let H be a Hilbert space and ϕ be a state on T (H). An element a ∈ T (H)sa is cyclic-
Boolean ID with respect to (ϕ,TrH) if and only if a has either

(i) only zero eigenvalues (that is, a = 0),
(ii) only one non-zero eigenvalue and its multiplicity is one, or

(iii) exactly two non-zero eigenvalues α, β, their multiplicities are one, αβ < 0 and the distribution of
a with respect to ϕ is

−α
β − α

δα +
β

β − α
δβ.

In the last case, for every n ≥ 2 an n-th root of a has two non-zero eigenvalues αn, βn given as the
solutions to the equation

x2 − α + β

n
x+

αβ

n
= 0,
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and the distribution with respect to the state is

−αn
βn − αn

δαn +
βn

βn − αn
δβn .

Example 6.4. The matrix

A =

(
0 1
1 0

)
has eigenvalues {[1]1, [−1]1} and its distribution with respect to the unit vector e1 = t(1, 0) is

1

2
δ−1 +

1

2
δ1.

By Theorem 6.3, A is cyclic-Boolean infinitely divisible with respect to (〈 · e1, e1〉C2 ,TrC2).

7. Cyclic-monotone independence

7.1. Definition and example. We perform an investigation for monotone independence in a spirit
similar to cyclic-Boolean independence. To this end we start from a specific operator model inspired by
the comb product of rooted graphs in Section 2.7.

Example 7.1. Let Hi, i ∈ N, be finite-dimensional Hilbert spaces with distinguished unit vectors
ξi ∈ Hi respectively. Let Pi : Hi → Hi be the orthogonal projection onto Cξi and ϕi be the vector
state on B(Hi) defined by ξi. Let H = H1 ⊗ · · · ⊗ HN , ξ = ξ1 ⊗ · · · ⊗ ξN and ϕ be the vacuum state
on B(H) defined by ξ. This is the same setting as in Example 3.1 with the additional requirement of
finite dimensionality. Analogously to the embedding (3.1) we introduce another embedding of B(Hi)
into B(H):

(7.1) σi(A) = IH1 ⊗ · · · ⊗ IHi−1
⊗ A⊗ Pi+1 ⊗ · · · ⊗ PN .

Note that this embedding does not preserve trace class and therefore the construction is restricted to
finite dimensional spaces. It is known that the family {σi(B(Hi))}Ni=1 is monotonically independent with
respect to ϕ ; see [12, Theorem 8.9].

In addition, we can compute moments with respect to the trace. Again formula (3.2) is crucial: for a
cyclically alternating tuple (i1, . . . , in) ∈ [N ]n and Ak ∈ B(Hik), if p ∈ [n] is such that ip−1 < ip > ip+1

(with the conventions i0 = in and in+1 = i1) then direct computations entail

TrH(σi1(A1) · · ·σin(An)) = ϕip(Ap)TrH
[
σi1(A1) · · ·σip−1(Ap−1)σip+1(Ap+1) · · · σin(An)

]
, n ≥ 2.

This example can be abstracted in the following way.

Definition 7.2. Let (A, ϕ, ω) be a cncps, I be a toset, and Î := {−∞}∪I be an enlargement of I, where

−∞ is the minimum of Î. An ordered family of ∗-subalgebras {Ai}i∈I of A is said to be cyclic-monotone
independent if

(i) it is monotonically independent with respect to ϕ, that is, for any n ≥ 2, any alternating tuple
(i1, . . . , in) ∈ In (namely i1 6= · · · 6= in) and ak ∈ Aik , k = 1, 2, . . . , n, if p ∈ [n] is such that
ip−1 < ip > ip+1 (with conventions i0 = in+1 = −∞) then

ϕ(a1 · · · an) = ϕ(ap)ϕ(a1 · · · ap−1ap+1 · · · an);

(ii) for any n ≥ 2, cyclically alternating tuple (i1, . . . , in) ∈ In (namely i1 6= · · · 6= in 6= i1) and
ak ∈ Aik , k = 1, 2, . . . , n, if p ∈ [n] is such that ip−1 < ip > ip+1 (with different conventions i0 = in
and in+1 = i1) then

ω(a1 · · · an) = ϕ(ap)ω(a1 · · · ap−1ap+1 · · · an).

Definition 7.3. Let (A, ϕ, ω) be a cncps and I be a toset. An ordered family of elements {ai}i∈I of
A is said to be cyclic-monotone independent if so is {Ai}i∈I , where Ai is the ∗-algebra generated by ai
without unit.
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Example 7.4. Suppose that (a, b, c) is cyclic-monotone independent in (A, ϕ, ω). Then

ϕ(ba2bac2b) = ϕ(c2)ϕ(b)3ϕ(a3)

and
ω(ba2bac2b) = ϕ(c2)ϕ(b)ϕ(b2)ω(a3).

Remark 7.5. Cyclic-monotone independence already appeared in the random matrix model in [5] (see
also [20, 2] and Section 1), where independence was defined for a pair of ∗-subalgebras and only for ω.
For a random matrix model for monotone independence see [4].

In [5] the trace functional ω is unbounded, because it can diverge in the large dimensional limit, and
therefore a domain for ω was specified. To avoid this problem in the present paper we focus on finite
dimensional Hilbert spaces and ω = Tr.

It should be noticed that Example 7.1 does not provide an i.i.d. operator model even when Hi = K
does not depend on i; for A ∈ B(K) the operators {σi(A)}Ni=1 are identically distributed with respect
to ϕ, but not with respect to ω, because

ω(σi(A)) = di−1TrK(A),

where d = dim(K). In fact we do not know of any non-trivial operator model for cyclic monotone i.i.d.
random variables and for this reason we do not see any meaningful notions of cumulants and of infinitely
divisible distributions.

7.2. Cyclic-monotone convolution. The convolution formula can be verified in ways.

Theorem 7.6. Let (A, ϕ, ω) be a cncps and a, b ∈ A. Suppose that (a, b) is cyclic-monotone independent.
We then have

g̃a+b(z) = g̃b(z) + F ′b(z) g̃a(Fb(z)).

Algebraic proof. Expand (a+ b)n into

(a+ b)n = bn +
∑
k≥1

q1,q2,...,qk+1≥0
q1+···+qk+1+k=n

bq1abq2a · · · abqk+1 ,

and applying ω yields

ω((a+ b)n) = ω(bn) +
∑
k≥1

q1,q2,...,qk+1≥0
q1+···+qk+1+k=n

ϕ(bq1+qk+1)ϕ(bq2) · · ·ϕ(bqk)ω(ak).

Multiplying the above identity by z−n−1 and taking the summation over n yields

g̃a+b(z) = g̃b(z) +
∑
k≥1

∑
q1,...,qk+1≥0

ϕ(bq1+qk+1)

zq1+qk+1

ϕ(bq2)

zq2
· · · ϕ(bqk)

zqk
ω(ak)

zk+1

= g̃b(z)− z2G′b(z)
∑
k≥1

[zGb(z)]k−1ω(ak)

zk+1

= g̃b(z)− G′b(z)

Gb(z)2

∑
k≥1

Gb(z)k+1ω(ak)

= g̃b(z) + F ′b(z) g̃a(Fb(z)).

Note here that the identity
∞∑

m≥0,n≥0

ϕ(bm+n)

zm+n
= −z2G′b(z)

is used above. �
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Analytic proof in the setting of Example 7.1: Schur complement approach. Let A ∈ B(H1) and B ∈
B(H2) be operators with block decompositions

A =

[
α a′

a Å

]
and B =

[
β b′

b B̊

]
according to the decomposition Hi = Cξi ⊕ H̊i as in (2.12) and let σ1(A) = A⊗ P2 and σ2(B) = I1 ⊗B
act on H1 ⊗H2 ' Cξ ⊕ H̊1 ⊕ (H1 ⊗ H̊2) according to Example 7.1, i.e., if we denote by η1 : H̊1 → H1

the embedding and η∗1 : H1 → H̊1 the projection, then

σ1(A)ξ = αξ ⊕ a⊕ 0 σ2(B)ξ = βξ ⊕ 0⊕ (ξ1 ⊗ b)

σ1(A)̊h1 = (a′̊h1)ξ ⊕ Å̊h1 ⊕ 0 σ2(B)̊h1 = 0⊕ βh̊1 ⊕ (η1(̊h1)⊗ b)

σ1(A)(h1 ⊗ h̊2) = 0 σ2(B)(h1 ⊗ h̊2) = (b′̊h2)(ξ∗1h1)ξ ⊕ (b′̊h2)η∗1(h1)⊕ (h1 ⊗ B̊h̊2)

and we obtain the block decompositions

σ1(A) =

α a′ 0

a Å 0
0 0 0

 , σ2(B) =

 β 0 ξ∗1 ⊗ b′
0 βI̊1 η∗1 ⊗ b′

ξ1 ⊗ b η1 ⊗ b I1 ⊗ B̊


and together

σ1(A) + σ2(B) =

α + β a′ ξ∗1 ⊗ b′
a Å+ βI̊1 η∗1 ⊗ b′

ξ1 ⊗ b η1 ⊗ b I1 ⊗ B̊

 .
We compute the resolvent

(7.2) (z − σ1(A)− σ2(B))−1 =

 z − α− β −a′ −ξ∗1 ⊗ b′

−a (z − β)I̊1 − Å −η∗1 ⊗ b′
−ξ1 ⊗ b −η1 ⊗ b I1 ⊗ (zI̊2 − B̊)


−1

via the Schur complement. To this end we first compute the lower resolvent

(7.3) L−1 =

[
(z − β)I̊1 − Å −η∗1 ⊗ b′
−η1 ⊗ b I1 ⊗ (zI̊2 − B̊)

]−1

on H̊1 ⊕ (H1 ⊗ H̊2). The corresponding Schur complement of L is

SL = (z − β)I̊1 − Å− (η∗1 ⊗ b′)(I1 ⊗ (zI̊2 − B̊)−1)(η1 ⊗ b)

= (z − β)I̊1 − Å− η∗1I1η1 ⊗ b′(zI̊2 − B̊)−1b

= FB(z)I̊1 − Å.

If we denote by RÅ(FB(z)) = (FB(z)I̊1 − Å)−1 and RB̊(z) = (zI̊2 − B̊)−1 the resolvents of Å and B̊,
respectively, then with the help of Banachiewicz’ formula (2.9) the resolvent (7.3) can be written as

L−1 =

[
S−1
L S−1

L (η∗1 ⊗ b′)(I1 ⊗RB̊(z))
I1 ⊗RB̊(z)(η1 ⊗ b)S−1

L I1 ⊗RB̊(z) + (I1 ⊗RB̊(z))(η1 ⊗ b)S−1
L (η∗1 ⊗ b′)(I1 ⊗RB̊(z))

]
=

[
RÅ(FB(z)) RÅ(FB(z))η∗1 ⊗ b′RB̊(z)

η1 RÅ(FB(z))⊗RB̊(z)b I1 ⊗RB̊(z) + η1 RÅ(FB(z))η∗1 ⊗RB̊(z)bb′RB̊(z)

]
.

Now we plug L−1 into Banachiewicz’ formula (2.9) for (7.2):

(z − σ1(A)− σ2(B))−1 =

 S−1 S−1
[
a′ ξ∗1 ⊗ b′

]
L−1

L−1

[
a

ξ1 ⊗ b

]
S−1 L−1 + L−1

[
a

ξ1 ⊗ b

]
S−1

[
a′ ξ∗1 ⊗ b′

]
L−1

 .
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After some cancellations the Schur complement evaluates to

S = Fσ1(A)+σ2(B)(z)

= z − α− β −
[
−a′ −ξ∗1 ⊗ b′

]
L−1

[
−a
−ξ1 ⊗ b

]
= z − α− β − a′(FB(z)I̊1 − Å)−1a− ξ∗1ξ1b

′(zI̊2 − B̊)−1b

= FB(z)− α− a′(FB(z)I̊1 − Å)−1a

= FA(FB(z))

where we used the Schur complement representation (2.13). Finally the resolvent is

(z − σ1(A)− σ2(B))−1

= GA(FB(z))

 1 a′RÅ(FB(z)) [a′RÅ(FB(z))η∗1 + ξ∗1 ]⊗ b′RB̊(z)

RÅ(FB(z))a
[η1 RÅ(FB(z))a+ ξ1]⊗RB̊(z)b

FA(FB(z))L−1 + L2


where

L2 =

[
T Tη∗1 + RÅ(FB(z))aξ∗1 ⊗ b′RB̊(z)

η1T + ξ1a
′RÅ(FB(z))⊗RB̊(z)b

(
η1Tη

∗
1 + η1 RÅ(FB(z))aξ∗1 + ξ1a

′RÅ(FB(z))η∗1 + ξ1ξ
∗
1

)
⊗RB̊(z)

]
with

T = (FB(z)− Å)−1aa′(FB(z)− Å)−1.

Finally the trace of the resolvent evaluates to

gσ1(A)+σ2(B)(z) = GA(FB(z)) + Tr(L−1) +GA(FB(z))Tr(L2)

= GA(FB(z)) + gÅ(FB(z)) + Tr(I1) gB̊(z) + Tr[η1(FB(z)− Å)−1η∗1]

+ Tr[(z − B̊)−1bb′(z − B̊)−1] +GA(FB(z))Tr[T (FB(z)− Å)−1aa′(FB(z)− Å)−1]

+GA(FB(z))Tr(η1Tη
∗
1 + ξ1ξ

∗
1)Tr[(z − B̊)−1bb′(z − B̊)−1]

= GA(FB(z)) + gÅ(FB(z)) + d1 gB̊(z) + gÅ(FB(z))(F ′B(z)− 1)

+GA(FB(z))[F ′A(FB(z))− 1 + F ′A(FB(z))(F ′B(z)− 1)]

= d1 gB̊(z) + gA(FB(z))F ′B(z).

�

We note here that another equivalent convolution formula can be given in terms of

la(z) = −
∑
n≥1

ω(an)

nzn
.

The convolution formula in Theorem 7.6 then reads l′a+b = l′b +(la ◦Fb)′ and hence

la+b(z) = lb(z) + la(Fb(z)).

7.3. Limit theorem. In the setting of Example 7.1, let Hi be the same Hilbert space K with d =
dim(K) ∈ {2, 3, 4, . . . } and with a distinguished unit vector ξ and let a(i) = σi(a) for some a ∈ B(K)sa.
Let ω be the trace on H, Tr be the trace on K and ψ be the vector state on K determined by ξ.

Our main object in this section is the sum

(7.4) bN = a(1) + · · ·+ a(N).

In order to see the convergence of trace moments of bN we start from some examples. Since Tr(IK) = d,
we obtain

ω(bN) = Tr(a) + dTr(a) + · · ·+ dN−1Tr(a) = [N ]dTr(a),
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where [N ]d = 1 + d+ d2 + · · ·+ dN−1, and

ω(b2
N) =

∑
i<j

ω(a(i)a(j)) +
∑
i>j

ω(a(i)a(j)) +
∑
i

ω((a(i))2)

=
∑
i<j

ω(a(i))ϕ(a(j)) +
∑
i>j

ϕ(a(i))ω(a(j)) + [N ]dTr(a2)

=
N∑
j=2

dj−1 − 1

d− 1
Tr(a)ψ(a) +

N∑
i=2

di−1 − 1

d− 1
Tr(a)ψ(a) + [N ]dTr(a2)

=
2

d− 1

[
d(dN−1 − 1)

d− 1
− (N − 1)

]
Tr(a)ψ(a) + [N ]dTr(a2)

=
2

d− 1
([N ]d −N)Tr(a)ψ(a) + [N ]dTr(a2).

A similar computation yields that

ω(b3
N) = 6

[
[N ]d −N
(d− 1)2

− N(N − 1)

2(d− 1)

]
Tr(a)ψ(a)2 +

3

d− 1
([N ]d −N)Tr(a2)ψ(a)

+
3

d− 1
([N ]d −N)Tr(a)ψ(a2) + [N ]dTr(a3).

Therefore, the normalized traces converge as N →∞ without rescaling of bN :

d−Nω(bN)→ Tr(a)

d− 1
,

d−Nω(b2
N)→ 2

(d− 1)2
Tr(a)ψ(a) +

1

d− 1
Tr(a2),

d−Nω(b3
N)→ 6

(d− 1)3
Tr(a)ψ(a)2 +

3

(d− 1)2
Tr(a2)ψ(a) +

3

(d− 1)2
Tr(a)ψ(a2) +

1

d− 1
Tr(a3).

In order to describe the general situation, we need some concepts on ordered set partitions.

Definition 7.7. Let k ∈ N.

(i) An ordered set partition of [k] is a tuple π = (B1, B2, . . . , Bp) of subsets of [k] such that {B1, . . . , Bp}
is a set partition of [k]; that is, B1, . . . , Bp are non-empty and mutually disjoint subsets of [k], and
their union is [k]. The length p of π is denoted by |π|. The set of the ordered set partitions of [k]
is denoted by OP(k).

(ii) For a tuple i = (i1, . . . , ik) ∈ Nk, the ordered kernel set partition ker(i) ∈ OP(k) is defined as
follows: first, pick the smallest value p1 among i1, . . . , ik and then define the subset B1 = {j ∈
[k] : ij = p1}; secondly, pick the second smallest value p2 among i1, . . . , ik and define the subset
B2 = {j ∈ [k] : ij = p2}; continuing this procedure until the end we arrive at an ordered set
partition (B1, B2, . . . ), which is denoted by ker(i).

Example 7.8.

ker(6, 3, 2, 3, 6) = ({3}, {2, 4}, {1, 5}),
ker(2, 7, 4, 7, 4, 2, 4) = ({1, 6}, {3, 5, 7}, {2, 4}).

For further information on ordered (kernel) set partitions the reader is referred to [11].

For an ordered set partition π of [k] there exists a unique packed word, i.e., a tuple i(π) = (i1(π), . . . , ik(π)) ∈
[|π|]k such that π = ker(i(π)). Using this tuple we define ω(π) to be ω(a(i1(π)) · · · a(ik(π))).

Example 7.9. If π = ({1, 3}, {2}) then i(π) = (1, 2, 1) and

ω(π) = ω(a(1)a(2)a(1)) = ϕ(a)Tr(a2).
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If π = ({3}, {2, 4, 6}, {1, 5}) then i(π) = (3, 2, 1, 2, 3, 2) and

ω(π) = ω(a(3)a(2)a(1)a(2)a(3)a(2)) = ϕ(a)ϕ(a)ϕ(a3)Tr(a).

With those notions, we have

ω(bkN) =
∑

π∈OP(k)

∑
i=(i1...,ik)∈[N ]k

ker(i)=π

ω(a(i1) · · · a(ik))

=
∑

π∈OP(k)

∑
i=(i1...,ik)∈[N ]k

ker(i)=π

dmin{i1,...,ik}−1ω(π)

=
∑

π∈OP(k)

α|π|(d,N)ω(π),

where
αp(d,N) :=

∑
(j1,...,jp)∈[N ]p

j1<···<jp

dj1−1, N ≥ p; αp(d,N) := 0, 0 ≤ N < p.

In order to investigate the asymptotics of ω(bkN) it suffices to understand the function αk(d,N).

Lemma 7.10. For each k ∈ N there exists a polynomial Pk in two variables such that

αk(d,N) =
dN

(d− 1)k
+ Pk((d− 1)−1, N), d ≥ 2, N ≥ 0.

Proof. The proof goes by induction on k. For k = 1, α1(d,N) = (dN − 1)/(d− 1), and hence P1(x, y) =
−x. For general k ≥ 2 we proceed as

αk(d,N) =
N∑
j=1

∑
(j1,...,jk−1)∈[j−1]k−1

j1<···<jk−1

dj1−1 =
N∑
j=1

αk−1(d, j − 1)

=
N∑
j=1

[
dj−1

(d− 1)k−1
+ Pk−1((d− 1)−1, j − 1)

]

=
dN

(d− 1)k
− 1

(d− 1)k
+

N∑
j=1

Pk−1((d− 1)−1, j − 1), N ≥ 1.

By Faulhaber’s formula and induction hypothesis, there is a polynomial Qk(x, y) such that Qk(x, 0) = 0
and

Qk(x,N) =
N∑
j=1

Pk−1(x, j − 1), N ≥ 1,

which implies the desired formula for N ≥ 1 by taking Pk(x, y) = −xk + Qk(x, y). Since Qk(x, 0) = 0
the formula holds for N = 0 as well. �

By Lemma 7.10 we obtain the limit

lim
N→∞

d−Nαk(d,N) =
1

(d− 1)k

and conclude the following.

Theorem 7.11. In the setting above we have

(7.5) lim
N→∞

d−Nω(bkN) =
∑

π∈OP(k)

ω(π)

(d− 1)|π|
.



CYCLIC INDEPENDENCE: BOOLEAN AND MONOTONE 31

Thus the empirical eigenvalue distributions of bN converge (in the sense of moments) to a probability
measure whose k-th moment is the above limit. Of course the empirical eigenvalue distributions of the
rescaled sum N−1/2bN converge weakly to δ0, which means that the number of eigenvalues of N−1/2bN
outside a fixed neighborhood of 0 is of the order o(dN). Combining this with the monotone CLT, which
asserts that vacuum spectral distribution of N−1/2bN weakly converges an arcsine distribution, it turns
out that the vacuum vector captures a relatively small number of eigenvalues of N−1/2bN that lie outside
the neighborhood of 0.

The limit moments (7.5) depend on a lot of information about trace and vacuum moments of the
original matrix a. This is in sharp contrast with the fact that if ψ(a) = 0 and ψ(a2) = 1 then the
distribution of the rescaled sum N−1/2bN with respect to the vacuum state ϕ converges weakly to the
same arcsine law.

We come back to the original model of comb product graphs in Section 2.7 (cf: Example 7.1), and
compute the limit empirical eigenvalue distribution of the adjacency matrix of the iterated comb product
of the complete graph K2. Even for this simplest graph, the limit moments (7.5) are not explicit; they
only satisfy a recurrence relation. Fortunately, we can describe the limit distribution with the help of
work of Smyth [21], who defined a distribution function L+ : [0,∞) → [0, 1) (denoted as F therein)
characterized by the property that L+ is strictly increasing, L+(0) = 0 and

|2L+(x)− 1| = L+(|x− x−1|), x > 0.

Let λ+ be the distribution associated with L+ and λ be the symmetrization of λ+. It is known that L+

is continuous and hence λ has no atoms.

Theorem 7.12. Let AN be the adjacency matrix of the N-fold comb product of (K2, o) with itself. Then
the empirical eigenvalue distribution of AN converges weakly to λ as N →∞.

Proof. In the notation of this section, we are dealing with

K = C2, a =

(
0 1
1 0

)
, and ξ =

(
1
0

)
.

As already verified, the limiting p-th moment of bN is described by

(7.6)
∑

π∈OP(p)

ω(π),

where ω(π) in (7.5) is determined by the sequence {ω(ap)}p≥0 = {2, 0, 2, 0, . . . } = {2ψ(ap)}p≥0. It is
easy to see that ω(π) = 0 for all π ∈ OP(p) if p is odd, and hence all odd moments vanish. We will
compute the numbers

γn,k :=
∑

π∈OP(2n),|π|=k

ω(π).

The very definition of ω(π) shows that γn,1 = 2 and ω(π) is either 0 or 2. Below we identify [p] with Zp
regarded as points on a circle. Let p ≥ 2, then a maximal arc in a subset B ⊂ Zp is a maximal cyclic
interval I ⊆ Zp contained in B.

Any subset B ⊂ Zp is a union of maximal arcs of B in Zp (see Fig. 6). This notion is important since
for π = (B1, . . . , Bk) ∈ OP(2n) the factorization

(7.7) ω(π) = ω(π|[2n]\Bk
)

∏
I:maximal arc of Bk in Z2n

ψ(a#I)

holds. Observe from the repeated use of (7.7) that ω(π) = 2 if and only if

(a) each maximal arc of Bk in [2n] ' Z2n has even size,
(b) each maximal arc of Bi in [2n] \ (Bi+1 ∪ · · · ∪ Bk) ' Z2n−

∑k
j=i+1 #Bj

has even size for all i =

1, 2, . . . , k − 1.
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•3

•2•1
◦8

•7
•

6 ◦
5

•
4

? ? ◦ ? ◦

Figure 6. Bk = {1, 2, 3, 4, 6, 7} ⊂ [8] and its unfolded line, cut between 1 and 8. The
maximal arcs of Bk in [8] are {1, 2, 3, 4} and {6, 7}.

◦3

◦2•1
•8

◦7
◦

6 •
5

•
4

and •3

◦2◦1
•8

•7
◦

6 ◦
5

•
4

◦ ◦ ? ◦ ◦ ?

Figure 7. {1, 4, 5, 8} ⊂ [8] and its rotation to the left {3, 4, 7, 8}

Note that these conditions imply that all Bi have even size. Moreover, since Bi are not empty, we must
have 2 ≤ #Bi ≤ 2n− 2k + 2 for all i ∈ [k].

To find a recursive formula for γn,k, we count the number δn,m of all subsets Bk ⊂ [2n] satisfying (a)
and with #Bk = 2m for each 1 ≤ k ≤ n and 1 ≤ m ≤ n− k+ 1. As in Fig. 6, two neighboring elements
• of Bk can be joined to a single element ? and the elements on the circle can be cut between 1 and 2n
and be opened to a line, so the problem comes to counting the number of arranging m elements ? and
2n − 2m elements ◦ on one line; however, subsets like Bk = {1, 4, 5, 8} does not correspond to such a
line arrangement, so we adjust such a case by rotating the circle to the left as in Fig. 7. Therefore, a
line arrangement of m elements ? and 2n− 2m elements ◦ corresponds to a single Bk if it ends with ◦,
while it corresponds to two Bk’s if it ends with ?. Altogether, we arrive at

δn,m =

(
m+ 2n− 2m− 1

m

)
+ 2

(
m+ 2n− 2m− 1

m− 1

)
=

(
2n−m
m

)
2n

2n−m
.

From this counting, (7.7) gives the recursive formulas

γn,k =
∑

Bk⊂[2n]
2≤#Bk≤2n−2k+1
Bk satisfies (a)

γn− 1
2

#Bk,k−1 =
n−k+1∑
m=1

δn,mγn−m,k−1

=
n−k+1∑
m=1

(
2n−m
m

)
2n

2n−m
γn−m,k−1 =

n−1∑
`=k−1

(
n+ `

n− `

)
2n

n+ `
γ`,k−1, n ≥ k ≥ 2,(7.8)

with γn,1 = 2 for n ≥ 1. Let

βn :=
n∑
k=1

γn,k, n ≥ 1; β0 := 1.

Note that βn is the limiting moment (7.6) of order p = 2n. The recursive formula (7.8) implies

(7.9) βn =
n−1∑
`=0

(
n+ `

n− `

)
2n

n+ `
β`, n ≥ 1,
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and thus βn satisfies the recurrence in [22, Theorem 6] and hence coincides with the 2n-th moment of
λ. Some examples are: {βn}7

n=1 = {2, 10, 80, 874, 12092, 202384, 3973580}.
It then suffices to show the determinacy of the moment problem to conclude the weak convergence.

According to Lemma 7.13 below, one easily sees Carleman’s condition∑
n≥1

β
− 1

2n
n =∞,

which shows that the moment problem for (7.6) is determinate. �

Lemma 7.13. Let {βn}n≥0 be the sequence defined by (7.9) with β0 = 1. There exists C > 0 such that
the inequality βn ≤ (Cn)2n holds for all n ≥ 1.

Remark 7.14. The proof below shows that C = 11 suffices. Moreover, according to OEIS A048286, a

more precise asymptotics βn ∼ c(2/(e log 2))nnn+ 1
2
− log 2

4 holds, where c = 1.6463....

Proof. We proceed by induction using the recursion formula (7.9) and Stirling’s formula
√

2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n, n ≥ 1.

Let n ≥ 2. We adopt the notation 00 = 1. Assuming the desired inequality holds until n − 1 for some
constant C > 1, one has

βn = 2 +
n−1∑
`=1

(
n+ `

n− `

)
2n

n+ `
β` ≤ 2 + 2

n−1∑
`=1

(
n+ `

n− `

)
(C`)2`

≤ 2 +
e

π
√

2

n−1∑
`=1

(n+ `)n+`+1/2

√
`22`(n− `)n−`+1/2

C2` ≤ 2 +
e

π
√

2

n−1∑
`=1

(n+ `)n+`+1/2

22`(n− `)n−`+1/2
C2`.

We split the sum into the two parts 1 ≤ ` ≤ n − 4 and n − 3 ≤ ` ≤ n − 1 (the arguments below are
valid even for 2 ≤ n ≤ 4 by setting the irrelevant terms to be 0). The first part is estimated as

n−4∑
`=1

(n+ `)n+`+1/2

22`(n− `)n−`+1/2
C2` ≤

n−4∑
`=1

(2n)n+n−4+1/2

22`4n−`
C2` ≤ 1

n

n−4∑
`=1

n2nC2`

≤ n− 4

nC8
n2nC2n ≤ 1

C2
n2nC2n,

and the second part is estimated as

n−1∑
`=n−3

(n+ `)n+`+1/2

22`(n− `)n−`+1/2
C2` ≤ 3

C2

(2n)2nC2n

22n−6
=

3 · 26

C2
n2nC2n.

Obviously, 2 ≤ 1
C2

e
π
√

2
n2nC2n. Putting everything together, we obtain

βn ≤
194e

C2π
√

2
(Cn)2n.

By taking C > 1 such that C2 ≥ 194 e
π
√

2
(C = 11 suffices) we obtain βn ≤ (Cn)2n. �
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